
UnForm Version 8.0

1

UnForm


 User Guide

Version 8.0

UnForm is published under license by:

Synergetic Data Systems, Inc.

3976 Durock Road, Suite 102

Shingle Springs, CA 95682

USA

Phone: (530)-672-9970

Fax: (530)-672-9975

Email: sdsi@synergetic-data.com

Web page: http://synergetic-data.com

UnForm is Copyright ©1994-2009 by Allen D. Miglore. All rights reserved.

UnForm is distributed under license by Synergetic Data Systems Inc.

UnForm is a registered trademark of Synergetic Data Systems, Inc.

Other product names used herein may be trademarks or registered trademarks of their respective owners.

UnForm Version 8.0

2

UnForm
®
 Document Management Software

License Agreement

NOTICE: OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THE FOLLOWING TERMS AND CONDITIONS. PLEASE READ THEM. IF

YOU DO NOT AGREE WITH THEM, RETURN THE PACKAGE UNOPENED, AND RETURN OR DESTROY ANY COPIES OF THE PROGRAM IN YOUR

POSSESSION. THE DEALER FROM WHOM YOU PURCHASED THE SOFTWARE WILL REFUND YOUR PURCHASE PRICE.

"Program", as used herein, refers to both this documentation and the software programs described by this documentation.

"Developer", as used herein, refers to Allen D. Miglore. "Publisher" as used herein refers to Synergetic Data Systems, Inc.

LICENSE

You may use the Program on a single machine, and you may copy the Program into any machine-readable format for backup purposes only. If you transfer the Program to another

machine, you agree to destroy the Program, together with all copies, in whole or in part, on the original machine.

You may not copy, modify, or transfer the Program, in whole or in part, except as expressly provided herein. You may not sublicense, assign, or otherwise transfer the Program to

any third party except by the express written consent of the Developer or Publisher.

TERM

The license is effective until terminated. You may terminate at any time by destroying the Program together with all copies of the Program in your possession. It will also terminate

automatically upon failure to comply with any of the terms of this agreement. You agree upon such termination to destroy the Program together with all copies in your possession in

any form.

CONFIDENTIALITY OF THE PROGRAM

You understand that the Program is proprietary to the Developer, and agree to maintain the confidentiality of the Program. You agree that neither you, nor any person or entity acting

on your behalf, will copy or otherwise transfer the Program, in whole or in part, in any form (including printed source code), to any third party. You agree to retain the Developer's

copyright notices, in all forms, throughout the Program. You agree not to de-encrypt or de-compile the Program.

LIMITATION OF LIABILITY

The Program is provided "AS IS" without warranty of any kind, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose. The entire

risk as to the quality and performance of the Program is with you.

In no event will the Developer or Publisher be liable to you for any damages, including any lost profits or other incidental or consequential damages arising out of the use or inability

to use the Program, even if advised of the possibility of such damages.

SUPPORT

Support for the Program should be obtained from the Dealer from whom it was purchased. Support pricing and terms are established by the Dealer, not the Developer or Publisher.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS.

YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND THE DEVELOPER

AND PUBLISHER AND IT SUPERSEDES ANY PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN YOU AND

THE DEVELOPER RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

UnForm Version 8.0

3

TABLE OF CONTENTS
TABLE OF CONTENTS .. 3

INTRODUCTION ... 12

CLIENT-SERVER ARCHITECTURE ... 14

SERVER INSTALLATION .. 15

CLIENT INSTALLATION ... 17

WEB SCRIPT INSTALLATION ... 19

CONFIGURING THE SERVER .. 21

CONFIGURING EXTERNAL PROGRAMS ... 28

DELIVER CONFIGURATION .. 31

BROWSER FORMS CONFIGURATION .. 35

HTML FORM STRUCTURE ... 35
CGI-DRIVEN RULE SETS .. 37
JAVASCRIPT EXECUTION OF RULE SETS ... 38
FORM ACCESS CONFIGURATION .. 39

MESSAGE TRANSLATIONS .. 42

DYNAMIC RULE FILE TRANSLATIONS ... 43

TCP/IP MONITOR ... 46

INTEGRATING UNFORM WITH APPLICATIONS ... 49

INTEGRATING UNFORM WITH BBX ... 51
INTEGRATING UNFORM WITH PROVIDEX ... 53

LICENSING ... 55

UNFORM COMMAND LINE OPTIONS ... 59

UNFORM AFO – APPLICATION FORMATTED OUTPUT .. 76

FLOW OF PROCESSING .. 79

CONCEPTS, PRIMER, AND TIPS ... 82

DOCUMENT ARCHIVING AND MANAGEMENT... 87

OVERVIEW ... 87
STRUCTURE DETAILS .. 88
DOCUMENT-LEVEL IDENTIFICATION ... 89
IMAGE-LEVEL IDENTIFICATION ... 93
ADDING UNFORM-GENERATED DOCUMENTS .. 93

UnForm Version 8.0

4

USING THE WEB BROWSER INTERFACE ... 95
DIRECT BROWSER ACCESS TO DOCUMENTS .. 96
CUSTOMIZING THE WEB INTERFACE .. 96
USING THE UNFORM CLIENT .. 97

Triggering Archiving of UnForm Jobs ... 98
Adding External Documents... 98
Document Retrieval .. 99
Document Deletion ... 100
Document Listings .. 100
Searching for Documents ... 102
Testing Existence of Documents ... 102
Importing Documents from sdStor ... 102

UNFORM IMAGE MANAGER ... 103
FUNCTIONS RELATED TO ARCHIVING .. 104
BUILDING DEMO ARCHIVE DATA .. 105
TRANSFERRING ARCHIVES TO A NEW SYSTEM ... 105

MIGRATING ARCHIVING FROM UNFORM 7.X TO UNFORM 8.0 .. 107

MIGRATE TO 8.0 ON A NEW SYSTEM ... 107
MIGRATE TO 8.0 ON THE SAME SYSTEM .. 108

WINDOWS SUPPORT SERVER .. 109

DESKTOP DELIVERY AND FORMS ... 113

DESKTOP DELIVERY .. 113
DESKTOP FORMS .. 114

ADDRESS BOOKS.. 117

DATABASE ACCESS ... 118

DESKTOP CLIENT .. 120

DEPLOYMENT ... 120
DTC RULE SETS ... 120

Detect ... 121
Title .. 121
DTCPanel ... 121
DTCHelpfile ... 122
DTCButton ... 122
Code Block Response For Buttons ... 123
Code Block Response For ParseValue Requests .. 124

RULE FILES .. 125

CONTENT-BASED RULE SETS .. 126
ACROSS ... 127
ANNOTATE, CANNOTATE ... 128
ARCHIVE ... 130
ATTACH .. 133
AUTHOR .. 135
BARCODE (PCL,PDF, PS) .. 136
BARCODE (ZEBRA) ... 140
BIN ... 143
BOJ, BOP, EOJ, EOP ... 144
BOLD, ITALIC, LIGHT, UNDERLINE .. 145
CBOLD, CITALIC, CLIGHT, CUNDERLINE .. 145

UnForm Version 8.0

5

BOX, CBOX ... 147
BOXR, CBOXR .. 150
CIRCLE .. 153
COLS .. 155
COMPRESS, NOCOMPRESS ... 156
CONST, GLOBAL, LOCAL .. 157
COPIES, PCOPIES ... 158
COVER ... 159
CPI .. 160
CROSSHAIR .. 161
DELIVER ... 162
DETECT ... 164
DOWN .. 166
DPI .. 167
DSN_SAMPLE ... 168
DTCBUTTON .. 169
DTCHELPFILE .. 171
DTCPANEL .. 172
DUMP ... 173
DUPLEX ... 174
EMAIL .. 175
ERASE, CERASE ... 177
FIXEDFONT .. 178
FONT, CFONT ... 179
GS ... 182
HLINE .. 183
HSHIFT .. 184
IF COPY … END IF ... 185
IF DRIVER … END IF .. 186
IF EXPRESSION … END IF .. 187
IMAGE ... 188
IMAGES ... 193
ITALIC ... 195
JAVASCRIPT ... 196
KEYWORDS .. 197
LANDSCAPE, RLANDSCAPE ... 198
LCOPIES .. 199
LDARKNESS ... 200
LIGHT .. 201
LINE ... 202
LOAD ... 204
LOCKCOLS .. 205
LPI .. 206
LSPEED .. 207
MACRO .. 208
MACROS .. 209
MARGIN .. 210
MERGE .. 211
MICR .. 212
MOVE, CMOVE .. 213
NOTEXT, NOOVERLAY .. 215
OUTLINE ... 216
OUTPUT ... 217
PAGE .. 218
PAPER .. 219

UnForm Version 8.0

6

PORTRAIT, RPORTRAIT ... 220
PRECOPY, PREDEVICE, PREJOB, PREPAGE ... 221
POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE ... 221
PROTECT ... 223
ROWS ... 224
SHADE, CSHADE ... 225
SHIFT ... 227
SUBJECT.. 228
SYMSET ... 229
TEXT .. 230
TITLE ... 236
TRANSPARENCY ... 237
TRAY .. 238
UNDERLINE .. 239
UNITS ... 240
VLINE .. 241
VSHIFT .. 242
ZCOPIES, ZDARKNESS, ZSPEED ... 243

WORKING WITH MACROS .. 244

REGULAR EXPRESSIONS ... 246

SAMPLE RULE FILES .. 247

SIMPLE1 - INVOICE RULE SET (SIMPLE.RUL) ... 248
SIMPLE2 – INVOICE RULE SET (SIMPLE.RUL) .. 250
SIMPLE3 – INVOICE RULE SET (SIMPLE.RUL) .. 253
SIMPLE4 – INVOICE RULE SET (SIMPLE.RUL) .. 256
INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL) ... 260
STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB (ADVANCED.RUL) 267
AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL) .. 273
LABELS – TEXT LABELS TO LASER LABELS (ADVANCED.RUL) ... 279
132X4 – MULTI-UP, SCALED REPORTING (ADVANCED.RUL) ... 281

ZEBRA LABEL – ZEBRA LABEL PRINTER EXAMPLE (ADVANCED.RUL) .. 282
PDF OUTLINE SAMPLE (ADVANCED.RUL) .. 284
ADDITIONAL SAMPLE RULE FILES .. 286

PROGRAMMING CODE BLOCKS ... 288

BASIC SYNTAX .. 289
OBJECT ORIENTED PROGRAMMING .. 295

Object Instantiation .. 295
Object Access ... 295
Object Destruction ... 296

BUILT IN OBJECTS .. 297
addrbook .. 298
binfile ... 299
collection .. 300
date ... 301
doclist ... 303
http ... 305
inifile .. 307
json ... 308
keyfile ... 310
libraries .. 312

UnForm Version 8.0

7

library ... 314
marked .. 319
rac .. 320
search ... 321
system ... 323
textfile ... 324
webapi .. 326
xmlreader ... 327

INTERNAL VARIABLES ... 329
across$... 329
bin$.. 329
cols$... 329
copies ... 329
pcopies ... 329
copy .. 329
coverset$, coverfile$, coverargs$... 329
crosshair$... 329
down$... 329
driver$.. 329
duplex$... 329
gs$.. 329
lcopies$, ldarkness$, lspeed$... 330
margin$.. 330
noarchive .. 330
nocover ... 330
noemail ... 330
nohpgl .. 330
nooverlay .. 330
orientation$.. 330
outline$... 330
output$... 330
pagenum ... 330
paper$.. 330
rows$.. 331
showimages .. 331
skip ... 331
text$[all] .. 331
textpage$[all] ... 331
textjob$[all] ... 331
tray$... 331
uf.xxx$.. 331
zcopies$, zdarkness$, zspeed$.. 333

INTERNAL FUNCTIONS ... 334
arrtostr(arr$[all],str$,dlm$) .. 334
arrset(arr$[all],col,row,cols,val$) ... 334
basename(file$) .. 334
bbxread(file$,key$,rec$,errcode) ... 334
cdate(datestr$ [,fmt$]) ... 334
clientenv(name$) .. 335
cmtocols(centimeters) ... 335
cmtorows(centimeters) ... 335
cnum(expression) ... 335
count(str$,dlm$) ... 335
countq(str$,dlm$) ... 335
cstrans(text$,fromcs$,tocs$) ... 335

UnForm Version 8.0

8

cut(col,row,cols,value$) ... 335
dbconnect(name$[,timeout[,errmsg$]]) .. 336
dbexecute(name$, command$, timeout, fdelim$, rdelim$, response$[,errmsg$]) ... 336
deliver(filename$,to$,tags$ [,response$[,errmsg$]]) .. 336
delpage(n) .. 336
dirname(file$) ... 336
docidexists(lib$,doctype$,docid$) .. 337
dtdel(filename$, title$, userid$, ip$ [,style [,errmsg$]]) ... 337
dtform(formname$, title$, userid$, ip$, datastr$, response [,timeout [,errmsg$]]) .. 337
email(to$, from$, subject$, body$, attach$, cc$, bcc$, otherheaders$, login$, password$,logfile$) 338
entityencode(str$), entitydecode(str$) .. 338
env(name$) ... 338
err=next ... 338
exec(expression) ... 338
exists(file$) ... 339
fileext(file$) .. 339
finddata(text$[all], search$, coloffset, rowoffset, columns, result$[all]) .. 339
findpos(text$[all],search$,result[all]) ... 339
fromuc(text$,charset$) ... 340
get(col,row,cols) ... 340
get(col,row,cols,trim$) ... 340
get(col,row,cols,trim$,page) .. 340
get(col,row,cols,trim) ... 340
get(col,row,cols,trim,page) .. 340
getaddress(book$,entityid$,doctype$,address$) .. 340
getarc(lib$,doctype$,docid$,subid$, filename$ [,errmsg$]) .. 341
getcolumn(rows$,column[,first[,count[,fdelim$[,rdelim$]]]]) ... 341
getdocidprop(lib$, doctype$,docid$, prop$) ... 341
getfile(filename$) ... 341
getfilefield(filename$,key$,field) ... 341
getfilefield(filename$,key$,field, dlm$, quoted) .. 341
getfilerec(filename$,key$) .. 341
getfilerec(filename$,key$, dlm$, quoted) ... 342
getinival(filename$,section$[,name$]) .. 342
getpage(n,arr$[all]) ... 342
getpaircount(values$ [,delim$]) .. 342
getpairvalue(values$,number[,delim$])... 342
getpairvalue(values$,name$ [,delim$] [,casesensitive]) ... 343
getpatternvalue(pattern1$,pattern2$, array$[] [,erasepat,[includepat]]) .. 343
getpatternvalue(pattern1$,pattern2$, searchtext$ [,erasepat,[includepat]]) ... 343
getppdval(name$,option$) ... 343
getsubids(lib$,doctype$,docid$[,dlm$]) .. 344
gettrans() .. 344
gproperty(name$) ... 344
gtextcount(page) ... 344
gtextitem(page,item,text$[,col [,row [,cols [,rows]]]] .. 344
gtextfind(page, pattern$, txt$[all], rects[all]) ... 344
imgx(imagefile$,units) .. 345
imgy(imagefile$,units) .. 345
inchtocols(inches)... 345
inchtorows(inches) ... 345
inspage(n,arr$[all]) ... 345
jobclose(id$…) ... 345
jobids(dlm$) ... 345
jobexec(id$,output$,driver$,argstring$ [,async]) .. 346

UnForm Version 8.0

9

jobfile(id$) .. 346
jobstore(id$ [,array$[all]]) ... 346
lbound(arr$[all][,dimension]) ... 347
left(str$,length) ... 347
libexists(lib$) .. 347
log(msg$).. 347
log(msg$,logfile$[,format$]).. 347
logwarn(msg$) ... 347
lower(expression) ... 347
ltrim(str$) ... 348
mcut(col,row,cols,rows,value$,lf$,trim$) ... 348
mget(col,row,cols,rows,lf$,trim$) .. 348
mid(arg1$,arg2,arg3) .. 348
mset(col,row,cols,rows,value$) .. 348
msfax(filename$, faxnum$, tags$ [, errmsg$]) .. 348
parse(str$,n,delimiter$) .. 348
parseq(str$,n,delimiter$) .. 348
pdfpages(pdffile$) .. 349
pdftoimage(fromfile$,tofile$,format$[,resolution[,errmsg$]]) .. 349
prm(“name”) .. 349
proper(expression) ... 349
putaddress(book$,entityid$,doctype$,address$) .. 349
putdocidprop(lib$, doctype$, docid$, prop$) ... 349
putpage(n,arr$[all]) ... 350
right(str$,length) .. 350
rtrim(str$) ... 350
sdocmd(object$, cmd$, response$, errmsg$) ... 350
sdoinit(target$, timeout, server$, port) .. 350
set(col,row,cols,value$) .. 351
setlogin(userid$,password$) .. 351
settrans(filename$) ... 351
sqlconnect(datasource$[,user$,pswd$ [,otheroptions$ [,errmsg$]]]) ... 351
sqlexecute(chan,command$[,errmsg$ [,result$ [,fdelim$ [,rdelim$]]]]) ... 351
sqlfetch(chan,result$[,count [,errmsg$ [,fdelim$ [,rdelim$]]]]) .. 352
sshost(server$,port) .. 352
striplines(text$) ... 352
strtoarr(str$,arr$[all],dlm$) .. 352
sub(str$,old$,new$) .. 352
subidexists(lib$,doctype$,docid$,subid$) ... 352
tempfile([ext$]) .. 352
textimage(text$, font$, size, cols, rows, color$, charset$, errmsg$) .. 352
textfile(path$) ... 353
textheight(text$, fontnum|fontname$, size, attr, cols [,linespacing]) ... 353
textwidth(text$, fontnum|fontname$, size, attr) .. 354
touc(text$,charset$) .. 354
translate(name$ [,context$], forcecontext) .. 354
trim(expression) ... 354
ttfchars(fontnum) .. 354
ubound(arr$[all][,dimension]) .. 354
upper(expression) ... 355
urlgetfld(datastr$,name$) .. 355
urlsetfld(datastr$,name$,value$) ... 355
urldelflds(datastr$,names$) ... 355
urlgetnames$(datastr$) .. 355

RUNTIME VERBS AND FUNCTIONS .. 356

UnForm Version 8.0

10

ASC(string) ... 356
ATH(string) .. 356
BIN(integer,length) .. 356
BREAK ... 356
CHR(integer) .. 356
CONTINUE .. 356
CVS(string,arg) .. 356
DATE(julian {,time} {:mask}) .. 356
DTE(julian {,time} {:mask}) ... 356
DEC(string) .. 356
DIM string(length {,char}) ... 357
DIM name[dim1{,dim2{,dim3}}] ... 357
DIR("") ... 357
EPT(number) .. 357
ERASE filename ... 357
EXITTO linelabel ... 357
FBIN(number) .. 357
I3E(number) ... 357
FDEC(string) ... 357
I3E(string) .. 357
FID(channel) .. 357
FILL(integer{,string}) .. 357
DIM(integer{,string}) ... 357
FIN(channel) .. 357
FOR numvar=start TO end {STEP increment} .. 357
FPT(number) .. 358
GOSUB linelabel .. 358
GOTO linelabel ... 358
HTA(hexstring) ... 358
IF test THEN statement(s) {ELSE statement(s)} {END_IF or FI} ... 358
INT(number) ... 358
JUL(year,month,day) ... 358
LEN(string)... 358
LET var=value{,var=value…} ... 358
MASK(string{,regexpr}) ... 358
MSK(string{,regexpr}) ... 358
MAX(num{,num…}) ... 358
MIN(num{,num…}) .. 358
MOD(num1,num2) ... 358
NUM(string) ... 359
ON integer GOTO|GOSUB linelabel{,linelabel…}.. 359
OPEN(integer{,err=linelabel|next}{,isz=integer}) string .. 359
POS(string1 relation string2 {,increment {,occurrence}}) ... 359
PRINT(channel) value {,value…}{,} .. 359
READ{ RECORD}(channel {,options}) variable {,variable…} .. 359
REM ... 359
RETRY .. 359
RETURN ... 359
RND(integer) .. 360
ROUND(number,precision) ... 360
SCALL(string) .. 360
SYS(string) .. 360
SETERR linelabel ... 360
SGN(number) ... 360
STBL(string1{,string2}) .. 360

UnForm Version 8.0

11

GBL(string1{,string2}) ... 360
STR(number{:mask}) .. 360
STR(string{:mask})... 360
STRING filename{,err=label} .. 360
SERIAL filename{,err=label}... 360
TCB(integer)... 360
TIM ... 360
UNT .. 361
WHILE condition…WEND ... 361
WRITE {RECORD} (chan,options)data ... 361

ERROR CODES ... 362

EMAIL INTEGRATION .. 364

HTML OUTPUT ... 371

CREATING HTML .. 372
HTML CONFIGURATION .. 374
HTML OUTPUT TEMPLATES .. 376
HTML RULE SETS.. 379
BORDER .. 380
COLDEF ... 381
COLWIDTH ... 385
FRAME ... 386
HDRON, HDROFF, HDRTD ... 387
LOAD ... 388
MULTIPAGE ... 389
NULLROW ... 390
OUTPUT ... 391
OTHEROPT.. 392
PAGESEP ... 393
PREJOB, PREPAGE, POSTJOB, POSTPAGE ... 394
ROWDEF .. 396
TITLE ... 399
TOC .. 400
WIDTH ... 401
SAMPLE HTML RULE SET ... 402
AGING REPORT SAMPLE ... 402

8.0 ENHANCEMENTS ... 406

DELIVER COMMAND ... 406
COVER PAGES ... 406
PRINTING ENHANCEMENTS .. 406
PDF ENHANCEMENTS .. 407
OBJECT ORIENTED PROGRAMMING FEATURES ... 408
CODE BLOCK PROGRAMMING ENHANCEMENTS ... 408
ARCHIVING ENHANCEMENTS ... 409
ZEBRA ENHANCEMENTS .. 410
WINDOWS SUPPORT SERVER ENHANCEMENTS ... 410
MISCELLANEOUS ENHANCEMENTS .. 410
IMAGE MANAGER .. 411
APPLICATION FORMATTED OUTPUT .. 412
NEW LEARNING RESOURCES .. 412
CAVEATS .. 412

INDEX .. 413

UnForm Version 8.0

12

INTRODUCTION

UnForm is a software product designed to work as a filter between an application and an output device

or file, such as a laser printer or a PDF document, or a program like a fax product. Most applications

can be simply configured to print through UnForm, which in turn processes the output from the

application, determines if custom processing is necessary, and then applies any enhancements before it is

output.

For example, if a UNIX program sends output to the spooler like this:

 cat file-name | lp -dlaser -s 2>/dev/null

Then the output can be changed to use UnForm (note the use of the –oraw option, which can vary by

operating system):

 cat file-name | uf80c -f acct.rul | lp -dlaser –oraw –s 2>/dev/null

Or for better performance, UnForm can print directly from the server:

 cat file-name | uf80c –f acct.rul –o ">lp –dlaser -oraw"

UnForm can also work in Windows environments, utilizing TCP/IP printing directly from text print

drivers, or via a post-print command line execution controlled by an application program.

UnForm is unique in its ability to analyze report output to determine what, if any, customization to

apply. When a report is detected that requires enhancements, UnForm can add line drawing, shading,

attributes, font control, and text to the form. UnForm can also handle the processing of multiple copies,

multiple output devices, attachments, overlays, and graphic images, and includes support for the

complete Business BASIC programming environment to add true programmed intelligence to any form.

The enhanced output can be used to simulate pre-printed forms, or to change the look of plain-paper

forms, for which headings and dashed lines are printed by the application, from crude to professional.

UnForm can also be used to enhance reports, such as financial statements or aging reports, raising them

from mundane to board room quality.

UnForm can produce enhancements on any printer or device that offers the HP PCL5 printer language or

PostScript level 2 or 3. This includes most HP LaserJet and compatible printers beginning with the HP

LaserJet III, many UNIX faxing software packages, and other products.

UnForm can also produce virtually identical output in Adobe's Portable Document Format (PDF), and

similar output in Zebra's ZPL II language, supported on many Zebra thermal label printers. With proper

configuration, UnForm can automatically convert its PDF output to any format supported by Ghostscript,

including tiff, jpeg, png, and more. Lastly, UnForm can parse column and row oriented reports and

produce formatted HTML output.

UnForm Version 8.0

13

While UnForm has traditionally accepted plain text print streams and constructed documents from this

basic text, version 8.0 adds a new capability to accept PostScript print streams that contain application-

formatted documents. In conjunction with GhostScript and the UnForm Windows Support Server, this

pre-formatted data is translated to PostScript, PDF, or PCL5 print streams, with optional enhancements

such as images, barcodes, text, and drawing features added by UnForm. Further, the text elements

provided in the input are available to UnForm jobs for designing full-featured document management

applications.

See the UnForm AFO chapter for more details.

UnForm Version 8.0

14

CLIENT-SERVER ARCHITECTURE

UnForm utilizes a client-server architecture, where the UnForm processing of documents can occur on a

different machine from the application. The resulting enhanced document can be printed, emailed, sent

to a fax gateway, or stored at the server, or can be returned to the client machine for printing or storage

from its perspective. One important benefit of using a client-server model is that the application process

that is sending jobs to UnForm via the client software need not wait for the job to finish if the server will

be handling the output. This provides better performance to the application user, particularly for large or

complex jobs that take time for UnForm to process.

The UnForm server can run on either UNIX or Windows systems. The server provides the UnForm

processing logic and a listener, which handles job requests from clients located on the network.

The UnForm clients can be installed anywhere on the network, on Windows or UNIX systems. On

Windows, the client is a native Windows executable. On UNIX, the client is a Perl program, so UNIX

systems require Perl level 5.005 or above. Clients perform the application interface work, taking input

from the application, submitting it to the server, and in many cases, returning the result back to the client

for processing.

There is nothing to prevent the same machine from acting as both client and server, and in fact, the

server installation automatically installs a client on that machine. Submitting a job to 'localhost' when

the client and server run on the same machine can improve performance, as job data need not be

transferred over the network.

For complete information about how to operate the client and server programs, read the Command Line

Options chapter. In general, on Windows the server is operated from the Server Manager option or as a

Windows service, and on UNIX the server is operated like this:

 uf80d start

 uf80d stop

The client supports an extensive set of options. Some simple examples:

 cat sample1.txt | uf80c –f simple.rul | lp –dhp –oraw

 uf80c –i sample1.txt –f simple.rul –o ">lp –dhp –oraw"

 uf80c –i sample1.txt –f simple.rul –p pdf –o client:sample1.pdf

In the first example, uf80c submits the job and returns the result to its spooler. In the second example,

uf80c submits the job and the server prints the result to its spooler. In the third example, uf80c submits

the job requesting PDF output, and returns the result to its file sample1.pdf.

UnForm Version 8.0

15

SERVER INSTALLATION

UNIX Server download installation instructions:

1. Login as root.

2. Create a directory to hold the UnForm files, and change to that directory.

 Example:

 umask 0

 mkdir /usr/unform80

 cd /usr/unform80

3. Uncompress and extract UnForm from the download file.

 uncompress uf80_xxx_tar.Z

 tar xvf uf80_xxx_tar

4. Execute the UnForm set up script.

 ./ufsetup.sh

 The ufsetup.sh script will create two scripts, called /usr/bin/uf80c and /usr/bin/uf80d. The uf80c

program is the client, while uf80d manages the server.

5. Activate demo mode, or activate permanently, using ./license.sh.

6. Start the server: uf80d start

7. Use the uf80c –v command to ensure UnForm is installed and set up correctly. The output from

this command will display information about the installation. Note that uf80c requires Perl

version 5 or higher.

See the Licensing section for activation information.

Note that you will probably want to place the uf80d start command in your system boot scripts,

often found in the /etc/init.d directory or a similar location, depending on your version of UNIX.

UnForm Version 8.0

16

Windows Server installation instructions:

1. Windows desktop systems: Simply execute the downloaded setup executable.

Windows server systems: 2003: Use Control Panel, Add/Remove Programs, and execute the

setup executable. 2008 without Terminal Services: right-click the setup executable, and ‘Run As

Administrator’. 2008 with Terminal Services: Use Control Panel, Programs, Install Application

on Terminal Server, and execute the setup executable.

Follow the on-screen prompts from the installer to install UnForm to your system. This will

install both the uf80d.exe server program and the uf80c.exe client program. The client program

and its associated support files will be installed in the Windows directory, enabling a command

line launch without a full path, as the Windows directory is always included in the PATH

environment variable.

2. Click the Server Configuration option from the Start menu. This will conditionally rename

certain files and prompt for several configuration values. The values entered are stored in several

local .ini files in the UnForm server directory. You can also use the Configure button from

within the UnForm Server Manager.

3. Click the Server Manager option from the Windows Start, Programs, UnForm 8.0 Server menu.

4. Activate the demo mode, then if desired, activate permanently, by pressing the Licensing button

and using the form that displays. On line help is available if needed.

5. Click the Start button from the Server Manager to start the server manually.

6. Use the Server Version option from the Start menu to ensure the server is running properly and

the client can operate from the server computer. The output from this command will display the

version and licensing information.

7. If desired, you can install the server as a service from within the Other tab in the Configure

window. When the UnForm server is run as a service, it is automatically started when Windows

boots up. It is generally recommended that the server first be configured and tested while

running as an application, and then installed as a service after confirming successful operations.

The service by default will run under the local SYSTEM account, which typically does not have

access to network resources. Use Control Panel, Administrative Tools, Services to modify the

service to login under a different account if necessary.

See the Licensing section for activation information.

UnForm Version 8.0

17

CLIENT INSTALLATION

The uf80c client software can be used to submit jobs to UnForm from anywhere on your network after

the server is installed and operating. The client software is automatically installed on the same machine

as the server, so jobs can be submitted locally. However, you can install the client software on any

network computer. Any client can talk to any server, so you can mix and match different operating

systems as you need. For example, you could install the Windows server, and have both Windows and

UNIX clients submit jobs to it.

Clients must be installed on any machine that will be submitting jobs to UnForm. For example, in a

Windows network, with the UnForm server installed on a single network server, each workstation that

will be submitting jobs must have a client installed and configured to communicate with that server.

The UNIX client is installed from the file uf80c_tar.Z, while the Windows client installer is called

uf80c_setup.exe.

The UNIX install steps are as follows:

 Ensure the system has Perl level 5 or higher: perl –v

If not, Perl can be obtained from http://perl.com or http://cpan.org.

 Create a directory for the client, such as mkdir /usr/lib/sdsi/uf80client

 Set permissions on that directory: chmod 777 /usr/lib/sdsi/uf80client

 Copy the uf80c_tar.Z file to that directory and cd to that directory

 Uncompress the file: uncompress uf80c_tar.Z. If you have gzip, then the gunzip utility can also

uncompress the file.

 Extract the files: tar xvf uf80c_tar

 Run the setup script: ./ufcsetup.sh

 Edit the uf80c.ini file to set up the client configuration:

The uf80c.ini file looks like this:

[defaults]

server=localhost

port=27280

#logfile=uf80c.log

#mailto=root

retry=30

wait=2

Change the server= line to point to the server host name or IP address, and the port line to the proper

listening port configured in the server's uf80d.ini file. The port default is 27280, and will not normally

be changed. Note that the server and port can also be specified on the uf80c command line. The values

entered here serve as defaults.

http://perl.com/

UnForm Version 8.0

18

If you want uf80c to log errors, uncomment the logfile= line, setting the value to a log file name.

If you want uf80c to email (using the UNIX mail command) error messages to an administrator,

uncomment the mailto= line, setting the value to an email address available from the client computer.

Note that the Windows client does not support emailing of error messages.

The retry and wait lines set the number of times, and delay between tries, that the client will attempt to

connect to the server before giving up. If any retries are needed, and the log file is specified, then a

message will be logged.

On Windows, the installation steps are:

 Run the uf80c_setup.exe installer program.

 Run the Configure UnForm Client option from the Start menu. Enter the appropriate values for

the server and port, and optionally the log file.

UnForm Version 8.0

19

WEB SCRIPT INSTALLATION

One component of UnForm archiving is a web browser-based interface for browsing, searching, and

viewing archived documents, as well as user administration for non-archiving installations. You can

interface directly to the UnForm server using its internal HTTP server, which by default listens on port

27282. However, if you wish to use an external web server, you can install the web script as described

below.

The web script, a CGI executable, is used to enable Web browser access to library archives when

UnForm archiving is used. This script is called uf80a.pl on Unix/Linux, and uf80a.exe on Windows,

and is present in the UnForm server installation directory. The script must be copied to a location where

the local web server can execute scripts. Once the script is copied and configured, a Web browser can

access it with the appropriate path, such as:

http://myserver/cgi-bin/uf80a.pl

http://myserver/scripts/uf80a.exe

Note the name of the script can be changed however appropriate.

Unix or Linux

If the web server is Apache, then there is generally a cgi-bin directory that can be used to host the

uf80a.pl script. It is also common to configure additional directories to support CGI scripts, so the web

server administrator may chose a different location. Alternatively, sometimes file extensions are

mapped to always execute as CGI scripts (.cgi for example), in which case uf80a.pl can be renamed to

uf80a.cgi and placed in any directory accessible to the web server.

Once the script has been copied to the correct location, verify that the script signature line (line one)

properly references the location of Perl on the system. The default is: #!/usr/bin/perl, but another

common location is #!/usr/local/bin/perl. Note the “#!” prefix is part of the syntax and is required.

Windows

Most IIS installations include a directory c:\inetpub\scripts, and this is a suitable place for uf80a.exe.

Alternatively, the web server administrator can define virtual directories that support scripting, and

uf80a.exe can be copied there.

Configuration

If the UnForm server is running on the same machine as the web server, and is listening on the default

port of 27280, then there is no configuration necessary. However, a file uf80a.ini, in the same path as

the uf80a script, can be defined with two lines in it to override these assumptions:

server=server name or IP address

port=listening port

UnForm Version 8.0

20

Performance of the web interface is best if the web server and UnForm server are on the same physical

machine. If different machines are used, firewall configuration may be necessary to enable the web

server to connect to the UnForm server’s listening port.

Help Files

The help files for the browser interface are stored in the web/language/help directory under the UnForm

server (the language defaults to en-us). These files are not accessible through the CGI interface, so they

must be copied to a location on the web server to be accessible (alternatively, an alias or virtual directory

can be configured to point to this location if the web server resides on the same system as the UnForm

server). A web server administrator must make these help files available, and then the helppath=url line

can be updated in the [archive] section of uf80d.ini. The help path configured is used as the prefix to the

index.html file of the help system in all the Help links in the browser interface.

For example, in Apache, a virtual directory /archelp might be configured like this:

Alias /archelp/en-us/ /usr/lib/unform8/web/en-us/help/

Then the help path could be configured like this:

helppath=http://[HTTP_HOST]/archelp/[LANGUAGE]

UnForm Version 8.0

21

CONFIGURING THE SERVER

The server is configured via the uf80d.ini file, which can be edited with any text editor. On Windows,

many of these options can be configured with the Configure button in the Server Manager. In addition to

these items, you can also configure access to Ghostscript, Image Magick, or Image Alchemy elsewhere

in the uf80d.ini file. See the Configuring External Programs chapter for more details.

In the defaults and security sections, here are the values available:

[defaults] section

port=n Sets the primary listing TCP/IP port to n. The default is 27280.

Note that if you use NAT translation or if you have a firewall

between the clients and server, then this port (along with the

procports defined below) must be configured to allow clients access.

logfile=path Sets the name of the server's log file to path. By default, it is stored

in the UnForm directory. Standard log entries include connection

information. Detailed logging includes verbose data transactions.

logdetail=n Set n to 0 for standard logging, 1 for detailed logging. You should

not leave detailed logging enabled for normal use, as the log file can

grow very large.

timeout=n Set n to the number of seconds that a connection can remain idle

before closing. The default value is 3600, or one hour. Setting this

value to 0 will avoid timeout-based disconnects. This value

primarily affects designer connections, which can remain active for

long periods.

age=days This value sets the maximum age, in days, of job log entries. When

jobs are submitted, basic job information is kept in a log file. If

errors were recorded, the error file also remains in the temp

directory under the UnForm server. After this many days, the files

and log entries are automatically removed. A fraction of a day can

be supplied, such as age=.25 for 6 hours.

agetmp=hours This value sets the maximum age, in hours, of ./temp/tmp files,

which is the default directory for work files.

rulefile=path Sets the default rule file to path, used for jobs that do not specify a

rule file on the command line.

bbpath=path If the bbxread() function is used, this value points to the BBx

executable that is invoked when required, such as

/usr/lib/basis/pro5/pro5.

library=path1;path2;… Sets directory paths that are automatically searched for rule files,

images, and attachments. By default, UnForm searches the UnForm

directory and also supports full paths.

sshost=host Sets the default host IP address or name of the Windows Support

Server. In addition, the sshost() function can be used in a code

UnForm Version 8.0

22

block to specify the host and port at run-time.

ssport=port Sets the default port to connect to the Windows Support Server on

the host specified by sshost.

imageage=days Images that are converted by an external conversion program or by

the Windows Support Server are cached by default. The last date an

image is used is also stored, and images that have not been used in

days days are removed automatically.

stylesheet=name Sets the name of the style sheet used by the archive browser

interface programs. A file called “default.css” is provided with the

server installation (found in the web/en-us directory). This style

sheet is also used when archives are exported to static HTML

structures.

bufsize=bytes An initial block is tested for each job in order to determine if the job

contains binary data or text data. The size of this block defaults to

8196 bytes, but you can adjust it to any integer value with this entry.

The minimum value is 1024.

cr=0|1|2|3 Controls default handling for embedded carriage return (chr(13))

characters in lines read from the input stream. This value may be

overridden with the –cr command line option.

 0 will truncate lines at the first CR.

 1 will strip CR character, so the line continues as if the

character were not present.

 2 will fold lines, and non-space characters are placed in the

line buffer, simulating an overstrike.

 3 will fold lines and insert an extra space, which

accommodates Windows Generic/Text Only printers that

overstrike conflicting characters.

repair=0|1 If set to 1, the next start of the uf80d server will attempt to repair

certain control files, such as the job history database and user table.

Use this feature if you suspect corruption in one of these files. It

should normally be set to 0.

tcpportretry=n The number of times a job received on a direct TCP/IP port will be

retried if a non-license (998) error occurs. As an example, if a

network printer goes down and UnForm returns errors trying to open

the output device (-o devicename), this sets the maximum number of

times the job will be submitted by the port sweeper. The sweeper

runs each time a job is submitted and every 5 seconds when idle.

Setting this value to a reasonable number allows for temporary

problems to be self-corrected without causing an unlimited number

of log and error files to build up due to a configuration issue.

To release jobs once a problem is corrected, manually remove the

*.rty file(s) from the rpq directory.

UnForm Version 8.0

23

pdftrans=0|1 Sets the default PDF transparency setting. If 1, then PDF files will

use transparency.

textjob=0|1 Sets the default behavior on generation of the textjob$[all] array,

which is a collection of all print lines for the job. This array can be

useful when performing report mining operations, or parsing a full

job into pages in a prejob code block, but when large print streams

are processed, a significant amount of memory and CPU resources

are consumed generating the array. The -textjob, -notextjob

command line options override this setting.

errnotify=email address

errnotifysubject=subject

If an error occurs while running a job, messages are written to a job

number error file (temp/jobno.err). This file remains on disk for a

configured amount of time, typically seven days. You can configure

an email address (or multiple emails separated by commas) to have

the server send the contents of these error files to an administrator,

reducing the need to proactively monitor for errors.

Only jobs that encounter runtime errors trigger mailing. Errors in

jobs being tested in the design tool are not sent. Also, some errors

can occur only on the client side, such as an invalid server address.

In those cases, the server is unaware of the error and no message

will be sent. Such errors need to be captured via client error

handling.

The subject specified may include a tag "@jobid" to reference the

job number, which can be helpful to cross reference back to a rule

file and rule set by locating the "Job complete" message in the

server log file.

If an error occurs while emailing, a message is logged in the server's

uf80d.log file. This feature depends on having email properly

configured (in prog/mailcall.in or the [mailcall] section of

uf80d.ini), and is available starting in version 8.0.28.

[security] section

allow=list This is a semi-colon delimited list of valid IP addresses or wildcards

that are allowed to connect to the server. Note that the loopback

address 127.0.0.1 is always allowed to connect. The default list is

192.*.*.*;10.*.*.*, which allows the two standard non-routable

LAN spaces to work.

designer=0|1 If set to 1, the Design Tool will require a login and will encrypt rule

files when saved. The login is restricted to a user who is either an

administrator or has been granted Design Tool access via the user

maintenance features of the archive web browser interface.

Rule files saved or published in encrypted format can be read by any

UnForm 8.0 server, regardless of its designer security setting, but

UnForm Version 8.0

24

can only be edited by the design tool.

If set to 0, the Design Tool does not require a login, and rule files

are maintained as text files, which can be edited using any text

editor as well as the design tool.

[tcpports] section

port=options Each line defines a port on which the server listens for raw print job

deliveries, such as from Windows TCP/IP ports. Each job

submission is then processed using a uf80c command line

configured with a pre-defined -ix option plus any other options

defined. For more information, see the TCP/IP Monitor chapter.

[archive] section

deflib=defaultlib Sets the default library name, for use when archive commands do

not specify a library name. This library will be placed under the

default “arc” subdirectory below the UnForm server.

keywords=n Specifies the maximum number of default keywords generated for

UnForm job-based archives. Default keywords are unique words

generated from the job input stream that do not match patterns

defined in the nonwords= file. If this value is set to -1, then all

unique words become keywords. The benefit of this is that more

words of job print streams are available for searching. The cost is

greater time spent parsing reports for words and additional disk

space utilization.

nonwords=file Specifies a file which contains lines of regular expressions for

“words” that should not become keywords. See ufnonwords.txt for

examples.

nonchars=charlist This is a list of characters that are removed from keywords. The

default list provided with UnForm is: <>{}[]()*=~`"'+|

endchars=charlist This is a list of characters that are removed from the end of

keywords. For example, you may want to remove periods from the

ends of words as a period typically ends a sentence. The default list

provided with UnForm is: .?!,;.

searchage=days When archive searches are performed in the Web browser interface,

work files are generated. This sets the maximum number of days

these files will remain on disk.

webdirs=dir1;dir2;… If you need to support multiple languages, or you wish to offer a

customized user interface for archive browser users, you can copy

the ./web/en-us directory to other ./web/* directories and customize

them. In particular, the messages.txt file and various html templates

or style sheets can be customized. This directory list (and associated

name=title values in each messages.txt file) are presented in the

browser login screen.

sesage=hours Set the number of hours a browser session can last before a login is

required again. By setting this to 0, browser users must login each

time their web browser is re-started and the web interface is

UnForm Version 8.0

25

accessed. Set it to a large number to allow users to login once per

workstation and have that login remembered.

defperm=perms Sets the default permissions on new libraries. Set to zero or more

semi-colon delimited letters, r, w, and d for read, write, and delete.

For example, defperm=r;w for default read and write, or defperm=r

for just read only, or defperm= for no default permission, meaning

only administrator logins can access the library initially.

defseq=0 or 1 Sets the default Force Sequence on Sub ID flag value for new

libraries. If set to 1, then sub ID’s are auto-sequenced to prevent

overwriting.

pdfname=name.*.pdf In the browser interface, when images are consolidated into a single

PDF, a file name is suggested when the PDF file is saved or an

attachment is emailed. This value forms a pattern, with an asterisk

positioned to indicate where unique sequencing can be applied. Use

this to identify a company, such as SDSI.Document.*.pdf, so when

an email recipient receives an email, the attachment name will be

readily identifiable.

dtdel=http://unformserver:port If this line is enabled, then the browser interface will display a menu

entry to launch the desktop delivery browser client.

selfmanage=0|1 If set to 1, the browser interface will allow users to email their login

and password to themselves, and can change their own password.

ses_wlst=0|1

ses_notext=0|1

ses_mailfrom=email

ses_tiftopdf=0|1

ses_imgtopdf=0|1

These entries provide session defaults for the browser interface.

The ses_wlst entry establishes the default for image details (wide

listings) when browsing or searching. The ses_notext can be used to

turn off @text images when browsing. ses_mailfrom provides a

default From address when emailing consolidated documents.

ses_tiftopdf and ses_imgtopdf enable TIF or all images to be

converted to PDF before viewing in the browser. This capability

requires that Image Magick be configured on the UnForm server or

in the Windows Support Server.

logo=filename Sets the logo file name used for most pages in the browser interface.

This should be a file format that can display as an inline image in

browsers, such as jpg or gif, and should be a small file to avoid page

formatting issues. The default logo is a simple UnForm icon,

unform.gif.

brhistcnt=count Sets the maximum number of browse history items that are

maintained for a user. These keep track of recent browse libraries,

orders, and starting points to assist a user who frequently uses

specific browse functionality.

helppath=url

helppath2=url

Specifies the URL entry points for the browser interface help

directories (help is for users, help2 is for administrators). When

using the internal web server, this defaults to a local path

web/language/help. However, if browser access is configured

through an external web server using the CGI script, the help

directory must be configured on that web server and the helppath

UnForm Version 8.0

26

URL modified. You can use [HTTP_HOST] and [LANGUAGE]

tags in this path. Below is the structure used for the internal web

server:

helppath=http://[HTTP_HOST]/web/[LANGUAGE]/help

helppath2=http://[HTTP_HOST]/web/[LANGUAGE]/help2

enablefax=0|1 Enable fax tabs in the browser interface. Fax submissions rely on

the deliver() function, so faxing must be configured in the deliver.ini

file for this functionality to work.

faxcover=name1[,name2…] When faxing is enabled, this provides a list of one or more cover

page names that are acceptable for use with the deliver command's

configured faxing product. For example, msfax users could rely on

the "generic" cover definition by specifying faxcover=generic. The

browser interface offers a choice of no cover, plus any cover names

defined here. Multiple names are delimited with commas.

[mailcall] section

name=value The mailcall section can be used to define mailcall values not

available in the email command and email() code block function,

such as timeout or bodymime, or to provide a default setting if the

command or function doesn’t supply a value (or supplies a null

value). Any options not set in an email command or function will

be filled in with values in this section.

For example, if you want a bcc sent to a local support account by

default, add a line that says bcc=email address. Or, if you find that

the default timeout of 30 seconds isn’t enough time for a slow

internet connection, add a line like timeout=60.

[httpd] section

port=port The desktop delivery server is based on the HTTP protocol. The

port on which it listens defaults to 27282, but that can be changed

by modifying this entry. Note this server can also be used to access

archive libraries, using http://server:port/arc.

logdetail=0|1 If set to 1, the desktop delivery server will log details into the

server’s log file, usually uf80d.log.

block=value

cmpminsize=value

minhelpers=value

filecache=0|1

These values can be tuned to adjust the desktop delivery server’s

performance.

Note also many parameters are stored in the ufparam.txt file. You can create a custom version of this

file, called ufparam.txc, which will be used instead of ufparam.txt. Any new parameters that are added

during a release cycle are documented in the readme.txt file, and can be added manually to keep

ufparam.txc up to date if necessary.

UnForm Version 8.0

27

Of particular interest in ufparam.txc is the font configuration. All fonts are assigned a numeric ID.

Those that are common in pcl5 printers have pre-assigned values from HP, while soft fonts can be given

user-defined numeric IDs. These name=number pairs are defined in the [fonts] section. ID numbers can

then be assigned to soft font names in the [psmap] and [ttmap] sections, or mapped to PDF base fonts in

the [pdfmap] section. See the standard ufparam.txt file for examples and notes.

When UnForm processes a text or font command, it attempts to match a named option with a font name

in the [fonts] section, and it then uses the associated font number. Alternatively, the text or font

command can identify the font number directly, with a font n option.

Once a number is identified, UnForm then looks for a native soft font definition, depending on the

output format. It looks in the [softfont] section for pcl5 output, or the [psmap] section for postscript

output, or the [pdfmap] section for mapping to an internal PDF base font. If no match is found, then the

[ttmap] section is scanned for a match, and the associated TrueType soft font is embedded in the output

and used.

An example of mapping a True Type font would look like this:

[fonts]

…

vera=19200

[ttmap]

19200=Vera,VeraBd,VeraIt,VeraBI

In the [fonts] section is a name=number pair. The number is user-defined and must not conflict with the

various fixed PCL font numbers found in the section. The [ttmap] section contains a number=font(s),

where a list of font file names (without the .ttf extension) is provided for normal, bold, italic, and bold-

italic versions of the font. Note that not all fonts provide all these versions. True Type font files are

found in the ./ttfont directory, or on Windows in the %windir%\fonts directory, or can be specified as

full path names.

UnForm Version 8.0

28

CONFIGURING EXTERNAL PROGRAMS

The UnForm server supports the use of three external programs for handling two tasks: image scaling

and conversion, and document imaging conversion.

For image scaling, you can configure either Image Alchemy, a commercial product available from

Handmade Software (http://handmadesw.com), or Image Magick, an open source product available from

http://www.imagemagick.org. Once configured, image scaling is automatically used when an image

command contains size information and the image file is not a native file for the output format UnForm

is generating.

For document image conversion, you can configure Ghostscript, an open source or commercial product

available from http://ghostscript.com. Document imaging is managed by the –p command line

argument, and it enables a series of additional drivers, such as tiff, postscript, and png. Ghostscript is

also used internally by UnForm when PDF files need to be converted to other formats.

Once the appropriate programs are installed, edit the uf80d.ini file to configure them.

Use the [images] section to configure Image Alchemy or Image Magick, first by defining a

converter=path entry, where path is the execution path of the alchemy or convert programs. If the path

is in the operating system's PATH variable, then just a simple name will be required. Since the server,

uf80d, will be executing the program, you should make sure that the user under which it runs includes

the proper environment variable definitions.

In addition to the executable, define several command line argument lines for pcl, pclc, and pdf, and

optionally others that can be called out by the option item of the image command. Generally, you can

simply uncomment the proper lines for Alchemy or Magick. The pcl command is invoked for laser

output, and the pdf command is invoked for PDF output. If the image command's color option is used,

or the –color command line option is used, then the pclc command is invoked. Below is a sample

uf80d.ini [images] section, with Image Magick enabled:

The following substitions are made at runtime:

%i for the input image file

%o for the output image file that UnForm will use

%d for resolution in dots per inch

%x for image width in pixels

%y for image height in pixels

%g gamma value from the image command

[images]

External image conversion/scaling program setup

http://handmadesw.com/

UnForm Version 8.0

29

1) Define program path: converter=pathname

Use a full path if necessary, as this becomes a system call in UnForm.

On Windows, this will very likely be necessary.

2) Define arguments to be passed to converter for pcl, pclc, and pdf.

Use %i for input image, %o for output, %d for dpi, %x for width, %y for height

pdf should not contain %x/%y, as scaling is performed by Acrobat.

Options passed from image command line can be appended to the name with a dash.

i.e. image 10,10,10,10,"image.bmp",option 123 would use pcl-123 or PDF-123.

Options can be up to 10 characters long, and are case sensitive.

Examples for Image Alchemy:

#converter=alchemy

#pcl="%i" "%o" -o -Q -D %d %d -+ -Xc%x -Yc%y -P 103 >/dev/null 2>&1

#pclc="%i" "%o" -o -Q -D %d %d -+ -Xc%x -Yc%y --r 9 >/dev/null 2>&1

#PDF="%i" "%o" -o -Q -D %d %d --d -8 >/dev/null 2>&1

Examples for ImageMagick:

converter=convert

pclc="%i" -density %dx%d -colors 256 -dither -resize %xx%y "%o" >/dev/null 2>&1

pcl="%i" -density %dx%d -monochrome -resize %xx%y "%o" >/dev/null 2>&1

PDF="%i" -density 300x300 -colors 256 "%o" >/dev/null 2>&1

#PDF-72="%i" -density 72x72 -colors 256 "%o" >/dev/null 2>&1

PDF-72, above, is a 72 dpi image conversion, and would be specified

with 'option 72' in an image command. The resulting file will be much

smaller than the 300 dpi image shown in PDF=, though quality may suffer

too much for use, depending on the image itself.

Use the [drivers] section to define the Ghostscript-hosted imaging drivers. When this feature is enabled,

the –p driver option supports a series of new names, all derived from an intermediate PDF document that

is converted at the end of the job to the specified format. First, enable the gs=path line to instruct

UnForm how to run Ghostscript. On UNIX, this is often just the word "gs", while on Windows it is

often a full path to the gswin32c.exe program.

The “pdffitpage=n” option is used to indicate if this version of GhostScript supports the –dPDFFitPage

option, which was added to GhostScript at version 8.10. If this value is 1, then UnForm can optimize

management of PDF files added to a job using the images command. Without this capability, all images

must be converted to full page sizes and then scaled. Note that an alternative to using a server copy of

GhostScript is to set up a Windows Support Server and execute GhostScript on that machine. This

enables sites running older versions of Unix or Linux to access current versions of GhostScript. To

force the use of the Windows Support Server, disable the gs=path line (#gs) and use the sshost setting or

code block command to enable use of the Support Server.

Other entries are simply name=device,multipage,dpi, where name is the UnForm driver name, device is

the –sDEVICE name used by Ghostscript, multipage is a 0 or 1, where 1 means the output is multi-

page=multi-file and 0 means all pages go to a single file, and dpi is the dots-per-inch resolution.

Note that the use of multi- or single-page output is often dependent on the image format. For example,

bmp files do not support multiple pages per file, while tiff files do.

UnForm Version 8.0

30

Note that the graphical designer may rely on the png entry shown, depending on how it is configured.

[drivers]

enable Ghostscript drivers by uncommenting the gs= line

gs=gs

windows would typically need a full path

gs=c:\gs\gs8.xx\bin\gswin32c.exe

pdffitpage=0

driver lines are structured as name=gsdevice,multipage,density

gsdevice is the Ghostscript sDEVICE value

multipage is Boolean 0 or 1, 1 means -o file is file<page>.ext

Many formats require a 1, as the image format supports only a

single image per file.

density is output density, as hhh[xvvv] (horizontalxvertical) dpi

bmp=bmp256,1,300

bmpmono=bmpmono,1,300

tif=tiffcrle,0,300

tifmono=tiffg3,0,300

png=png256,1,300

pngmono=pngmono,1,300

jpeg=jpeg,1,300

ps=pswrite,0,300

eps=epswrite,1,300

deskjet=deskjet,0,300

UnForm Version 8.0

31

DELIVER CONFIGURATION

The deliver.ini file contains configuration information for the deliver command and deliver() code block

function. The file contains a [default] section, an [email] section, and one or more fax definition

sections. The [default] section contains a fax= line that specifies which fax definition section is used. It

also contains logging parameters.

A fax definition indicates the type of interaction that is required, command line, email (SMTP), or the

internal msfax option, which utilizes the Windows Support Server to send faxes via Microsoft Fax.

Each configuration line can contain optional and required tags, which are substituted at runtime with tag

values specified in the deliver command or deliver() code block function. Tags are used to specify fax

numbers, subject lines, recipient names, and other values, and the values from the commands are

mapped to the configuration each time a delivery is performed.

There are five pre-defined tag names that can be used in the configuration.

Tag Usage

%to Fax number or email address.

%faxfile File to be sent (the output from UnForm, typically of a subjob). The deliver command

manages this value automatically. The deliver() function has a file name argument that this

tag references.

%errfile An error file, which if used and contains content will be returned in the errmsg$ argument of

the deliver() function. UnForm generates the file name automatically, and then expects to

find error messages, if any, in the file when the fax or email is submitted.

%rspfile A response file, which if used and contains content will be returned in the response$

argument of the deliver() function. UnForm generates the file name automatically, and then

expects to find messages, if any, in the file when the fax or email is submitted. For

example, this might be the standard output of a vfx command line, which can contain a fax

job number.

%attach Used for additional documents beyond the %f file. All attach tags are accumulated, with

space delimiters for command methods, and comma delimiters for email methods, then the

entire list is substituted for the %attach marker. The msfax method does not support

attachments.

Additional tags are referenced with a %name syntax, and are substituted from the tag options provided

by the deliver command or deliver() function. Optional tags are specified using a { %name } syntax,

where a tag and any text can be specified inside the curly braces. After all %name substitutions have

occurred, any remaining {…} sequences that contain %name tags are removed before the delivery is

actually executed.

When the deliver command generates a document for delivery, it does so with an UnForm subjob.

When delivering to an email address, the subjob always produces a pdf file. When delivering to a fax

number, the type of file is configured with the format=pcl|pdf|ps line. When executing the subjob,

UnForm Version 8.0

32

several command line options are automatically managed. The fax configuration section can specify

additional options, as can the deliver command itself.

Below are commented examples of sections:

Default section

This example [default] section specifies that the vsifax fax definition will be used for faxing. Daily

delivery log files will be placed in the deliver subdirectory under the UnForm server, tags will be logged

in addition to basic delivery data, and log files will be retained for 30 days.

[default]

 fax=vsifax

#fax=msfax

logdir=./deliver

logtags=1

logage=30

Email section

This [email] section defines a To: header format with an optional quoted name and the to address. The

name can be supplied via a name="value" tag in the deliver command or function. If not supplied, then

the To: header will just have the email address, automatically supplied as the "to" tag.

Other values can be supplied via additional tags. The email will always include a file attachment, as

generated by the deliver command or supplied to the deliver function. In addition, if there are any

"attach filename" tags, those files will be attached to the email as well.

[email]

to={"%name" }%to

subject={%subject}

msgtxt={%note}

attach=%f{,%attach}

logfile={%logfile}

#otherhead=

#login=

#password=

#server=

Note, additional options come from [mailcall] section in uf80d.ini,

or the mailcall.ini file.

Vsifax section

The vsifax section defines a fax gateway that uses the vfx command to send a fax. The method is set to

"command", indicating that a command line is created and executed. The command is specified over

several lines in the deliver.ini file by using \ at the ends of lines to indicate that the line continues on the

next physical line.

UnForm Version 8.0

33

There are several optional elements, such as name and subject. If they are supplied as tags in the deliver

command or deliver() function, then -t options will be added to the vfx command line. If not, then those

elements are suppressed from the command line. For example, if one tag was 'name="John Smith"', then

there would be a '-t tnm="John Smith"' added to the command line.

Standard output is captured in a response file, and error output is capture in an error file. The use of %r

and %e in the command allows the deliver() function to return the command's response or error message.

When the deliver command executes the subjob to produce the file to be faxed, it will produce it in pcl

format (using a -p pcl option). In addition, a -nohpgl option will be used.

[vsifax]

method=command

command=vfx -n '%to' -F pcl \

 {-t tnm="%toname"} \

 {-t tco="%tocompany"} \

 {-t sub="%subject"} \

 {-t fnm="%fromname"} \

 {-t fco="%fromcompany"} \

 {-t ntx="%note"} \

"%faxfile"{ %attach} \

 >%rspfile 2>%errfile

format=pcl

options=-nohpgl

Rapidfax section

The rapidfax section shows an example of using a third-party Internet faxing service for sending faxes.

Such services accept email submissions via email. PDF format is generally supported, and many

services offer support for additional document types, meaning you can add additional attachments, such

as text files, image files, or Microsoft Office files.

The method is specified as "email" to indicate that UnForm will submit faxes by emailing them to the

fax service. The To address for most Internet services is faxnum@service.com. In the case of Rapidfax,

the domain is rapidfax.com. Rapidfax expects fax submissions from a specific email address, and with a

user-configured subject line. In this example, the From address and subject lines are hardcoded. There

can be a message body, specified by a note tag, and both the submitted file and any other files specified

by attach=filename tags are submitted for faxing.

[rapidfax]

method=email

to=%to@rapidfax.com

from=you@yourcompany.com

subject=yourpassword

msgtxt=%note

format=pdf

UnForm Version 8.0

34

attach=%faxfile{,%attach}

Msfax Section

The msfax section specifies the "msfax" method, which is an internal UnForm method that works in

conjunction with the Windows Support Server. The command value specifies tag names documented in

the Windows Support Server chapter and the msfax() function.

[msfax]

method=msfax

format=pdf

command={toname="%toname %tocompany"}\

 {,fromname="%fromname"}{,fromcompany="%fromcompany"}\

 {,subject="%subject"}{,note="%note"}{,cover="%coverpage"}

UnForm Version 8.0

35

BROWSER FORMS CONFIGURATION

The archive browser interface supports custom forms that can be accessed from specific points. These

forms, when submitted, execute an UnForm job and provide that job with information from the form as

well as the user's browser session and the CGI environment. The UnForm job can perform tasks that

might involve updating document properties on a selected or related document, or execute some other

task related to a document.

When the job is run, it can be designed to return data to the browser, in the form of a PDF file or HTML

text. Optionally, the job can be run asynchronously and a configurable response message is returned

instead.

The job must be designed to operate with no usable input stream. If the job's output is to be returned to

the browser, the first page of data will be replaced or suppressed by the job. Variables are provided to

access information the user completed in the form, so typically the job will be designed with code blocks

that interact with this data.

There are several related configuration steps for setting up browser forms:

 HTML forms must be defined and stored in the server's active web/en-us or web/language

directory. The forms must have a .html extension.

 A rule file and rule set must be created, designed to act upon the data from the form. This rule

set will have access to some template variables: cgi$, env$, and session$, which are populated

from the form and the user's session.

 The forms.ini file must be defined to enable users or groups to access forms designed for a given

library and document type.

HTML Form Structure

The HTML form may have any valid HTML structure for a form, but must contain a few mandatory

elements. The form_sample.html file found in web/en-us provides this example form code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <link rel="stylesheet" type="text/css" href="[SCRIPT_NAME]?fl=default.css" />

 <link rel="stylesheet" type="text/css" href="[SCRIPT_NAME]?fl=custom.css" />

 <script language="JavaScript" src="[SCRIPT_NAME]?fl=common.js"></script>

 <title>

 Document Approval

 </title>

UnForm Version 8.0

36

</head>

<body onunload="saveWindowInfo()">

<h2>Approve or Deny Action on this document</h2>

<form name="approval" action="[SCRIPT_NAME]" method="post">

<input type="hidden" name="a" value="uf">

<input type="hidden" name="args" value="-f cgiforms.rul -r approval -p pdf">

<input type="hidden" name="run" value="">

<input type="hidden" name="async" value="0">

<input type="hidden" name="lb" value="[lb]">

<input type="hidden" name="doctype" value="[doctype]">

<input type="hidden" name="docid" value="[docid]">

<table class="form">

 <tr>

 <th>Library</th>

 <td>[lb]</td>

 </tr>

 <tr>

 <th>Doc Type</th>

 <td>[doctype]</td>

 </tr>

 <tr>

 <th>Doc ID</th>

 <td>[docid]</td>

 </tr>

 <tr>

 <th>Categories</th>

 <td>

 <script>

 // present categories in lines

 var cat='[categories]';

 cat=cat.replace(/;/g,"
");

 cat=cat.replace(/\|/g," > ");

 document.write(cat);

 </script>

 </td>

 </tr>

 <tr>

 <th>Approval</th>

 <td>

 <input type="radio" name="approval" value="0" checked>Denied

 <input type="radio" name="approval" value="1">Approved

 </td>

 </tr>

 <tr>

 <td colspan="2" style="text-align:center;">

 <input type="button" value="Submit" onclick="submitForm()">

 <input type="button" value="Cancel" onclick="window.close();">

 </td>

 </tr>

</table>

</form>

</body>

</html>

<script>

 function submitForm() {

UnForm Version 8.0

37

 document.approval.run.value="y";

 document.approval.submit();

 }

</script>

This example shows a form related to particular document, identified by the CGI fields lb, doctype, and

docid. Document field values are represented by tags [fieldname], where the field name can be any of

lb, doctype, docid, date, time, title, entityid, notes, keywords, categories, links, dateupdated, and

timeupdated. Date fields are provided in YYYYMMDD format, time fields in HH:MM:SS format,

keywords and links in semicolon-delimited format, categories in semicolon (category), vertical bar

(segment) delimited format, and notes with hard line breaks represented as "\n" literal sequences.

In the form above, notice how javascript code is used to display categories with different line and

segment delimiters.

Several fields must submitted with the form in addition to lb, doctype, and docid. These include a (set to

"uf"), args (set to a string of command line arguments), and run (set to a non-null value when the form

is submitted (see the submitForm() function at the bottom of the document). Optionally, the async field

can be set to 1 to run the UnForm job asynchronously. When this happens, the browser response is

based on the form_async.html document found in web/en-us (or web/language if configured).

Otherwise, the browser response is either the UnForm job output (typically a PDF file) or a text response

set into the cgiresponse$ variable in one of the job's code blocks.

It is possible to have the text response contain script code that simply closes the window:

<script>window.close();</script>

The variable args is especially important, as it specifies, at a minimum, the rule file and rule set to

execute when the form is submitted. It may also supply other options, such as -prm parameters, or a -p

pdf if the job's output will be the response to the browser.

CGI-Driven Rule Sets
The UnForm job that runs is a rule set named in the args variable of the HTML form, with the -f rulefile

-r ruleset options. A sample rule set is defined in the samples/cgiforms.rul file, called "approval".

[approval]

prejob{

 approved=num(cgi.approval$)

 cgiresponse$="Approved"

 if not(approved) then cgiresponse$="Not approved"

}

In this very simple rule set, a value is sent from the HTML form field "approval". This field is a radio

button with a value of 0 or 1, depending on which button is checked (see the HTML sample above for

UnForm Version 8.0

38

the HTML form coding used). The variable cgiresponse$ is set to a text value that is returned to the

browser.

Alternatively, if cgiresponse$ is not set, then the job's output is returned to the browser. In this case, the

HTML form would specify a "-r approval2" and "-p pdf" in the args variable. The result will be a simple

PDF document with text indicating the value of the approval field. Note that the print stream data

contains data communicated to the rule set that is normally of no use to the user, hence the use of the

notext command to suppress print stream text. Other techniques might be code block resets of the

text$[] array, or an erase command.

[approval2]

prejob{

 approved=num(cgi.approval$)

}

notext

text 10,10,{"Approval: "+str(approved)},cgtimes,12

There are three template strings provided to code blocks in a CGI-driven rule set:

 cgi$ contains all the form fields that are present in the HTML form. All cgi$ fields are string

fields, so all are accessed as above: cgi.field$.

 cgienv$ contains the CGI environment variables, if needed, such as cgienv.script_name$ and

cgienv.remote_host$. CGI environment variables are documented in many places on the Internet

and in numerous books on web scripting.

 cgisession$ contains fields related to the user's session. Of particular note might be the user

login ID, which is found in cgisession.s_userid$.

Javascript Execution of Rule Sets
A function is supplied in the common.js Javascript library that is loaded into web forms (note the header

line containing fl=common.js). This function executes a rule set on the server, and the rule set's

cgiresponse$ value is returned to Javascript.

The syntax of this function is:

Var txt=runRuleSet("rulefile","ruleset",flds[,args])

The rulefile and ruleset arguments are self-explanatory, as they simply become –f and –r arguments to an

UnForm job. The flds argument can be either a URL=encoded string, such as "name=Jim%20Smith", or

an JavaScript object containing name:value pairs, in which case the function will URL-encode all the

names and values. The fields defined in this argument are available in the rule set as cgi.name$. If

UnForm Version 8.0

39

additional job command line arguments are required, they can be supplied in the optional args string

argument.

Note if there is data in delimited or INI format available on the server and needed in Javascript, there is a

json object that can be used in the rule set to convert such data into JSON format, enabling easier and

faster access in the script code.

Form Access Configuration
The forms.ini file contains configuration information that the browser interface uses to provide

automatic links to forms under certain circumstances. A sample forms.sds file is provided with the

UnForm installation for reference.

Document-Oriented Forms

When a user is logged in and viewing document properties or a document image, a Forms tab is offered

if any forms are configured that meet the session criteria, and links to all available forms are provided in

that panel.

Here is a sample forms.ini file:

 #sections by library|doctype

user:<name>=form name[,description]

group:<name>=form name[,description]

*=form name[,description]

[demo_sales|OpInvoice]

user:theboss=form_approval,Approval Form

group:sales=form_rep_action,Sales Rep Action

*=form_site,Site Form Info

Sections in this file are identified by a [library|doctype] heading. When a document of that document

type is viewed from that library, forms configured on the following lines will be available, depending on

the user and user group membership. Any given form is only presented once, even if the circumstances

would cause multiple configuration lines to present the same form.

In the above example, the user "theboss" can access the form_approval.html form, any user in the group

"sales" can access the "form_rep_action.html" form, and any user can access the "form_site.html" form.

All forms that meet the security criteria are available. For example, user "theboss" will have access to

form_approval and form_site, and any user in the group "sales" will have access to form_rep_action and

form_site.

Library-oriented Forms

Library-oriented forms are available in the Browse interface when a library has been selected. Sections

for these forms are identified with the header [library-name|*].

When library forms are invoked, the doctype and docid fields are set to "*".

UnForm Version 8.0

40

Search- and Marked-Related Forms

In addition to forms selected when viewing documents of a configured library and document type, forms

can also be executed from search results and marked record lists. These are configured in a similar

manner, with sections in the forms.ini file.

A [search] section denotes user or group form access when viewing search results. If the results of a

saved search are being viewed, then a section named [search|saved search name] can be defined, also

with user:userid and/or group:groupid access. Search-based rule sets can use a search object's doclist

object to navigate and react to the search results.

Finally, a [marked] section can be defined to allow forms driven from a marked records list. The marked

object can be used to navigate and manipulate the marked record list for a user's session.

[search]

group:managers=form_transfer,Transfer Documents Form

user:admin=form_transfer,Transfer Documents Form

[search|CurrentInvoices]

group:AR=form_CurrentInvReport,Report of Current Invoices

[marked]

user:jsmith=form_jsmith_purge,Purge Marked Documents

Menu-Related Forms

Beginning with version 8.0.26, a new forms.ini structure can be used to add custom panels to the main

menu of the browser interface. Panels are added to the bottom of the menu, and link to web forms in the

same window or a new window. A URL is constructed based on configuration entries, so that when the

user clicks the panel, the custom web form is presented. The code of this form can perform whatever

tasks are necessary, even to the point of loading a new page if desired.

Menu panel configuration requires multiple sections. First, a [menu] section must be defined that

specifies form names and default titles for different users or groups. This configuration is almost

identical to other web form sections, and the active forms are selected based on the session user. One

exception to this format is that a ~value suffix can be added to the form name to allow multiple sections

to be configured for a given form. The suffix is used only to locate a related configuration section, and

is not considered part of the form's related HTML file name.

For each menu web form name, an additional section must be configured in the file to describe the

attributes of that panel and how it launches the web form. The section header is [menu|formname],

where formname is the name portion (including any ~value suffix) of the name,title assignment in the

selection lines of [menu]. Within each section, the following name=value pairs can be used:

 desc=description - provides panel descriptive text.

 title=title - overrides the default title from the [menu] selection line

UnForm Version 8.0

41

 icon=file - names an icon file for the panel. Standard icons can be found in web/en-us/icons. A

full path is not necessary if the file is in that or another standard UnForm directory, such as the

install location and the web/en-us paths.

 newwin=0|1- if set to 1, the panel opens a new window for the form.

 lb=library - names the library the form is associated with (this value is required).

 doctype=doctype - names the document type the form is associated with.

 All other name=value pairs are added to the URL that is used to run the form. Values can be

retrieved from the form documents search property using JavaScript, or more conveniently, if the

form loads the common.js script library, use the queryValue(name) function.

The following menu section describes the menu panels that will be presented to various users and

groups. For example, the group AP will see two panels, My Docs Status Report and Capture to ERP

Batch Processing, which will run the mdf7-v2 and mdf8-v2 forms, respectively.

A webform name of "break[,title]" displays a line break and title bar, rather than a menu panel.

[menu]

group:AP=break,AP Workflow

group:AP=mdf7-v2,My Docs Status Report

group:AP=mdf8-v2,Capture to ERP Batch Processing

user:admin=mdf9-v2,All Users Doc Status Report

user:collins=mdf9-v2,All Users Doc Status Report

user:mje=mdf9-v2,All Users Doc Status Report

user:heyman=mdf9-v2,All Users Doc Status Report

The configuration for the mdf9-v2 form is shown below. The panel title will be the default, All Users

Doc Status Report. The panel description and icon are shown. The web form will use library AP-MDF

and will be shown in a new window. When the form is displayed, two additional URL fields will be

available, Runtype=0 and Sortype=1, which code in mdf9-v2.html can reference.

[menu|mdf9-v2]

desc=Status report for my AP documents

icon=Play_24.gif

lb=AP-MDF

newwin=1

RunType=0

SortType=1

UnForm Version 8.0

42

MESSAGE TRANSLATIONS
UnForm 8.0 supports the ability to use user-selected message files for language translations of user

interfaces in the following tools: Windows Server Manager, Windows Support Server, Design Tool, and

Image Manager.

Each of these programs has a configuration .ini file that can contain a [languages] section. This section

contains lines in the format of ext=title, where ext is a file extension to use when opening the messages

file. UnForm is always supplied with English messages files with an “eng” extension.

The interface for each program offers a drop-down box to select a current language from those

configured. The selected language is saved for future executions. The following table shows the

configuration files that can contain the [languages] section, and the base names of the language files.

Program Configuration File Language Files

Windows Server Manager uf80dx.ini uf80dl.*

Windows Support Server uf80ss.ini ufssmsg.*

Design Tool ufdsn.ini ufdsnmsg.*

Image Manager uf80scn.ini ufscnmsg.*

There is also a Windows client messages file, uf80cmsg.*. The default file is uf80cmsg.eng, but there is

a uf80c.exe command line option to specify an extension (-lang ext).

UnForm Version 8.0

43

DYNAMIC RULE FILE TRANSLATIONS
At runtime, a translation file can be associated with a rule file in order to perform dynamic substitution

of text and barcode values, and also anchor text to which many enhancements can be related. The

purpose of this feature, added in version 8.0.25, is to ease the effort of translating rule sets for different

languages. By editing a messages file that is associated with hard code text fragments in a rule file,

UnForm can perform word and phrase substitutions dynamically.

The structure of the translation file is an "ini" file, with sections that match the names of rule sets in the

current rule file. At runtime, UnForm will load assignment lines from the section that matches the

current rule set name, plus any assignment lines found in the file before the first section header. For

example, if a rule file contains the rule set "Invoice", then lines in the [Invoice] section of the translation

file are used. Any assignment lines at the top of the file are appended to these lines, allowing for global

settings to be used as well as ruleset-specfic settings. An example of a translation file is the

samples/advanced.spanish.ini file, which contains translation samples associated with some rule sets in

the advanced.rul file.

A translation file can be specified in the uf80c command line with a –trans "filename" option. In

addition, the active file can be changed at runtime in any code block, using the settrans("filename") code

block command.

The format of an assignment line is simply a name=value pair. The name value can include a context

prefix, where the context can be one of the words text, barcode, or anchor, followed by a tilde (~). For

example, the line text~Invoice=Factura would replace "Invoice" in a text command with "Factura". A

line without the context prefix (just Invoice=Factura) may apply to both text and barcode commands.

Values are case sensitive, and only whole values are replaced. For example, if a text command specifies

"Invoice No:", then the assignment line might be: Invoice No:=Factura no:.

When assignment lines are evaluated, they are first evaluated in a context of text, barcode, or anchor. If

a match is found, that assignment is used. If not, text and barcode values are next evaluated without a

context, and if a match is found, that assigned value is used. Without a match, the original text is used.

Anchor context substitutions apply to content that is searched on the page and only work in context

mode (the "anchor~" prefix is required). While text and barcode substitutions apply to content added to

the job, anchor substitutions apply to content in the print stream of the job. Anchor substitutions do not

change text values, but instead change the text values searched for. Many commands support anchors in

their syntax, when the first command is a quoted string. For example, a font command might look like

this:

 Font "Continued@50,60,80,66",0,0,9,1,cgtimes,12,bold

This command will search each page, in columns 50-80 and rows 60-66, for the word "Continued".

When it finds the word, it applies a font at 0 columns and 0 rows offset from the position, for 9 columns

UnForm Version 8.0

44

and 1 row. When a translation file is active, UnForm will look for a line "anchor~Continued=value, and

search instead for value. Additional numerical adjustments are performed on anchor contexts:

 The difference in lengths of the original text and new text is calculated

 The difference is added to the ending column if @col,row,endcol,endrow syntax is used

 If the offset column is 0, the difference is added to the number of columns, to accommodate

enhancements designed to apply to the text that is located.

 If the offset column is not 0, the difference is added to the offset column itself, to accommodate a

new relative position based on the new text.

Anchors can include the following prefixes: ~, !=, and !~. These prefixes modify how the anchor text

and the search are performed, and are not considered part of the assignment name. A ~ prefix indicates

the text is a regular expression, and the != and !~ options indicate "not", so match all positions where the

search does not find the sought string or regular expression. Since regular expressions can result in

variable lengths, the above described numerical adjustments are not performed with regular expression

anchors. Another limitation of anchor-based translations is that they are not supported in Application

Formatted Output (AFO) jobs, though text and barcode translations are supported.

Since both "~" and "=" characters have special meaning, if they should be part of the actual name they

must be escaped with a backslash. For example, if the name value should contain an equal sign, which

normally separates it from the value, that equal sign must be escaped: "Cost=", for example, should

appear as Cost\= =value.

It should be noted that the dynamic translation feature is a simple substitution function, and it does not

account for cases where a substitution dramatically alters the space used by a particular text fragment, or

when a different font or character set should be used. In some cases, it might be necessary to use fit or

wrap options, expressions for positioning, or code block exec() functions to accommodate some aspects

of translation.

Code blocks can also utilize the features of text translation through three functions:

 settrans("filename") sets the translation file dynamically as the job runs. This overrides what

might be set via a -trans command line option.

 gettrans() returns the active translation file.

 translate(name$ [,context$], forcecontext) returns the value associated with the specified name,

based on the translation file and current rule set. The context value can be "text", "barcode", or

"anchor", and if forcecontext is true (non-zero), only context-based names are searched.

There is a rule file, samples/trans.rul, with the rule set "trans", available in the samples directory. This

rule set is designed to scan any rule file sent through it as input, and build as output a skeleton translation

file based on hardcoded text found in the rule sets. In order to run this rule set, use this command line:

uf80c -i "rulefile" -f trans.rul -r trans -o "inifile"

UnForm Version 8.0

45

UnForm Version 8.0

46

TCP/IP MONITOR

UnForm includes a TCP/IP monitor program that can watch for raw print jobs arriving from network

computers, similar to how an HP Jet Direct card would. In effect, the UnForm server can serve one or

more virtual Jet Direct ports, each with an associated UnForm client command line.

The monitor is automatically started if there are one or more port configuration lines defined in the

[tcpports] section of uf80d.ini. For example:

This line would print to the server's spooler –dlaser device, processing jobs through the acme.rul file:

 9100=-o ">lp –dlaser –oraw" –f acme.rul

This line would print to a Windows server shared UNC printer, processing jobs through the acme.rul

file:

 9101=-o \\winsrv\laser1 -f acme.rul

This line would generate pdf files to the path specified, using the date and job number to generate unique

names:

 9102=-o "/usr/pdfs/%d.%j.pdf" –p pdf

The following substitutions are made in the command line definition:

Characters Substitution

%d The date in YYYYMMDD format.

%t The time in HHMMSS format, using a 24 hour clock.

%p The process ID (this is not necessarily unique).

%j The sequential job number, which is an ever-increasing unique number.

When jobs are submitted to the UnForm server in this manner, it is important to realize that the

submission is one-way, and once printed the job resides entirely on the server. It is therefore not

possible to print a job and have data returned to the client (i.e. –o client:device), or to have PDF

previews generated on the submitting workstation (-p winpvw). Once the job is submitted to the TCP/IP

monitor, it becomes local to the UnForm server, as if uf80c is physically run on the server (which, in

fact, is what happens).

When jobs are submitted, they are dropped into the rpq/ subdirectory under the UnForm server

installation. All submission files are given a unique name with a ".in" extension, and a companion file

with a ".cmd" extension is also created that contains the command line options. As jobs are received,

and also at least once every 5 seconds, a sweep is made of newly submitted jobs, each submitted to the

server via the server's local "uf80c" program. As a byproduct, you can drop jobs into this directory

file://winsrv/laser1%20-f%20acme.rul

UnForm Version 8.0

47

independently of the server, being careful to create the ".cmd" file first, then the associated, complete

".in" file, using your own unique naming algorithm. Note that the sweep assumes that any *.in file is a

complete file and will have an associated .cmd file, so it is incorrect to open a .in file and begin writing

to it, as the sweep may attempt to process an incomplete file. Instead, create the file with a different

extension and then rename it when it is ready for processing.

To configure Windows printers to submit jobs to this monitor, you can use the built-in Windows support

for TCP/IP printers. When configuring a printer, you can choose to Add a Port, selecting Standard

TCP/IP Port. The Printer name or IP address of the "printer" will be the UnForm server, the Protocol is

"Raw", and the Port Number is the number of the configured port line defined in uf80d.ini. UnForm can

accept two types of input: plain text and PostScript, so you can choose either the Generic / Text Only

print driver, or a PostScript driver, such as the Generic MS Publisher Imagesetter or one of the many

printer vendor PostScript drivers. Note there are significant differences in the way UnForm handles the

two different types of input. See the UnForm AFO chapter for more information.

The picture below shows a Windows XP example of the configuration screen:

UnForm Version 8.0

48

Note that other operating systems also support methods of supporting raw TCP/IP printers. For

example, Linux contains the "jetdirectprint" script that is used by LPRng to send jobs raw TCP/IP

devices.

UnForm Version 8.0

49

INTEGRATING UNFORM WITH APPLICATIONS

UnForm is capable of interfacing with any application that can provide it with text input or PostScript.

On UNIX, this integration is generally performed via pipes. On Windows, your application can use

TCP/IP printing, or can print to a file, and then launch uf80c.exe when the printing is complete.

If your application prints by opening a pipe to the spooler, just insert UnForm into the pipeline:

Before: |lp –dprinter –s 2>/dev/null

After: |uf80c –f rulefile | lp –dprinter –oraw –s 2>/dev/null

 |uf80c –f rulefile –o '>lp –dprinter –oraw'

The second option, above, submits the job for printing on the server, while the first option will wait for

the server to return the job for local printing on the client.

If your application prints to a device, such as "/dev/lp0", then you can probably modify it like this:

Before: /dev/lp0

After: |uf80c –f rulefile –o /dev/lp0

Note the use of the –oraw option in the above spooler examples. It is important for UnForm's output to

be handled as binary data by the spooler. The –oraw option is used by some UNIX spoolers, such as the

SCO LaserJet model script, and the CUPS printing system. Other spoolers require different options,

such as "-o-dp" for AIX, –T pcl for Unixware, -b for some older Linux installations. Check your lp

configuration tools or man pages for the appropriate settings for options such as "binary", "raw", or

"pass-thru" printing.

In the case of direct device output, you will need to develop a site-specific mechanism for turning off

post-processing on the device, either permanently, or while an UnForm-modified job is printing.

If your application cannot print to a pipe, or runs on Windows, then your application can be modified to

print a text file, then execute UnForm when complete. Your environment may provide a way to do this

automatically, such as the EXECOFF mode in Visual PRO/5 noted earlier. Here is a simple Visual

Basic example of creating a file and launching UnForm:

open "work.txt" for output as #1

print #1,tab(35); "INVOICE"

… more printing …

close #1

if shell("uf80c.exe –i work.txt –o //server/hplaser –f rulefile",6)=0 then

UnForm Version 8.0

50

end

else

msgbox "UnForm failed to start."

end if

UnForm Version 8.0

51

Integrating UnForm with BBx

BBx handles printers via alias lines in a configuration file, typically called config.bbx. Printer alias lines

identify a name, an output designation, a description, and several mode options. To incorporate UnForm

into the configuration file on a UNIX system, you need only include an UnForm command line as part of

the output designation.

BBx output designations can specify files, physical devices, or pipes, and UnForm can be installed to

work with any type of definition. Note that any escape sequences configured in modes like PTON, SP,

and CP are sent to UnForm and therefore need to be PCL sequences. UnForm understands how to strip

a job of PCL codes, but not other printer codes. In some cases, when UnForm sends a job straight

through without enhancements, these PCL sequences will also be passed on.

UNIX Aliases

A printer alias line on UNIX generally pipes to a program, such as the uf80c client program. This client

program in turn can pipe its output to the spooler, or to a file, or it can instruct the server to handle the

output from its end, by specifying the –o option.

Here is a sample alias line that pipes through UnForm to the local spooler:

alias P1 "|uf80c -f my.rul | lp -dxyz –oraw -s 2>/dev/null" "Printer Name" … various modes …

Here is a sample alias line that instructs the server to print the job to its spooler. The advantage of this

type of configuration is that the client doesn't have to wait for the job to finish. It submits the job to the

server and exits quickly.

alias P1 "|uf80c -f my.rul -o \'>lp -dxyz –oraw\'" "Printer Name" … various modes …

Note the use of the –oraw option in the above examples. It is important for UnForm's output to be

handled as binary data by the spooler. The –oraw option is used by some UNIX spoolers, such as the

SCO LaserJet model script, and the CUPS printing system. Other spoolers require different options,

such as "-o-dp" for AIX, –T pcl for Unixware, -b for some older Linux installations. Check your lp

configuration tools or man pages for the appropriate settings for options such as "binary", "raw", or

"pass-thru" printing.

UnForm can also print directly to a device, as in this example:

alias P1 "|uf80c -f my.rul -o /dev/lp0" "Printer Name" … various modes …

Note that this line will behave differently with the UnForm pipe than without. When opening and

sending output directly to a device, printing will occur immediately, without closing the device.

However, with the pipe to UnForm, the output will not appear until the device is closed. The application

may need to be modified to account for this if UnForm is to be used in this circumstance.

UnForm Version 8.0

52

Windows Alias Lines

Under Windows, where pipes are not available, change the printer definition to create a file, and then use

a post-processing mode, called EXECOFF, to execute UnForm with options to read the file and output to

a device.

A Windows alias line will look similar to this:

alias P1 C:/TEMP/P1.TXT "UnForm Printer" CR, LOCK=C:/TEMP/P1.LCK, O_CREATE,

SPCOLS=132, SP=1B451B287331362E3636481B266B3247, EXECOFF="uf80c.exe -ix

C:/TEMP/P1.TXT -o device -f my.rul"

In the above example, a file called P1.TXT is created, using the mode O_CREATE to create the file if it

doesn't exist, and using a lock file to prevent two users from writing to the same file at the same time.

Note that if a file is specified with a local workstation path, such as C:\\P1.TXT, then a lock file is

probably unnecessary. Just remember to specify the same path in the –ix option. Once the printer is

closed by the application, the code specified by the EXECOFF mode is executed, which runs UnForm as

an executable, using the P1.TXT file as input and the printer as output.

Note that pathnames containing backslashes will need double backslashes, due to the way BBx parses

the command line. For example, to refer to "uf80c.exe -i c:\data\p1.txt ...", you would need to specify

"uf80c.exe -i c:\\data\\p1.txt ...". You can also use forward slashes in place of backslashes, and you don't

need to double them.

The device in the –o argument can be one of two things:

 An LPTn port, which can be mapped to a UNC device name with the Windows "net use"

command.

 A UNC device name, defined by sharing a printer, so the name becomes //system/printer, where

system is the system with the shared printer, and printer is the "share name" of that printer.

Another variety of alias line can generate a temporary PDF file and display it on the client PC, assuming

you have an Adobe Acrobat Reader installed. This alias doesn't require a –o argument, but will honor it

as the client-side file name for the PDF document generated. The driver selected by the –p option must

be either win or winpvw, like this:

alias PUNF C:/TEMP/PUNF.TXT "UnForm Printer"

CR,LOCK=C:/TEMP/PUNF.LCK,O_CREATE,SPCOLS=132, EXECOFF="uf80c.exe -ix

C:/TEMP/PUNF.TXT -p winpvw -f my.rul"

Note that the uf80c client software must be installed locally on any workstation that will execute it

to submit jobs.

UnForm Version 8.0

53

Integrating UnForm with ProvideX

Simple UNIX Integration

On UNIX systems, you can integrate UnForm within the link file as the output device, and use a

standard LaserJet or plain text print driver. The device used in the link file would be simply a re-direct

to the uf80c program (if using ProvideX 6.0 features, a pipe (| rather than >) can be used as well), such

as ">uf80c –f acme.rul –o '>lp –dhp –oraw'".

Note that this option was not available in prior versions of UnForm.

Integration using the ProvideX Print Driver uf8ptr

This method works for both UNIX and Windows environments, and provides more program control over

the UnForm options when executing the uf80c client.

UnForm installation includes a ProvideX print driver uf8ptr which should be copied to your ProvideX

lib/_dev directory. This driver provides platform-independent support for UnForm, along with

additional capabilities for managing UnForm command lines from the ProvideX application. In

addition, it supports WindX-based output. Once copied to your ProvideX lib/_dev directory, this driver

is available to use when defining ProvideX link files, which are used as printers in ProvideX.

To use the uf8ptr print driver:

When a link file is defined, you specify an output device and a driver program. The output device is

generally something system specific, like ">lp –dhp –oraw" on UNIX, or //SERVER/PTR on Windows,

or it can be a special driver name for Windows, such as *windev*, or [WDX]*windev*. In some cases,

it can be /dev/null or NUL, if the driver will be directing output somewhere for the user.

The uf8ptr driver determines a default output device based upon the link file's specified output, and then

re-routes the printer output to a temporary work file.

It then looks for a configuration file for additional uf80c command line parameters. This file is simply a

text file named linkfile.unf. For example, for a link file named P1, uf8ptr will look for a file called

P1.unf for additional parameters. In this text file can be one or more lines with uf80c command line

options.

Once the file-based parameters have been loaded, uf8ptr then looks for the OPT value that was used in

the OPEN directive, if any, for additional parameters. Any parameters named in the OPT value will

override those found in the configuration file.

When all parameters have been resolved, a uf80c command line is built for execution at the end of the

job. In cases where the output needs to be returned to a WindX client, the driver handles uf80c

appropriately to create local output and copy that output back to the WindX PC.

UnForm Version 8.0

54

Example 1:

LP is a link file pointing to device /dev/null.

LP.unf contains: -p pdf.

invoiceno$="00015"

OPEN(1,opt="-o /archive/"+invoiceno$+".pdf")"LP"

The result will be an uf80c command like this, which executes when the printer is closed:

uf80c –i workfile –p pdf –o /archive/00015.pdf

Example 2:

P1 is a link file pointing to device ">lp –dhp4000 –oraw".

No P1.unf file is defined

OPEN(1,OPT="-f acme.rul")"P1"

This will override the default rule file defined at the server, using acme.rul. Output will go to ">lp –

dhp4000 -oraw" on the machine where the UnForm server is running. Typically this is the same

machine that runs ProvideX. If it is not, add a –server servername option to OPT or linkfile.unf. In such

a case, if the >lp command isn't valid locally, you will need to add a –o option to the configuration and

change the link file to point to /dev/null (or NUL on Windows).

Example 3:

P2 is a link file pointing to device [WDX]*windev*.

Opening P2 will result in laser output being produced and sent to the WindX printer selected.

Example 4:

P3 is a link file pointing to device NUL.

P3.unf contains –p winpvw.

Opening P3 will cause production of a temporary PDF file. This file will automatically be viewed on a

WindX client or in a Windows ProvideX session.

UnForm Version 8.0

55

LICENSING

UnForm is licensed based on the number of concurrent jobs it can process, with counts available as 1, 3,

5, 10, 15, 20, 25, 30, 40, 50, 75, 100, and unlimited. The UnForm Design Environment checks out a

special "Designer" license, and it is available in different concurrent counts as well.

Licensing is controlled entirely by the server process, uf80d. You can install the uf80c client programs

freely anywhere on your network.

Each UnForm installation has a serial number. There is one special serial number, UF0099999, reserved

for demo mode use on any machine. All permanent licenses are assigned a unique serial number and

must be licensed to a single machine installation. Serial numbers and their associated PIN codes are

assigned by SDSI when UnForm is purchased. In order to obtain permanent or emergency temporary

activation keys, the serial number and PIN code are required.

There are up to three activation keys that must be entered for full operation of UnForm: a system key, a

job key, and a designer key. The system key enables UnForm to operate on a specific computer. The

job and designer keys determine the number of concurrent job and design tasks that may run. For demo

mode operation, just a temporary system key is required; demo mode operation automatically enables 3

jobs and 3 designers.

There are three types of system activation keys:

30-Day Demo

This license has a fixed serial number (UF0099999) and can run on any machine for 30 days. While

running under this serial number, UnForm will print "Demonstration Version" phrases on any enhanced

output, and will print a trailer page for each job. This is the first mode activated after an installation, as it

enables the retrieval of a System ID and Machine Class needed for permanent licensing later, as well as

allowing UnForm to operate in demo mode.

Permanent

This license has an assigned serial number, and requires a System ID and Machine Class to activate. A

permanent license does not expire, enabling UnForm to run perpetually on the machine where installed

and licensed. The System ID is derived from a given installation machine and attributes of a file in the

UnForm rt\lib\keys directory (Windows) or the rt\lib directory (UNIX), so it will change if the

installation is moved to a new machine, or even to a new location on the same machine. Once the

System ID changes, the permanent activation key will no longer work, and UnForm must be re-activated.

If the original permanent installation of UnForm is no longer used, then you can request a reset of the

permanent license to enable a new System ID and Machine Class to be associated with the permanent

activation key. Contact sales@synergetic-data.com to request resets.

Emergency Temporary

This license is assigned a serial number, like a permanent license, but it does not require a System ID or

UnForm Version 8.0

56

Machine Class to activate. This allows you to re-install UnForm on a different machine than originally

licensed, and operate it for 30 days. Once a temporary license has been issued for a given serial number,

another temporary license cannot be issued for 45 days.

UNIX Licensing

To activate UnForm on UNIX, perform the following steps:

 Login as root.

 cd to the UnForm directory (i.e. cd /usr/lib/sdsi/uf80).

 Execute ./license.sh.

The license.sh script prompts for the following options:

UNFORM LICENSING OPTIONS

Use the following options if this machine is connected to the Internet:

1 - Permanent Activation (requires serial number and PIN code)

2 - Emergency Temporary Activation (also requires SN and PIN)

3 - 30-Day Demo Mode Activation

Use the following options for manual activation. Activation keys

can be obtained from http://unform.com/uf8lic.cgi.

4 - Display System ID and machine class (needed for option 5)

5 - Enter Permanent Activation

6 - Enter Emergency Temporary Activation

7 - Enter 30-Day Demo Mode Activation

q - quit

Enter selection:

To obtain either a permanent or emergency temporary activation, you will need to know your serial

number and PIN code previously assigned by SDSI. These values are not necessary to obtain 30-day

demo mode activation.

If your machine has Internet access, you can perform activation easily by choosing options 1 through 3.

Options 1 and 2 will prompt you for your serial number and PIN. Each of the three options will use the

Internet to retrieve the desired activation key.

If the Internet is not available from the install machine, then you can perform activation manually by

using another machine to visit http://unform.com/uf8lic.cgi. Use option 4 to display the System ID and

Machine Class, which will be required to obtain a permanent activation key from this web site. Options

5 and 6 will prompt for a serial number, system key, jobs key, and designers key, in sequence. Option 7

will only prompt for a system key.

http://unform.com/uf8lic.cgi

UnForm Version 8.0

57

Windows Licensing

The first step after an installation is to activate demo mode. This initializes the system ID file, enabling

a permanent license to be obtained. If you get an error message after pressing the Show System ID

button, then this installation has never been initialized, and you must activate demo mode first.

To activate demo mode:

If you are connected to the Internet, press the Automatic Demo Activation button. This will obtain a

current demo mode activation key from SDSI's website and activate the run-time engine.

If you are not connected to the Internet, go to a computer that is, and go to http://unform.com/uf8lic.cgi,

then click the link to get a 30-day trial. Note the activation key returned, and enter it exactly the same

way in the Demo Activation Key field, then click the Manual Demo Activation button.

To verify the activation, click the Show System ID button. If the System ID and Class fields get filled in,

then it worked.

To activate permanent mode:

To activate automatically over the Internet, you need to click the Show System ID button to get the

System ID and Machine Class fields. Then fill in your serial number and PIN code, and click the

Automatic Activation button. This will use your information to obtain a permanent activation key for the

system, as well as your job and designer activation keys, and activate everything.

http://unform.com/uf8lic.cgi

UnForm Version 8.0

58

To activate UnForm manually, note your System ID and Machine Class, then go to

http://unform.com/uf8lic.cgi. Enter your serial number and PIN code, then click the button to get a

permanent license. When prompted, enter the System ID and Machine Class exactly as noted on this

screen. Note the three activation keys returned, and enter them exactly as provided in the three entry

fields, then click the Manual Activation button.

To activate in emergency temporary mode:

To obtain a temporary activation over the Internet or manually, follow the steps for a permanent license,

but check the Emergency Temp Activation option. The System ID and Machine Class are not used for

temporary activations.

Activation Errors

Permanent activation keys are dependent on the system ID and machine class information generated by

an installation. Therefore, a permanent activation key will only work on the original installation for

which it was generated. If UnForm needs to be moved or re-installed, a new permanent activation key

must be generated. This is only possible if SDSI resets the permanent key for your serial number, so you

must contact SDSI, certify that the original installation is no longer in use, and request a reset.

In the meantime, you can obtain an emergency temporary activation to allow your serial number to be

used on a new installation for 30 days.

If you attempt to get a new permanent activation key and are notified that one has already been assigned,

then contact SDSI to request a reset. If this cannot be done in a timely fashion, get an emergency

temporary key instead, and then contact SDSI at a later time.

Note that temporary keys are issued at most once every 45 days. If you get an error message indicating

the temporary key availability has not expired, then you must contact SDSI to get a reset.

Additional Evaluation Period

In addition to the 30-day UnForm demonstration mode, if you license UnForm for jobs but not

designers, scanning, or archiving, an additional 30-day demo period is enabled for those products. This

demonstration period begins the first time one of these components connects to a licensed UnForm

server.

http://unform.com/uf8lic.cgi

UnForm Version 8.0

59

UNFORM COMMAND LINE OPTIONS

The uf80d server program can be started with the following options:

UNIX command lines

uf80d start Starts the server daemon.

uf80d stop Stops the server daemon.

uf80d restart Stops, then starts the server daemon.

Windows command lines

uf80d.exe -configure Displays the configuration window for the server. This option is

available in the Windows Start menu and the Server Manager.

uf80d.exe Displays the Server Manager window.

uf80d.exe -v Executes a local UnForm client (uf80c.exe) to show the server version.

uf80d.exe -start Manually starts the server if it is NOT installed as a service.

uf80d.exe -stop Manually stops the server if it is NOT installed as a service.

uf80d.exe -installservice Manually install as a service

uf80d.exe -uninstallservice Manually uninstall the service

The uf80c client program offers many options, which control various aspects of how it communicates

with the server and how the server is told to execute the job. Note that if the command line becomes too

long for the operating system, you can use the –z or –zx options, which cause command line options to

be read from a text file.

Standard Options

Option Description

-300 Causes UnForm to suppress 300 dpi settings within the PCL output file. Some

PCL devices don't support the PCL unit of measure command, and instead

include it as printed output. If this option is used, any images (dump files) or

attachments must also be generated for 300 dpi and suppress any unit of

measure settings.

-about A Windows-only option that displays information about the client, including

the location of the active uf80c.ini file.

-c copies Causes UnForm to issue multiple copies of the entire report. This differs from

the -pc option. If copies is set to less than 2, this option is ignored. This

option and the "-pc" option are mutually exclusive; also, rule sets can specify

copy options that will override command line options.

-ce copies-enabled Performs implicit skips of any rule set copy NOT found in the copies-enabled

list. For example -ce “1,2” would force copies other than 1 and 2 to be

suppressed. This option is useful in sub-jobs executed with the jobexec()

function or via the archive command to suppress certain copies.

UnForm Version 8.0

60

-ci or -color Forces pcl image conversions to retain color rather than force black and white.

See the image command for more information about automated image

conversion and scaling. This also implicitly sets the –gw option.

-cols n Sets the default columns per page when a job is using default scaling, as when

the –p pdf or –p laser options are used and no rule set is detected or specified.

See also the –rows option.

–compress or -cmp

-nocompress

The –compress or –cmp options will force compression of PDF files, even if

the best compression available is RLE. If the operating system supports zlib

compression, then Flate compression is turned on by default and this option is

redundant.

If you want to disable the automatic Flate compression, use the –nocompress

option.

-config A Windows-only option that displays a configuration form and updates the

client's uf80c.ini file. See the -about option for the location of this file.

-cover "ruleset

[,rulefile [,args]]"

Generates a cover page for the job using the rule set specified. If a rule file is

specified, the rule set is read from that rule file. If arguments are specific, the

subjob used to generate the cover page will include the specified command

line arguments. The arguments can be used to pass parameters and other

processing options, but should not include -f, -r, or -p arguments.

-cr 0|1|2|3 Sets handling for embedded carriage returns (chr(13)) in lines read from the

input stream. The default value is defined in uf80d.ini, in the [defaults]

section, cr=n entry.

 0 will truncate lines at the first CR.

 1 will strip CR character, so the line continues as if the character were

not present.

 2 will fold lines, and non-space characters are placed in the line buffer,

simulating an overstrike.

 3 will fold lines and insert an extra space, which accommodates

Windows Generic/Text Only printers that overstrike conflicting

characters.

Note if UnForm detects line-terminators are CR characters rather than LF or

CRLF sequences, this option is not operational.

-debug Causes job-based submission serverpath/temp/ files *.in, *.out, and *.err to be

retained rather than deleted after job completion. It also causes generation of

the following job-based files: *.eml log file for email operations, *.gs.log for

ghostscript operation error and standard output (Unix or console version

Windows only).

-e error-file Causes UnForm to output any errors to the file specified. Error files reside on

the client system, not the server.

UnForm Version 8.0

61

-emattach "value"

-embcc "value"

-emcc "value"

-emfrom "value"

-emlogin "value"

-emmsgtxt "value"

-emoh "value"

-empswd "value"

-emsubject "value"

-emto "value"

-emlogfile "value"

These options supply values for an automatic email command. See the email

command documentation for descriptions of each option. The –emto option is

required, all others are optional, though certainly the –emsubject and

-emmsgtxt are likely required for a given application. For emailing to work,

the job must be a PDF job, and the server's mailcall.ini file must be properly

configured with a server= line defining the SMTP server.

-f rule-file

-f "file1;file2;…"

Establishes a different rule file than the default specified during the

installation. Rule files are text files that contain descriptions of the form

enhancements for one or more forms. The enhancement options are described

in detail under Rule Files, below.

UnForm will always search for the rule file first in the UnForm server

directory, then by the full pathname given. Rule files must reside on the server

machine, not the client.

If multiple rule files are specified, delimited by a semicolon, they are merged,

with the global regions merged in reverse sequence. This feature was added at

8.0.24.

By convention, rule files have a .rul suffix, though this is not a requirement,

and the rule-file value can be any file name. The UnForm Designer tool

maintains a .rud suffix for working rule files and a .rul suffix for published

rule files.

-gb|-greenbar [options] Adds alternating shade patterns to simulate green bar paper. If the options

parameter is supplied, it should be in the form defined by the shade command

for repeating shade values. If no option value is supplied, the default is 3 lines

shaded at 10%, 3 lines skipped, repeated until the end of the page.

-gs Causes UnForm to generate laser driver shade regions graphically, rather than

using internal PCL shade commands. The result is finer shading detail,

especially at 600 dpi. Using this option will add between 2K and 4K per job.

The gs command can also be used in rule sets to control graphical shading at a

copy level.

-gw Forces UnForm to pass through PCL image width and height escape sequences

to the printer. This is generally necessary on color laser images to avoid a

black stripe from the right image edge to the right margin. However, if you

are using PCL images, then it is important that all images on a form contain

width and height values so they won't conflict with one another. Some image

generating programs don't store the width and height values.

UnForm Version 8.0

62

-i input-file Names an input text file for UnForm to process as input. If not specified, or if

it is a dash (-i -), then standard input (std input) is read. Under Windows,

standard input cannot be used, so an input file must be supplied. Note that the

input file must reside on the client's computer, not the server.

-ix input-file Same as the –i option except the input text file is removed upon completion of

task. Note that the input file must reside on the client's computer, not the

server.

-land Turns on landscape print mode as the default. A portrait command in a rule

set will override this option. Note that landscape printing usually requires a

reduction in the number of rows per page, as compared with portrait printing,

in order to produce usable results.

-lang languageext Used by the Windows client, uf80c.exe, to render messages and window titles

from the file uf80cmsg.ext. The file uf80cmsg.eng is always supplied with

UnForm, and the default language is English. Use the option first in a

command line in order to set the language file correctly for any messages

related to later options.

-lib “dir[;dir;…]” Add directory (or directories delimited by semicolons) to the library of search

paths used for locating external files, such as images, attachments, or merge

rule files. Note that the library= line of uf80d.ini provides another method of

doing this, and the rule file’s path is also automatically added to this search

list.

-lockcols When the label dimensions and cols setting are established, UnForm scans

mono-spaced internal fonts for the closest match that will not exceed the cols

specified, then recalculates the cols to agree with the font selected. This

allows print stream text and all other enhancements to scale together.

However, it also causes labels to shrink in printable area width, sometimes

very noticeably, resulting in graphical commands not being placed where

expected. This option was added to prevent this recalculation from occurring,

at the expense of losing the print stream scale matching. With this option,

graphical commands will print where expected on the label, but may not align

with print stream output. Zebra-only command.

-m Sets the printer model to a name that can be found in the ppd directory

(without the “.ppd” suffix, e.g. –m hp4000 will load the ppd/hp4000.ppd file).

This is useful when producing PostScript jobs that use printer features such as

duplex or tray selection, as the code for those features is defined in PPD files

provided by printer manufacturers.

If no –m is provided, then UnForm will select a default PPD file based on the

driver. Custom PPD files can be obtained from a printer vendor or from

various Internet sources, or can be written from scratch or based upon one of

the generic files.

-macros Turns on macros.

-macrocopy n Used in conjunction with the –makemacro option. A macro will be created for

the designated rule set copy.

UnForm Version 8.0

63

-makemacro n Causes UnForm to simply create the appropriate macro for the designated rule

set and designate it as the number n. It must be used jointly with the –r option

and can be used in conjunction with the -macrocopy option. See special

section discussing macros later in this documentation.

-nn Indicates that an error message should be issued if the input stream is empty.

The value used for the error message is in the [defaults] section of ufparam.txt,

in the entry nullmsg=message text.

-noafo Suppresses the automatic assumption that Postscript input should initiate an

AFO job. This flag can also be useful when using jobexec() to generate non-

AFO subjobs when run from an AFO job.

-noarc Turns off any archive commands for the job.

-nocompress See the –compress option.

-nohpgl Reverts to full PCL, rather than a mixture of PCL and HP/GL output. A

number of laser printed features use HP/GL, which is a standard feature of the

PCL5 language. Some PCL interpreters, such as those that may be included in

some fax or viewing software, may not support HP/GL, so this option can be

used to force standard PCL5 coding for many options, such as box drawing

and text alignment. A few features, such as rounded corner boxes, require

HP/GL and are not supported if this option is specified.

-nointr With this flag set, the Unix/Linux client will ignore interrupt signals once the

connection to the server is established. This allows it to keep running even if a

parent process receives an interrupt signal on platforms that propogate the

signal to child tasks.

-notextjob With this flag set, UnForm will not construct the textjob$[] array, saving time

during parsing of the input stream.

UnForm Version 8.0

64

-o output-file Specifies an output file or device. If not specified, then standard output

(stdout) is used. Under Windows, an output file must be supplied unless one

of the special drivers, win or winpvw, is used. On UNIX, the output can be a

redirect or pipe to another program, such as lp or lpr.

The output device can be specified in the form “tcp:nameorIP:port” to direct

output to a network printer at the name or address specified. If the optional

:port is not supplied, port 9100 is used, which is the default network printing

port. Example: -o “tcp:192.168.1.45”.

Output names that contain spaces or characters that are meaningful to the

operating system must be quoted.

The output file or device will, by default, be opened on the server machine. If

the name is prefixed with the phrase "client:", then it is returned to the client

for local handling. Here are some examples:

Server output:

-o ">lp –dhplaser –oraw –s 2>/dev/null"

-o "/tmp/archive/12345.pdf"

Client output:

-o client://prntsrv/laser

-o client:c:\archive\12345.pdf

Note that if a Unix pipe or redirect (| or >) is not quoted, output is actually to

the client's standard output handle, so it is implicitly client-based. To print to

a server-based spooler or program, be sure to quote the argument, as shown

above.

Server-based output can contain characters that will be substituted at run-time.

These character replacements are:

 %d for the date in YYYYMMDD format

 %t for the time in HHMMSS (24-hour clock) format

 %p for the process ID of the UnForm task generating the file

 %j for the UnForm job number, a sequential counter

Note that on UNIX, if there is no –o specified, or if the output is simply a dash

(-o -), then output goes to the client's standard out. A special output of /dev/tty

is also recognized as client-side output to the /dev/tty device, often used for

slave printing (see the –slon/-sloff options).

If the output will be handled by the server, the client will generally exit as soon

as the job has been successfully started on the server. If the output is to be

returned to the client (or the –wait option is specified), then the client will wait

for the server to finish.

UnForm Version 8.0

65

-o "*windev*;name"

-o "*winprt*;name"

When UnForm is installed on a Windows system, two special print devices are

available: *windev* and *winprt*. Note that the * characters are optional in

version 8.0, and either a semicolon or colon can be used.

Windows print queues can be referenced in raw mode (*windev*) or via a

Windows print driver (*winprt*). When in raw mode, a PCL5 or PostScript

driver must be used, specified with the –p option (some printers support direct

printing of PDF output as well). When using a Windows print driver,

Ghostscript must be installed and configured, which allows UnForm to create

temporary PDF output, convert that to image output, and print the images

using any Windows print driver (the –p option is ignored). This Ghostscript-

driven method is suitable for local printers, but not for remote printers

accessed over a slow network connection, due to the size of output generated.

Each page is a raster bitmap, and such full page images are large files (i.e.

letter-size, 300 dpi, black and white is about 1MB, color about 8MB).

The name value specified must match a Windows printer name (not a share

name). If not specified, the default printer for the UnForm server process will

be used (not that of the submitting user). No selection window can be

presented for dynamic selection, as UnForm jobs run in background on a

server.

When using *winprt*, limited printer control is offered on a job-wide basis,

for tray, duplex, and orientation. Color output is generated if a –color

command line option is used. As the output is produced initially in PDF

format, it is not possible to change the output device in mid-job. You can set

output dynamically at the start of a job in order to override the –o command

line argument, using an output command or setting output$ in a prejob code

block, using the same "*winprt*;name" syntax.

Tray numbers differ from PCL trays, often being manufacturer-defined values

above 256. A list of tray numbers for a given Windows printer can be

obtained using the system object's winprttrays$(printer$) method.

-o unc:\\server\share This special Windows UNC printer syntax is designed to print indirectly to the

device via a work file and a Windows copy command. This technique works

around a limitation of Windows 2008 that prevents printing to UNC printer

shares. If UnForm detects it is running on 2008 or higher, it automatically

implements this technique, but if needed, the unc: prefix can be specified to

force this processing method.

UnForm Version 8.0

66

-p output-format Specifies the output format for the job. It may be one of the following values:

laser (or pcl), which produces PCL5 or PCL5c (color) output. The default

format is PCL5, but if this option is specified, and no rule set is detected or

specified, then the output is scaled to fit the page in conjunction with the –cols

and -rows options, or the content itself. Without any –p option, and without a

rule set, the job is passed through unmodified.

pdf, which generates files viewable by Adobe Acrobat Reader or PDF

viewers. If no rule set is detected or specified, then a scaled text job is created,

based on the –cols and –rows options, or the content itself.

ps or ps3, which generates PostScript output. If no rule set is detected or

specified, then a scaled text job in PostScript format is created, based on the –

cols and –rows options, or the content itself. The ps3 version leverages the

zlib compression support of PostScript level 3, which is supported on many

printers, for monochrome images.

eps, which generates a PostScript EPS image from the first page of output.

zebran, which produces ZPL II output at n dots per mm (6, 8, or 12 – default

of 12) for Zebra label printers.

For special Zebra media handling, you can append the following to zebran:

 Media tracking (Y=standard, N=non-standard label stock). Standard label

stock is non-continuous, meaning the media has some type of physical

characteristic (web, notch, perforation, mark, etc.) to separate the labels.

NOTE: changing between standard and non-standard requires recalibrating

the printer.

 Set print modes (T=tear-off, R=rewind, P=peel-off, C=cutter).

The default values are YT. For continuous labels, 8 dpmm, with a cutter, you

would specify –p zebra8NC.

html, which generates Web pages from reports, based on a special set of rule

set keywords.

UnForm Version 8.0

67

-p output-format

(continued)

win, winpvw, which automatically produces a PDF file and launches the

Acrobat PDF viewer on the Windows client. win (note win5 is a synonym for

win) will print the document using the Acrobat /p command line option. This

generally provides a printer selection dialog before printing. On some

versions of Acrobat a window is left open after printing. A second format,

“win:printer”, uses the Acrobat /t option to print directly to the printer named

printer. Printer names generally match the names in the Windows printer

select dialogs, but sometimes can be UNC names. To print to the default

printer, specify win:default or win:dflt. winpvw will provide a print

preview. These options only work in Windows clients.

The winpvw option has special significance when retrieving documents or

lists from an UnForm archive, via the -arcget, -arcsearch -arclist, or

-arclistdocs options. In this case, the preview is generated based on the type of

data returned, using the file associations of the Windows shell for all data

except PDF documents, which are viewed using the standard UnForm client

viewer. For list formats, pipe and tab are viewed as pure text, and csv, html,

and xml are viewed using the Windows shell association.

Special Ghostscript-driven drivers are also available if Ghostscript is available

on the server machine, and if you have configured the uf80d.ini file [drivers]

section. The configuration specifies the path to Ghostscript and a set of driver

names with Ghostscript -sDEVICE names, a multi-page flag, and a resolution.

For example:

[drivers]

gs=gs

bmp=bmp256,1,300

If the command line contains –p bmp –o imagefile.bmp, then UnForm will

generate an interim PDF file, and execute the gs command to convert that to

the format bmp256, with output files imagefile-1.bmp, imagefile-2.bmp, and

so on. The images will be produced at 300 dpi resolution.

Many standard drivers are configured, and you can add more as needed and as

supported by Ghostscript.

-page lines Specifies the number of lines per page that UnForm should read from the

input. Normally, UnForm will find form-feed characters to delimit pages.

However, if the application simply prints even numbers of lines per page, this

can be used to define that value so UnForm can properly parse the input

stream. The rule file page command is normally used rather than this

command line option, since different reports can have different page sizes.

However, this option is useful when doing cross hair prints (the -x option) to

properly parse individual pages.

UnForm Version 8.0

68

-paper paper

-ps paper

Specifies the paper size used by the printer. Valid values include letter, legal,

ledger, executive, a3, and a4. The default is letter. For a complete list, see the

[paper] section of ufparam.txt.

The paper size can also be specified with a widthxheight setting, with an

optional suffix of "cm" or "mm" to specify the value in centimeters or

millimeters (i.e. 20x30cm).

-pc copies

Causes UnForm to issue multiple copies of the report, page by page. If copies

is less than 2, this option is ignored. This option and the "-c" option are

mutually exclusive; also, rule sets can specify copy options that will override

command line options.

-pdfauthor "value"

-pdfkeywords "value"

-pdfprotect "value"

-pdfsubject "value"

-pdftitle "value"

-pdftrans | -pdfnotrans

These options supply default values for the author, keywords, protect, subject,

title, and transparency commands, respectively. All options are used

exclusively with PDF output.

-ping Queries the server, returning a 10-digit string (plus a newline) , made up of 5

digits of total job licenses and 5 digits of job licenses in use at the time the

connection is made. The –server and –port options are honored. On

Windows, using uf80c.exe, the –o option and –e options are honored.

-port n Specifies the port that the server is listening on, if other than the default of

27280. The –server line can also be used to specify the port, in the format

server:port. The uf80c.ini file also can contain the default port to use in the

absence of this option.

-printblanks

-pb

Causes UnForm to process blank pages the same as non-blank pages.

Normally, blank pages are suppressed.

-prm "parameters" Provides the ability for the application to send parameters to UnForm on the

command line. This might be used, for instance, to pass a company number

for use in a code block. The format for parameters is "parameter-1=value-

1[;parameter-2=value-2;...]" Any number of parameters can be specified

within the limits imposed by the operating system for command line length.

Each parameter becomes a global string in Business Basic (use the GBL()

function to retrieve), and each is set to the value specified. Multiple

parameters need to be delimited by semi-colons (;). -prm

"company=01;name=Acme Paint", for example, would establish two global

strings: company and name. These could be referenced within code blocks

(prepage, precopy, etc.) as GBL("company") and GBL("name").

-quiet Forces the Windows version of uf80c to route any errors to the log file defined

in uf80c.ini, or “uf80c.log” by default, and to any –e file named on the

command line. Without this option, errors are reported in message boxes.

UnForm Version 8.0

69

-r rule-set

Used to specify a rule set name to use for the job. The rule set specified must

exist in the rule file used for the job (see the –f option). If this option is not

used, UnForm will attempt to automatically detect what form is being

processed based on specifications contained in the rule file. If no form is

detected, then UnForm creates a simple text job or may pass the job through to

the output unmodified. If the rule-set contains spaces, it should be quoted.

Rule set names are not case sensitive.

-rd n, -rdelay n Introduce a delay of 1 to n seconds (a random value) to slow down the pace of

jobs submitted to the server when large numbers of jobs are sent by an

application. The delay is only imposed if the number of active jobs on the

server exceeds a threshold defined by the -rdt option. For example, the

following options would implement a random delay of from 1to 10 seconds

whenever more than 5 jobs are active on the server:

 -rd 10 -rdt 5

-rdt n, -rthresh n The minimum number of active jobs on the server before the -rd or -rdelay

option will be active. If active jobs exceeds this value, a random delay is

imposed.

-rland

-rport

Turn on reverse landscape or reverse portrait orientation. These options are

only valid on laser output.

-rows n Sets the default rows per page when a job is using default scaling, as when the

–p pdf or –p laser options are used and no rule set is detected or specified. See

also the –cols option.

-s sub-file

Specifies a text file to be used as a substitution file. Substitutions are used by

UnForm when placing text in the form output. If the text can vary from one

form to another, such as company names and addresses, then multiple

substitution files can be defined, each containing different names and

addresses, and the proper one identified with this command line option. See

the text keyword for more information. The default substitution file is called

"subst". If sub-file is not a full path, UnForm will look for it in the UnForm

directory. UnForm will automatically generate stbl("@name") definitions for

each line in the substitution file. Code blocks and expressions can use the

stbl() function (gbl() on ProvideX) to return these values.

-serialize Causes the client to block other client processes until the server has

acknowledged the connection, effectively spooling client processes until the

server has resources to support additional connections. On Windows, this is

managed through a user-specific lock file, so users will not block each other's

client executions. Job swarms that can cause performance problems on the

server, however, are typically launched by a single process and therefore a

single user, so this user-specific locking is effective in those circumstances.

-server server Specifies the server, if the default server found in uf80c.ini is incorrect. The

server value can be a hostname or IP address of the system running the

UnForm server, and may optionally include :port suffix, such as

ourserver:27280. The port can also be specified with the –port option.

UnForm Version 8.0

70

-shift n Causes all input text to shift n columns to the right, similar to the action of the

shift command. This can be useful in conjunction with the –x crosshair option

to force text to match the alignment it would have with a shift n command in a

rule set.

-slon "codes"

-sloff "codes"

Causes local (client side) output to be started with the slon code and ended

with the sloff code. This option is only supported in the UNIX client. The

code can contain text and special escaped characters:

\e Escape

\n Newline

\r Carriage return

\0nn Octal character nn (i.e. \033 is an escape)

\xhh Hex character hh (i.e. \x1b is an escape)

These values are typically set in conjunction with a –o /dev/tty option, in order

to send a job back to the client-side terminal device for slave printing. Use of

these options also causes the UNIX client to attempt to change the stty setting

of the –o device to "raw" for the duration of the output.

A typical slave print client command line might look like this:

cat sample1.txt | uf80c –f simple.rul –slon "\e[5i" –sloff "\e[4i" –o /dev/tty

-status

-nostatus

Overrides the default behavior of the status window when submitting jobs in

the Windows client uf80c.exe. The default behavior is to show the window

for jobs that will be returned to the client, and not show the window for jobs

that will be printed by the server.

-sshost "server:port" Sets the support server host and port, overriding the sshost= and ssport= lines

in uf80d.ini for the job. See also the sshost() code block function.

-textjob If this is specified, then the textjob$[all] array is built even if that is not the

default setting, as defined in textjob=x in uf80d.ini.

-testpr font symset Generates a test print showing nearly all characters (ASCII 1 to 254) in the

font and symset codes identified. For a list of font codes and symbol sets, see

the ufparam.txt file, sections [fonts] and [symsets], respectively.

This option supports both laser and pdf drivers. To generate a PDF file, add "-

p pdf" to the command line. Output can be sent to a file or device with the "-

o" option, or on UNIX can be piped to standard output. Note that with the pdf

driver, the only symbol set used is 9J.

-timeout n Sets the socket timeout, for connecting to the server, to n seconds. If the

server takes more than this amount of time to accept the connection, the client

produces an error. The default value is 10 seconds.

-trans "filename" Specifies a translation file, used to substitute text, barcode, and search values

that are dynamically translated as the job runs. The active file can also be

specified with the settrans("filename") code block function.

UnForm Version 8.0

71

-usess Forces the use of the Windows Support Server for image conversions and

Ghostscript execution, even if server-based configuration is enabled.

-v Causes UnForm to print version information and exit.

-vshift n Causes all input text to shift n rows down, similar to the action of the vshift

command. This can be useful in conjunction with the –x crosshair option to

force text to match the alignment it would have with a vshift n command in a

rule set.

-wait Causes the client to wait for job completion, even if the server is printing the

job. Normally, when the client submits a job to the server, it will exit as

quickly as the server acknowledges the job has started (not, of course, if the

output needs to come back to the client). By including the –wait option, the

client will wait until the server job is complete, even if the output will be

handled by the server. The purpose of this option is to allow client reporting

of any errors the server might encounter once the job starts.

-x [page[,page, …]]

-xl [page[,page, …]]

Causes the first page of input, or the pages specified, to be printed with a cross

hair pattern. This is typically done once to assist in determining placement of

text, and then removed. Sometimes, a special printer definition is set up

within an application, using the -x option, so that any form can be printed to

that printer for layout purposes. Note that setting the environment variable

UFC to "y" will cause this option to be automatically implemented.

Optionally, specify one or more (comma-delimited with no spaces, or

hyphenated for ranges) page numbers to get UnForm to produce cross hair

patterns on specific pages of the input stream. For example, '-x 1,3-5' would

produce cross hair patterns on pages 1, 3, 4, and 5, suppressing all others. If

the input doesn't contain form-feed page delimiters, be sure to use the –page

option as well.

When the –x option is used, no rule set is applied to the job. See the crosshair

command if you want to apply a grid to enhanced output.

The –xl option will produce a landscape version of the crosshair printing.

-z filename

-zx filename

Adds command line options contained in the text file filename to the command

line as if they were part of the command line itself. This option is helpful if a

command line length exceeds the operating system limit. If the –zx option is

used, then filename is erased once it has been read.

The file is simply a text file with arguments separated by white space or new

lines. Lines beginning with a # character are not included.

Job Status Viewing Options

UnForm Version 8.0

72

-jobs

-myjobs

These options trigger the viewing of jobs submitted to the server. The –jobs

option shows all jobs submitted to the server, while –myjobs shows just those

jobs submitted by the current user. Job records are kept for a configurable

amount of time, determined by the age= setting in the uf80d.ini file on the

server.

By default, the data displayed includes the job number, date/time, user, input

size, pages complete, percentage complete, and status. The –detail option,

below, adds the rule set, driver, and error message columns.

The output can be sent to standard output on Unix, and filtered, like this:

uf80c –jobs | grep 'Errored'| more

On Windows, either a –o option or a –p winpvw option is required, and the

output goes to the named file or to a temporary file and viewed with that file

types native viewing application.

-active This option will limit the job display to jobs that are currently processing on

the server.

-detail This option will cause the job listing to include additional data, including the

ruleset, driver, and any ending error message.

-jobsfmt format Controls the format of the jobs output. Two options for format are supported:

txt and csv. The txt option produces a tab-delimited list, while the csv option

produces a comma-separated-values list. The default format is txt.

On Windows, when used in conjunction with –p winpvw, the native

application for the format (or output file specified) is used. On systems where

Microsoft Excel is the default application for .csv files, specifying –jobsfmt

csv –p winpvw will result in a display of jobs in Excel.

Archive and Document Management Options

-arcargs "args" Sets the default archiving subjob options. When archives are written via

UnForm jobs (as opposed to the –arcput option), a PDF file is generated as a

subjob while the UnForm job is processed. The subjob may require UnForm

command line options to run properly. This option sets those options. The

archive command can also set options.

-arccats “cats”

-arccategories “cats”

Sets the archive document category indexes for document writing. There can

be any number of semi-colon delimited categories, with each category

supporting up to three pipe-delimited levels. Each level can be up to 20

characters long. A different character than the pipe can be use by specifying a

–arcsep option. Generally this option must be enclosed in quotes to protect

semi-colons, pipes, and spaces in the command line. The format structure is

this:

"cat1.1|cat1.2|cat1.3;cat2;cat3.1|cat3.2;..."

UnForm Version 8.0

73

-arcdel Triggers removal of an archive image or document, honoring the options for

-arclib, -arcdoctype, -arcdocid, -arcsubid. Delete access to the library is

required for the –arclogin user. If a –arcsubid is supplied, then just that image

is removed. If no –arcsubid is supplied, then the document record and all sub-

images are removed.

-arcdocid "docID" Sets the archive document ID for document writing or retrieval.

-arcdoctype "doctype" Sets the archive document type for document writing or retrieval.

-arcdtm “ymddate” Sets the archive document date for document writing to the date specified.

Normally this value is calculated automatically. The date supplied must be in

the format yyyymmddhhmmss, with the first 8 characters required.

-arcdtmupdated

“ymddate”

Used with the –arcsearch command to filter the date/time updated. Setting this

does not affect the date updated stamp when writing archive records.

-arcend “end” Specifies an ending point for –arclist and –arclistdocs options, allowing for a

range a range of documents to be returned. The ending point should logically

be associated with the order specified in the –arcorder option. If the order is

“category”, then end can contain pipe separators to indicate category level

breaks.

-arcentityid “entityid”

-arcentid “entityid”

Sets the entity ID for document writing, either the default for UnForm jobs or

the value for direct (-arcput) document writing.

-arcexists Returns a 1 (found) or 0 (not found) plus a CRLF to the output device,

typically –o client:filename, based on testing the existence of -arclib,

-arcdoctype, -arcdocid, and –arcsubid options. This option does not require a

login. The number of options supplied determines the test performed, from

simply testing for library existence, to looking for any documents of a

specified document type, to testing for a specific document ID, then finally

image sub ID.

-arcfilter “filter” Specifies a filter string to apply to the –arclist and –arclistdocs options. This

filter applies to all elements of the document, including title, keywords, and

categories. If the filter starts with a tilde (~), the remaining characters are

interpreted as a regular expression. Otherwise, wildcard characters * and ? are

supported for matching any characters or any single character.

-arcget Triggers retrieval of an archive image, honoring the options for -arclib,

-arcdoctype, -arcdocid, -arcsubid, and -o. Read access to the library is

required for the –arclogin user.

-arckeywords “kwds” Sets the archive document keywords for document writing. There can be any

number of semi-colon delimited list of words or phrases. If none is set, then

documents inserted by UnForm jobs (as opposed to those written via a –arcput

option) will have a configurable number of unique keywords generated

automatically from input file content. Generally this option must be enclosed

in quotes to protect semi-colons and spaces in the command line. The format

structure is this:

 "kw1;kw2;..."

-arclib "libpath" Sets the archive library path for document writing or retrieval.

UnForm Version 8.0

74

-arclink “links”

-arclinks “links”

Sets the archive document links, which is a semi-colon delimited list of links

to web documents, either external or other archive documents. Each link in

the list can be in one of the following formats:

 A full URL, optionally matching a URL used to load a document or

image from a library, or a URL to an outside page or document. This

structure, if it begins with http:// or ftp://, can be prefixed with a title in

the format of title=URL. If the title is specified, that becomes the

visible link in the browser.

 A simplified pipe-delimited structure of library|doctype|docid[|subid],

which is displayed in the browser interface as a URL link to the

document or image named by library, document type, document ID,

and optionally image sub ID.

There can be any number of links in the list.

-arclist Triggers a listing of archives, honoring the options for –arclib, -arclistfmt,

-arcorder, -arcstart, -arcend, and -arcfilter. This listing displays the document

archives, but not the image sub ID’s. Use the -arclistdocs for this additional

information. The -o option can be used to send the results to a file.

-arclistdocs Triggers a listing of archives and image sub ID’s, honoring the options for

-arclib, -arclistfmt, -arcorder, -arcstart, -arcend, and -arcfilter. This listing

displays the document archives plus their associated images. The -o option can

be used to send the results to a file.

-arclisttypes Triggers a listing of document types in the library specified with an associated

–arclib option. The –o option can be used to send the results to a file. A

-arclogin is typically required. The listing is a single text column of values,

one document type per line.

-arclistfmt fmt Sets the format for -arclist and -arclistdocs. It must be one of the following:

tab, csv, pipe, html[:stylesheet], or xml|xmlf[:stylesheet].

If the format is xml, a XSLT stylesheet can be referenced by URL with a colon

suffix: “xml:http://somewhere.com/stylesheets/mystyle.xsl”. Likewise, if the

format is html, a CSS stylesheet URL can be referenced with a colon suffix:

“html:http://somewhere.com/default.css”. An alternate format,

“xmlw3c:stylesheet” can be used to generate the header type= tag as

“application/xsl” rather than “text/xsl”.

If stylesheets are specified, the application that views are parses the document

must have access to the specified stylesheet.

If the format is xmlf, then a base64-encoded version of the image file is

included with the xml output.

-arclistlibs Triggers a listing of libraries, including path, description, creation date, and

default permissions.

UnForm Version 8.0

75

-arclogin

“userid/pswd” | ask

Sets the login user ID and password (they must be separated by a slash - /) for

the command. Logins are required for many archive command line operations.

Under some circumstances, login information can be read from files. See the

Document Archiving and Management chapter for more details.

Optionally, enter the word “ask”, or provide no argument at all, and the client

will prompt for the login information.

-arcnotes "notes" Sets the archive document notes for document writing. To force line breaks,

insert \n mnemonic character sequences.

-arcorder order Sets the order of the lists retrieved by the –arclist and –arclistdocs options.

The order must be one of the following: id, date, title, or category. The default

order is id.

-arcput Triggers writing of a file directly to a library, bypassing UnForm processing of

the input file. The option requires values for -arclib, -arcdoctype, -arcdocid,

-arcsubid, and -i, and supports the archive property setting options such as

-arctitle, -arckeyword, etc. Review the archiving chapter for more details.

-arcsep char Sets the separator character for category levels to char. The default is |.

-arcsearch Triggers a search to be performed, in conjunction with the -arclib, -arcdoctype,

-arcdocid, -arctitle, -arcentityid, -arcdate, -arckeywords, -arcnotes, -arccats,

-arclinks, -arctext, and -arcsubid option. The search results are sent to the –o

output file. The format of the results is controlled by the -arclistfmt option.

-arcsearchdocs Identical in function to –arcsearch, except that image sub ID information is

additionally returned.

-arcstart “start” Specifies a starting point for –arclist and –arclistdocs options, allowing for a

range a range of documents to be returned. The starting point should logically

be associated with the order specified in the –arcorder option. If the order is

“category”, then start can contain pipe separators to indicate category level

breaks.

-arcsubdtm “ymddate” Sets the archive document image sub ID date for document writing to the date

specified. Normally this value is calculated automatically. The date supplied

must be in the format yyyymmddhhmmss, with the first 8 characters required.

-arcsubid "sub ID" Sets the archive document image sub ID for document writing or retrieval.

When used in conjunction with –arcget, you can use two special suffixes, “-<”

and “->”, to return the first or last sub ID that matches the sub ID string. For

example, a value of “@UnForm->” would return the last sequential @UnForm

sub ID in an auto-sequenced library. Escape the suffix as “\->” to look for the

literal value.

-arcsubtitle "title" Sets the archive document image sub ID title for document writing.

-arctextdata “value” Used in conjunction with the –arcsearch option to search text image data,

archived with @text sub IDs, for the value supplied.

-arctitle "title" Sets the archive document title for document writing.

Two additional options, -about and –configure display client version information and a configuration

dialog, respectively.

UnForm Version 8.0

76

UNFORM AFO – APPLICATION FORMATTED
OUTPUT
UnForm recognizes PostScript and PDF input streams, and will attempt to process them as pre-formatted

print jobs. To do this, both GhostScript and a Windows Support Server must be configured and

available, as to parse out the text from these jobs, UnForm converts the job to PDF pages, and then uses

a feature in the Windows Support Server to locate all the text elements found in the job.

Caveat: Note that not all such print jobs contain text. Some contain images of text, and some

contain a mixture of text and images of text. Only true text data can be used by UnForm as rule

set data. In addition, sometimes text elements contain large regions of clear space around the

text itself, posing some challenges for parsing text by location. The availability and usefulness of

text is determined by the printing application and GhostScript, not UnForm.

The Design Tool can submit PostScript or PDF sample data to the UnForm server, and highlight each

text element found on each page (by checking the Add Text Base option on the Preview menu).

The technique used by UnForm when it receives a PostScript or PDF print stream is to generate an

overlay of each page in the output format of the job. UnForm graphical commands can then be used to

add elements to this overlay, to scale it, and to erase regions from it. Other than selective erasure, it is

not possible to modify the overlay. In many cases, there will be very limited, if any, cosmetic

enhancements needed, allowing the implementor to focus exclusively on document management features

such as electronic delivery and archiving.

The most common method of integrating PostScript input with UnForm is to use a Windows printer

configured with a PostScript print driver and a TCP/IP port directed an UnForm TCP/IP monitor.

The –noafo command line option can be used to suppress AFO processing for Postscript jobs, and may

also be useful as an argument passed to a subjob in a jobexec() function, as subjobs of AFO jobs are by

default treated as AFO jobs themselves.

As the PDF pages are treated similar to overlays, the orientation of the UnForm job must match that of

the PostScript or PDF input. For example, if the input uses landscape orientation, the UnForm rule set

should include a landscape command.

Text vs. PostScript/PDF Print Stream Management

When working with plain text input, UnForm has commands that manipulate or apply enhancements to a

text print stream, such as font, bold, and erase. Also, code blocks can manipulate the text$[] array,

resulting in modified print stream text. However, when working with PostScript print streams, there is

no text array, and commands that depend on it are not available. One exception is erase, which is

translated to be a shade command with a shade value of 0, resulting in erasure of the specified region of

the overlay. Also, the notext command and its new synonym, nooverlay, may be used to suppress

printing of the overlay on any copy or all pages.

UnForm Version 8.0

77

The following commands are not compatible with PostScript input:

 across

 bold

 down

 font

 hline

 hshift

 italic

 light

 move

 page

 shift

 underline

 vline

 vshift

 any Zebra- or label-only commands

In addition, many commands support anchor text or patterns, which cause a search of the text content of

the page to locate positions to apply enhancements. Supported commands that offer this feature, such as

barcode, box, and text, continue to support the anchor search technique. However, since the location of

PostScript text regions do not always correspond to the visual location or size of the text, accuracy can

vary.

If PostScript text regions vary from visual location or size, then detection logic may require greater

flexibility than with simple text input streams. The detect command has been enhanced to support

partial columns and rows, but it may be necessary in some cases to detect elements from the whole page

rather than regions.

Text Array Limitations in Code Blocks and Expressions

Many code block functions that work with a text print stream are also not available. However, the get()

and mget() functions have been enhanced to return text data from the PostScript print stream, plus three

new functions have been added, gtextcount(), gtextitem(), and gtextfind(), which provide access to the

text elements parsed from the PostScript print data. A new variable, nooverlay, can be set to 1 in

prepage or precopy code blocks to suppress the printing of the overlay. This can be used to manage

multi-format jobs, such as those with terms and condition attachments.

The following code block functions are not compatible with PostScript input:

 cut()

 delpage()

 getpage()

 inspage()

 mcut()

 mset()

 putpage()

UnForm Version 8.0

78

 set()

The arrays text$[], textjob$[], and textpage$[] are not available.

New Functions For Accessing Text

 gproperty() returns values from PostScript DSC comments in the print stream.

 gtextcount() returns the number of text elements in a page.

 gtextitem() returns text and optional region information for a given text element on a page.

 gtextfind() searches for patterns in text and returns arrays of text and region information found.

UnForm Version 8.0

79

FLOW OF PROCESSING

UnForm processes jobs in a complex but defined manner. The following list describes in general what

occurs when a job is submitted:

The client program is executed with options, generally including input and output specifications, a rule

file, and any other command line arguments. On UNIX, it is possible for the input and/or the output to

be "standard input" and "standard output", so that the client can process jobs in a pipe. Here are a few

examples:

uf80c –i sample1.txt –o ">lp –dlaser –oraw" –f acme.rul

cat sample1.txt | uf80c | lp –dmylaser –T pcl

cat sample1.txt | uf80c –p pdf >/home/mypdfs/xyz.pdf

uf80c –i sample1.txt –o client:myfile.pdf –p pdf

In all cases, the input file comes from the client and is sent to the server. With a –o option, the output

normally stays on the server, though if the output designation is prefixed with "client:", then it is

returned to the client. On UNIX, if "standard output" is designated, the output is also returned to the

client. The rule file specified with the –f option resides on the server.

For performance reasons, it is normally desirable to specify a server-based output designation with the -o

option. In that circumstance, the client only runs long enough to submit the job and ensure the command

line arguments are acceptable to the server, then returns to the application. If the client will be receiving

the output, it must wait for the job to finish and retrieve it, which can be time consuming (though

certainly less so if the client and server are on the same machine).

When the server receives the job, it stores the input in a temporary file, and calls the UnForm processor

to handle the job.

UnForm reads the input file to obtain the first page. It looks for a form-feed, or if no form-feed is found,

it reads the first 255 lines. It then strips the data of any PCL escape sequences in order to get a plain text

array of lines. Lines must be terminated with line-feed characters (ASCII 10), carriage-returns characters

(ASCII 13), or carriage-return, line-feed sequences (ASCII 13, 10).

Note that if the input is found to be PostScript, then UnForm processes the job using UnForm AFO.

This first page is processed against the rule file. If a –r ruleset command line argument was used, then

the rule file is scanned for the specified rule set. Otherwise, each rule set's detect statements are tested

using the first page of text. When the rule set is found, it is parsed into commands and code blocks. If

UnForm Version 8.0

80

no rule set is found, then the job is handled by pass-through logic, or if a rule set was specified with –r

and not found, an error occurs and the job exits.

If the parsed rule set indicates a page size with the page n command, any excess lines read from the first

page are returned to the input buffer. As the input stream is read for additional pages, UnForm will read

only n lines per page. Note that if a form-feed character is encountered before n lines have been read,

then the page is also considered complete.

If a prejob code block is present, it is executed.

Now processing of the job begins. Each page is processed in the following order:

 The prepage code block is executed.

 Any command expression values are resolved.

 For each copy:

o The precopy code block is executed.

o Command expressions are resolved.

o Any hshift or vshift commands are executed (if shiftfirst=1 in ufparam.txt [defaults]).

o Move commands are executed.

o Font, bold, italic, underline, and light commands are executed.

o Shade commands are executed.

o Box commands are executed.

o Text commands are executed.

o Hline and vline commands are executed.

o Erase commands are executed.

o Any hshift or vshift commands are executed (if shiftfirst=0 in ufparam.txt [defaults])

o Attach commands are executed.

o Image commands are executed.

o Barcode commands are executed.

o The application text, with any font attributes applied, is added.

o Micr commands are executed.

o The postcopy code block is executed.

 The postpage code block is executed.

 When all pages have been processed, the postjob code block is executed.

 As the job is processed, the output designation for each copy is checked, and if the output is changed,

predevice and postdevice code blocks are executed. When running a PDF job, the only time the

output can be changed is in the prejob code block, or with an output command that is non-copy

specific. The postdevice code block is executed after the output is complete and closed, making it

suitable for handling the output file itself (for emailing, faxing, etc.).

Once the job is complete, it is available to return to the client, if the client's command line requires it.

The client has monitored the job for completion in that case, and it then retrieves the job output. Note

UnForm Version 8.0

81

that if the rule set has overridden the output designation for the job, or part of the job, then the client will

only be able to retrieve what was sent to the original output designation.

So the following scenario will conflict:

 uf80c –i sample1.txt –o client:/tmp/invoice.pdf –f advanced.rul –r invoice

 In the invoice ruleset is this: output "/home/pdfs/invoice.pdf"

 The server will send output to its /home/pdfs/invoice.pdf file, leaving the temporary output for the

client empty. The client /tmp/invoice.pdf file will be an invalid, empty file.

UnForm Version 8.0

82

CONCEPTS, PRIMER, AND TIPS

UnForm is a very powerful tool, with dozens of commands and features. It can be difficult to grasp the

basics from such a large toolset, but the basics are really very simple. Once UnForm is installed by an

administrator, the only skills required to develop typical business forms are an ability to edit text files on

your system, and an ability to execute UnForm as needed to test your changes. The Windows-based

UnForm Design Tool can provide an efficient environment for rule file development, if desired.

Here are some basic concepts that you should understand before proceeding:

 UnForm processes text input and produces formatted output. The input can come from a file or, on

UNIX, can come from UnForm's standard input. The output can go to a file or a device on either the

server or the client, or on UNIX can go to the client's standard output.

 UnForm can also process pre-formatted application output, if that output comes to UnForm as

PostScript. See the UnForm AFO chapter for more information.

 UnForm uses a rule file to define all the form and print jobs it might process. In that rule file are one

or more rule sets, each of which represents one form or print job. Rule files and the rule sets they

contain are simply text files with command lines, which you can edit with any text editor. The rule

file should be stored in the UnForm directory, and specified with the "-f rulefile" command line

argument. If you don't specify the rule file on the command line, then the default rule file named at

installation is used.

 Unless the "-r ruleset" command line option is used, UnForm reads the first page of input and

compares that first page with all the detect statements found in each rule set. These statements

instruct UnForm to look for text or patterns at specified locations or lines (or anywhere on the page).

If all the detect statements for a given rule set match the contents of the first page, then UnForm

selects that rule set and begins to produce output. If a match is not found, then the next rule set is

tested, and so on until all the rule sets have been tested. If no match is found, then UnForm will pass

the job through without any changes or enhancements, or in the case when a pdf or pcl driver is

specified with a –p driver command line option, will produce a text job scaled to fit each page.

 Each job has its own geometry, that is, the basic columns and rows to which UnForm scales

everything. If you specify cols 85, then UnForm will scale each character and all the enhancement

positions and sizes to 1/85
th

 of the printed space between the margins. In a sense, the job wraps

enhancements around the text input as it is sent to the output.

 The commands in the rule set determine what enhancements are applied. These can be text

additions, font changes, boxes, shade regions, barcodes, images, and more. Each change is

controlled by a command line in the rule set, such as box 5.5,2,20,4.

Some commands don't add output, but instead modify the text input to UnForm. The text will

UnForm Version 8.0

83

normally print in the Courier font, scaled to the number of columns you specify. You can change the

attributes of that text in any rectangular region with font command, or manipulate it with the move

and erase commands.

 Some commands control the printer. For example, the tray command can select the input tray on a

laser printer, and the bin command can select an output bin.

 You can have UnForm generate multiple copies of each page of input. Each copy can have unique

characteristics by using if copy n blocks. This is a simple structure that starts with a line "if copy n",

where n is the copy number, followed by any number of lines of enhancement commands, followed

by a line "end if".

Creating Rule Files with the UnForm Graphical Designer

 Obtain sample output from your application for the form you want to design. Most applications

provide the means to print to a text file. If no other means exists, you can define a printer that prints

to UnForm with a –debug command line option, in which case UnForm will leave a copy of the

input stream on the server, under the UnForm directory, in temp/jobno.in. You can find job numbers

and their print times and size with the uf80c –myjobs command.

Store this text file in the UnForm directory on the server.

 Start the UnForm Designer on a Windows system, and connect to the UnForm server when

prompted. Create a new rule file, then a new rule set, then set the sample to the file created above.

The UnForm Designer is a rule file editor with on line help, command editors, and drawing and

preview capabilities. More information about using it can be found in the on line help that comes

with the product.

Manual Rule Set Creation Steps

 Obtain sample output from your application for the form you want to design. This output can be

printed to a text file, or you can simply use two printers defined with UnForm, one with the crosshair

option (-x), the other with normal output. If you are working on a Windows system or have network

access from a Windows system to the server where UnForm operates, you can use the pdf driver and

an Acrobat Reader to save paper while developing the design.

 Print your sample through UnForm with the crosshair option turned on. This will provide you with a

grid of text positions printed by your application. If you have a file printed by your application, the

command line for a grid would look like this: uf80c –x 1-99 –i input-file –o output-device or uf80c

-x 1-99 –i input-file | lp -dxxx . If your sample does not contain form-feeds, you can add a –page n

option to tell UnForm how many lines are to be read per page.

UnForm Version 8.0

84

 Since you will be printing this sample many times, you may wish to create a script or batch file to

automate the command line, which will be something like: uf80c –i input-file –f rule-file –o output-

device or uf80c –i input-file –f rule-file | lp -dxxx.

 Looking at the text of the input file, determine what makes this job unique. Sometimes there is a

title, such as "PURCHASE ORDER", printed at a specific position. That may be enough to

determine the uniqueness of the document so just add detect column, row, "PURCHASE ORDER".

You might need to find multiple patterns by using more than one detect statement. Patterns are

specified by starting the detect string argument with a ~ character. The balance of the string is a

regular expression. Common syntax elements for regular expressions include "." to match any

character, [0-9] to match any digit, [A-Z] to match any capital letter, and * to match any number of

repetitions of the prior match character. A more complete description of regular expressions is in the

Regular Expressions chapter.

To try out your detect statement(s), try adding just those statements plus a single text command, then

print the job. If your job prints with that text in addition to the text from your application, then your

detect statements are working. This is what the rule set will start to look like:

[purchase_order]

detect 40,2,"PURCHASE ORDER"

text 1,1,"Test Text"

Note that it is possible to execute a rule set without detect statements, by adding "-r ruleset" to the

command line.

 The rest of the form design is simply a matter of adding commands for text, boxes, and shade

regions. It is usually best to work consistently from top to bottom, left to right in the different

sections of the form. Use comments (lines starting with #) liberally; they make the rule set easier to

follow when you come back later to make a change.

A good place to see complete rule sets are the sample rule files provided with UnForm, simple.rul and

advanced.rul. These two files are thoroughly documented in Sample Rule Sets chapter. In addition to

simple form designs, the samples show techniques with complex designs, such as jobs with multiple

formats of input, and jobs that have embedded programming capabilities.

Tips and Techniques

 Always start with a crosshair pattern, so the basic text provided by the application, and its exact

placement, can be seen. As the crosshair mode prints just the first page, use short versions of the

reports or forms. There are several ways to create a crosshair version of a report:

UnForm Version 8.0

85

o Print the report to a file, then process that file with UnForm's command line, such as uf80c -i

filename -o output-device –x

o Add a printer configured with the "-x" option, and print to that printer.

If your report doesn't contain form-feed characters at the end of the page, then you should print just

one page worth of data, or add a –page n option to the command line. Otherwise, UnForm will

assume the page is made up of as many lines as are printed, up to 255 lines.

 Use detect statements to identify each form. UnForm is designed to process all your reports and just

enhance those it can identify; all others are passed through unchanged. This is easier to set up than

forcing a given printer device to be named for every form or report, as is required of most form

packages.

 Specify the columns and rows for the form or report using the cols and rows commands. If this isn't

done, then UnForm will assume 80 columns by 66 rows. An exception to this assumption is that if a

page keyword is used, then the rows will be taken to be that value unless a rows command is also

present.

 Remove unwanted text with the erase command, or move it with the move command. In

programming code, such as in the prepage or precopy routines, you can modify the text$[] array

directly or via the set() function.

 Apply attributes to the text with the bold, italic, light, or underline commands. These apply to the

text generated by the application (not to text you add with the text keyword). Or use the font

command, which can apply any of these attributes as well as apply other characteristics to the

application text data.

 Use the font command to modify the font of text from the application, All text printed by the

application will print in Courier unless changed with the font command. When changing to a

proportional font, be sure to make the changes to specific logical regions, such as a column of prices.

If you change the font for the entire page, then columns will not align properly.

 Add text, such as headings or messages, with the text command. Text can be literals enclosed in

quotes, named values from a substitution file if prefixed with "@", environment variables prefixed

by $, or an expression enclosed in { } characters. Text can be rendered at any size and in any font

supported by the printer or device. Remember that fixed pitch fonts, such as Courier, are sized in

characters per inch, while proportional fonts are sized in points. The larger the cpi, the smaller the

font. The larger the point size, the larger the font.

 Add shading and box drawing with the shade and box commands. Reverse shading is accomplished

by shading a region with 100% (black) shading, and using a font or text command to modify the text

to shading of 0% gray (white). Simply using a row or column value of 1 will draw lines. To draw a

UnForm Version 8.0

86

box and shade the interior, use the shade option of the box keyword.

 Add logos and other images with the image command. With this command, UnForm normally looks

specifically for PCL raster images (or PDF images if the pdf driver is used) in the file. UnForm can

also be configured to use Image Magick or Image Alchemy for on-the-fly conversion of traditional

image formats to native PCL or PDF.

 Use the attach command to add overlays or attachments. This command does not search only for

image data. It does, however, search for and remove initialization and form-feed codes.

Attachments should be treated as separate copies: use the pcopies command to allocate enough

copies, then use if copy n to add the attachment, notext to suppress the application text output, and

make sure other enhancements don't apply to the attachment copy.

To create an overlay, use the attach command, but allow the text and enhancements to also be

applied on the same copy. Attachment documents for PCL output can be created using a PCL5

printer on Windows, selecting the Print to File option or setting it up to use a FILE: port. For PDF

attachments, use Adobe Distiller, choosing non-optimized, ASCII output options.

 If the application doesn't use form-feeds at the end of each page, then use the page keyword to tell

UnForm how many lines are used for each page. Many applications, especially with forms, will use

just line-feeds when scrolling to the top of each form. UnForm will need to be told where the end of

a page is, in this case.

Use Business Basic programming as a powerful macro language. All the data that is sent by the

application to each page is available for your use. Use this data to get fax numbers and generate faxed

copies, or to print shipping labels derived from the invoice ship-to addresses while packing lists are

printed, or to add additional information such as costs or comments to forms, or to print logs or send

email. See the precopy{} command reference, and the Programming Code Blocks chapter for more

information.

UnForm Version 8.0

87

DOCUMENT ARCHIVING AND MANAGEMENT

Overview

The UnForm document archiving and management component provides a suite of archiving functions

which are seamlessly added to UnForm's library of commands and tools for document enhancement and

delivery.

Existing UnForm integrators and designers familiar with UnForm's unique text filter technology will

find it simple, intuitive and hassle-free to add archiving commands and arguments into UnForm's rule-

file oriented flow of processing. Or rule-files can be bypassed altogether to archive non-UnForm-

generated documents using the familiar command-argument interface to the UnForm client software.

And UnForm's separate Scanning workstation component can add scanned image files to the archive and

match them with existing documents previously stored using manual ID matching or barcode/OCR-

based image ID capture.

With a universal, browser-based document retrieval interface, UnForm makes it easy to browse, search,

list, view, administer, and secure archive libraries. Libraries can scale up to a theoretical capacity of 4-

billion documents. Context-sensitive help links include sample page images, and help guide the user or

administrator through the browse, search and administration functions. Sample archives are included and

are referenced in the help pages. They can aid in the design of a logical custom archiving library and

identification structure suited to the needs of sophisticated end-users.

Flexible pre-defined and user-defined document index structures are designed to make document

identification and retrieval practical, fast and easy. Pre-defined index structures exist for a two-segment

type-ID index, and a date-time index. A user-defined up to ten-segment pipe-delimited category key

structure is also provided for indexing. The browser-based document retrieval interface provides an

intuitively sensible drill-down browse function through the levels of the multi-segmented indexes.

Libraries are file-system-based locations. A three-tiered library-document-image hierarchy is employed

which allows multiple versions of a document, e.g. text and pdf, to be stored together, uniquely

identified by a Sub-ID index, and further allows multiple text or non-text image or data files to be

attached as sub-documents to a parent. When archiving from an UnForm job, both text and pdf versions

are stored automatically.

Subject to access-rights, document and images being listed and/or viewed in the browser interface can

have properties modified by users to update document status, correct indexes, and maintain associated

notes and keywords at a document level. Files on the network can be browsed and added as sub-

documents from within the browser.

Security is managed by library and by user and/or group. All documents are encrypted and compressed

when stored in the library. To access documents, a user login is required, and each login can be granted

UnForm Version 8.0

88

read, write, or delete access to a given library, or can be allowed to access the library based on the

library's default access profile.

Groups may be defined by the administrator. Users can be assigned to one or more groups, and library

access can be granted to a group rather than individual users. If a user is granted specific rights to a

library, those rights are used. Otherwise, the list of groups that the user is a member of is scanned and

all rights offered to each of those groups are granted to the user.

Note the following change from UnForm 7.1: if a user is assigned to one or more groups, default

library permissions are not applied. In Version 7.1, default library permissions were applied in addition

to group membership permissions. This meant that if the default library access was Read, a user would

have access to a library even if all assigned groups were denied access. This change gives group

membership precedence over default access, and provides the administrator more explicit control over

library access.

A user can also be assigned an Entity ID. This classifies the user as an external user. External users are

given very limited access in the web browser. They can only browse records by document type and ID,

or by date. Access is limited to documents that have a matching Entity ID value.

The browser-based, multi-library search function creates disk-based query-lists of documents which can

be further manipulated independent of other documents in the library. The query lists can be the basis for

what are known as bulk actions, which include copying to new or existing libraries, transferring to new

or existing libraries, and exporting to HTML. The HTML export produces a completely self-contained,

pure-HTML directory structure suitable for loading on other storage media, such as a CD/DVD, a zip

file, a web site directory, etc.

Imagine, for example, exporting all of a customer's invoices from a date range to a zip archive and

emailing it to them. Another example would be to off-load old documents to external storage, then

purging them to free up disk space.

The separate Scanning workstation client provides image management and uploading into a library.

Images can be scanned or imported from the PC's file system. Both barcode recognition and OCR

recognition assist in automating document identification. Using VBScript, a developer can automate the

interpretation of such data and use database access or other coding logic to generate document property

and indexing information.

Structure Details
The structure of UnForm archiving is a hierarchical one, where an image of a document is at the bottom

of a nested structure. In fact, what you may consider a “document”, such as an invoice or a purchase

order, is at the middle of this structure, as there can be many versions of a given document. Here is a

description of this structure:

Library A library is a folder or directory path to the location where archived documents

are stored.

UnForm Version 8.0

89

There can be one or many libraries to store documents. Access and security is

controlled by library, so the process of designing a single or multiple library

structure, and determining which documents will be stored in which library,

needs to take into account the access rights of groups and users.

Beneath a library path UnForm uses a file storage algorithm with a theoretical

capacity for over 4 billion distinct documents, each of which can contain

multiple images. All data about documents and images, as well as the images

themselves, is encrypted and compressed.

Document A document is one or more related files which share a unique Document Type

and Document ID combination, different from any other document in the

archive.

Because the document's "source" data itself is stored in what UnForm

recognizes as an "image" file, the document unit in UnForm can be seen as an

"envelope" or "wrapper" which surrounds one or more associated files.

Image An image is a single document file with a distinct ID (called a sub ID) which

distinguishes it from other files associated with the same document. An image

can be any type of file, not limited to image files. For example, when UnForm

adds an archive from an UnForm print job, it adds both text and PDF images,

with ID values of @text and @UnForm.

Think of a "text image" of an invoice, versus a "PDF image" of the same

invoice, versus a signed delivery slip "image file" pertaining to the invoice,

versus a Word document "image" of the order quotation preceding the invoice,

all associated with the same document ID.

Each image within a document is identified with a unique sub ID.

Document-level Identification
The table below briefly describes the EIGHT main data elements which UnForm uses to identify

documents at the document level. With the exception of the date/time stamp, and some character-

separator rules enforced by UnForm on some of the fields, the data format for each of these text

elements is user-configurable. A significant part of the administrator's implementation process is to

design a document identification structure for the archive which will meet the enterprise's needs over a

meaningful period of time.

Document

Type

 First segment of the primary document identifier-key.

 Maximum 20 characters

 Null value allowed

UnForm Version 8.0

90

Example document types from our sample libraries:

demo_sales demo_accounting demo_purchasing

"ArStatement"

"OpInvoice"

"OrderPickQuote"

"ApAging"

"ApCheck"

"ArAging"

"GLDailyDetail"

"OpSalesRegister"

"PurchaseOrder"

Document

ID

 Second segment of the primary document identifier-key.

 Maximum 20 characters

 Null value NOT allowed. However, the null is trapped by UnForm and replaced

with a 10-digit unique serial sequence number. Note that the number sequence is

global within a library, but not within a document type.

The combination of Document Type and Document ID form a unique identifier-key to a

document within a library.

Note that libraries are distinct units to each other so document identifier-keys are only

unique to a library, in other words, identical document identifier-keys can exist in two

distinct libraries without over-writing.

Categories Secondary sorting values known in some software applications as sort-keys.

Example Categories from the demo_sales library include:

OpInvoice and OrderPickQuote

Doc Types

ArStatement

Doc Type

"Customer" | {CustName}

"Salesperson" | {SlspName}

"CustPO" | {CustName} | {POnumber}

"OrderId" | {CustName} | {OrderId}

"Customer" | {CustName}

In the above samples, the text between quotes is literal, and the text between curly

braces { } indicates a variable data field where the values for the document being

archived are supplied by the application.

UnForm Version 8.0

91

The pipe symbol | is used to delineate segments in a category, which allows UnForm to

structure a drill-down presentation when browsing for documents. A category can

contain up to ten pipe-delimited segments. The first segment should normally be a literal

text category name, as shown in the example, to facilitate the category-type browse

method when looking up documents.

Note from the first column header above that the "OpInvoice" and "OrderPickQuote"

document types are configured with the same list of categories. This is because in our

sample database they are related documents in a relationship where an "invoice" is

always preceded by an "order".

As an example from our samples of some of the considerations in choosing document

identification strategies, by structuring a category on the invoice to reference the source

order ID number, the following sample document browse list was enabled where an

invoice and its related order document appear together in a list.

The next example shows a browse list which has been started using a category browse

method and drilling down from customer to customer name "Taylor". Notice the three

different types of documents which were located for Taylor, because the different

document types were configured with at least one identical category.

If a given category segment will potentially contain many thousands of items, it may be

UnForm Version 8.0

92

desirable to divide the segment into two tiers. For example, if a customer name is used

as a segment, and there are thousands of customers, a two-tiered customer name could

be designed, such as left(custname$,2) + “|” + custname$. During browsing, the user

would first locate the customer alphabetical group based on the first two characters of

the name, then access just that sub-group of customers.

Document

Title

A broad general description of the document, sometimes composed of several major data

values that help distinguish the document from other similar documents.

Keywords Additional document identifiers that can help narrow and limit searches to locate

documents and groups of documents, improving search efficiency. Keywords are semi-

colon delimited words or phrases. Often they are auto-generated from the content of the

job submitted for UnForm processing. When keywords are auto-generated, the

generation is subject to configuration rules found in the [archive] section if the uf80d.ini

file.

Links A list of links to other documents, either in the archive system or external to it. This list

is displayed in the web browser interface when viewing the document. The list is semi-

colon delimited, with each link being one of these formats:

 A URL, such as http://acme.com, or a complete link to an UnForm browser page. If

it starts with http or ftp, it can be prefixed with title= to specify a title for the

browser to display.

 A pipe-delimited structure that identifies the library, document type, document ID,

and optionally image sub ID. The structure is library|type|docid|subid, with the

|subid portion being optional.

Entity ID A security data element which can be included with a document and/or user account to

filter access to specific documents or groups of documents to login user accounts which

carry access authorization referencing the same entity ID.

The concept of the Entity ID is one of ownership, designed for situations where external

web access to documents in a shared library needs to be restricted to the entity specified.

For example, where customer XYZ can login and browse, list and view invoices for

customer XYZ without ever seeing documents for other entities listed.

If documents are written to the archive with an empty entity ID field, then any user

account with an empty entity ID will pass the entity test for access to a record. In an

environment with empty entity ID field on documents in the archive, simply assigning a

user any non-blank entity ID value can be used to restrict access to all documents in the

archive.

At the current release level the entity ID field is treated, both for document properties

UnForm Version 8.0

93

and user properties, as a simple string of text. There are NOT provisions in the software

for assigning multiple entity ID's to either a user or a document, nor any provision for

entity ID sub-string referencing.

Date /

Time

The date/time stamp of a document is used as a secondary sort-key in the library to allow

a by-date browse-method drill-down to locate documents. The date/time value can be

maintained by the UnForm rule set used to archive the document, or via a command line

option. It defaults to the initial date and time the document was added.

Additional dateupdated and timeupdated fields are maintained each time the

document is updated.

Notes Free-form text notes can be stored with a document and can be edited in the document

properties box of a located document.

Image-level Identification
The elements discussed above apply to a document at a document "envelope" level, and serve to identify,

group, and sort documents, and store additional useful information about a document, including free-

form notes.

Because there can be multiple "images" associated with a document, each separate image file is assigned

a unique identifier-key known as a Sub-ID. Note that the term “image” is used loosely here, and simply

refers to a different version of the document. There can be a text image, a PDF image, and/or a tiff

image of the same document.

When text-based documents are stored in the archive by an UnForm ruleset command, UnForm will

default the Sub-ID value to @text for the text version of a document, and @UnForm for the pdf version

of a document.

Documents stored in the archive via UnForm's command-line syntax will NOT have a default sub-ID

assigned, so the user or the application must create a Sub-ID using the –arcsubid command line option.

In addition to the document file and the sub ID, UnForm also stores the date and time a particular image

was last updated, plus a description field called a sub-title.

Adding UnForm-Generated Documents
UnForm document archiving supports several methods for adding documents to libraries. One of the

most useful methods is via UnForm jobs themselves, through the use of command line arguments or an

UnForm Version 8.0

94

archive command in a rule set. The benefit of this is that as jobs print and are formatted by UnForm,

they can be automatically archived, eliminating the need to scan and archive reports using an external

system.

Note: in order to be archived properly, jobs must be designed to successfully produce PDF output. In

particular, jobs that use a pcl attachment or pcl images, but do not provide for PDF versions of these,

will not be formatted properly in the archive.

If any –arcxxx command line arguments pertaining to the archive command are used, such as –arclib or

-arcdoctype, the options establish defaults for any archive command found, or initiate job archiving as if

an archive command were included in the rule set.

For example, assume the uf80c command line includes these options:

-arclib “/archives/reports” –arcdoctype “Reports”

If a rule set contains an archive command, the above defaults will be overridden by the command’s

options. However, if a rule set does not contain an archive command, or if no rule set is selected, the job

will be archived regardless, using the above library and document type (in this case using an auto-

generated document ID). This capability makes it easy to set up default archiving, with the ability to

control archives on selected jobs with the addition of an archive command.

When UnForm archives a job, it evaluates all the elements of the archive command (or the values from

the command line) page by page. Whenever an element changes, a new document is generated. In some

cases, such as with hard coded command line options, these elements don’t change during the job, and

the whole job is archived as a single document. In other cases, an element such as a document ID might

change as pages are processed, and a job can result in several documents being added to the archive.

UnForm documents can contain multiple versions or images, each identified with a sub ID. When

UnForm archives one of its jobs, it archives two versions of the document. The first format is a PDF

version of the document, which by default is given a sub ID of “@UnForm”. The second format is a text

version, derived from the incoming text stream. This is given a sub ID of “@text”.

Archives generated from UnForm jobs receive automatic title and keywords if these values are not

otherwise specified. If no title is specified and no title command is used, then the default title is derived

from the content of the incoming text. Keyword generation is controlled with several parameters in the

uf80d.ini file, including a maximum keyword count (keywords=n), a list of patterns to not archive

(nonwords=file), and a list of characters to eliminate (nonchars=list).

If no document type is provided, then if a rule set is used for a job, its name is used as the document

type.

The following command line arguments enable archiving and provide defaults for archive commands.

-arclib "libpath"

UnForm Version 8.0

95

-arcdoctype "doctype"

-arcdocid "docid"

-arcsubid "subdoc ID"

-arcsubtitle "subdoc title"

-arctitle "title"

-arccats "cat1.1|cat1.2|cat1.3;cat2;cat3.1|cat3.2;..."

-arckeywords "kw1;kw2;..."

-arcnotes "notes (\n?)"

-arcargs "uf80c args for subjob"

-arcsep char (separator for category segments - default is |)

-arcdtm yyyymmddhhmmss

-arcsubdtm yyyymmddhhmmss

Using the Web Browser Interface
The web browser interface is used to browse, search, and view archives and associated images. The

setup of the browser interface is simple; you can use the internal UnForm HTTP server, or use an

external web server, such as Apache or Microsoft IIS, operating on a system that has access to the

UnForm server. A CGI script, uf80a.pl or uf80a.exe, is placed in an appropriate scriptable location, or

given an appropriate scriptable name, and users simply need to point their web browser to the address,

such as http://mycompany.com/cgi-bin/uf80a.pl.

To access the internal HTTP server, simply use the URL http://server:port/arc. The server is the name

or IP address of the UnForm server, and the port is the listening port configured in the [httpd] section of

uf80d.ini. An example might be: http://myserver:27282/arc.

The user is presented a login form first. The first time it is used, an administrator can login with the

name “admin” and password “admin”, and can then add additional users and change the admin password

using the browser.

The Browse feature provides drill down capabilities through the library, document type, document ID

structure, and optionally by date or category indexes.

The Search feature provides cross-library searching for generic text patterns (Simple form interface) or

by specific field attributes or ranges (Advanced form interface). Selected archives can be viewed,

exported, transferred, or copied.

Administrative features, such as user login management and library security set up, are available when

an administrative user logs in.

A session cookie is used by the web browser interface. If cookies are not enabled in the web browser,

then the browser interface will not function correctly. The lifetime of a session is controlled by the

sesage=hours value in the [archive] section of uf80d.ini. If set to 0, a login is required each time the user

starts their web browser. If set to some other value, then sessions last the specified number of hours

before a new login is required.

http://mycompany.com/cgi-bin/uf70a.pl

UnForm Version 8.0

96

See the Web Script Installation chapter for more details about installing and configuring the CGI

script. The interface itself provides on-line help for a more detailed description of how to use the

browser interface.

Direct Browser Access to Documents
It is possible to view documents and document images directly, bypassing the full user interface, by

using one of the following URL structures:

http://server/path/script?a=vw&lb=library&doctype=doctype&docid=docid

http://server/path/script?a=vw&lb=library&doctype=doctype&docid=docid&subid=subid

The first form will load a document-level view page, which includes links to images. The second will

load an image directly. In each case, the server and script path must point to the UnForm web interface

script, and the library, document type, document ID, and sub ID values must be URL-encoded (i.e.

spaces are replaced with “+” characters, and certain other characters are converted to %hex. Information

about URL-encoding can be found in any HTML guide.

If the subid specified is simply “@”, as in “…&subid=@”, then if the document only has an @UnForm

subid (ignoring the @text subid), that PDF document will be viewed. If there is no @UnForm subid or

there are additional images, such as scanned documents, then the document view page will be shown.

If the browser interface session has expired, then a login screen will be presented before the document is

shown. It may be preferable to configure sessions to last longer, several hours or a day or more, to avoid

this requirement.

Alternatively, it is also possible to use one of the UnForm clients, in conjunction with the –p winpvw

option, to retrieve and view a document image from an archive. This may be preferable as login

information can be supplied from the command line or saved information from prior executions.

Customizing the Web Interface
The most common customization is to modify the main title and logo image. This is done by modifying

the logo= and title= settings in the [archive] section of uf80d.ini.

For further customization, the browser interface can be customized to support preferred colors and

layout, and even to translate to different languages. The basic web interface is stored in a directory

called web/en-us in the UnForm server directory. Within this directory are many .html files that act as

templates, a messages.txt file that contains text messages and other items, and two style sheet files,

default.css and custom.css. Several templates, including master.html and popup.html, provide the

overall layout of the web interface.

UnForm Version 8.0

97

The files in web/en-us are all subject to overwriting when UnForm is updated, so to provide a custom

interface, you should copy any files you want to customize into a different directory under the web/*

structure.

In addition, each custom web/* directory requires its own messages.txt file, even if it is a copy of the one

provided in en-us.

Once this is done, you can modify the webdirs= line in the [archive] section of uf80d.ini. This line

contains a list of directories that the user login screen lists as “Language” choices. There can be many

directories, or just one. Whichever is selected by the user, that directory becomes the first location

searched for web files, with the en-us directory searched after for any files not found. As the en-us

directory is also searched, there is no need to copy all files to the custom directory – just those you want

to modify.

The name=value line in the web directory’s messages.txt file is used as a description in the login screen.

Note that the first webdirs entry can contain a different login.html template, and this becomes the form

shown when users first login.

While it is possible to modify the cosmetic appearance of the browser interface, it is not possible to

modify the underlying structure or navigation, so be sure that if you modify templates all bracketed tags

and links are maintained.

Note that if the publisher makes changes to the master en-us structures, any custom templates will have

to be updated to reflect any new options, tags, or other critical elements related to processing.

Caution: Any modifications performed to the templates should only be performed by experienced and

knowledgeable HTML and CSS programmers. SDSI cannot warrant the performance of customized

templates.

Using the UnForm Client
The UnForm clients, which include the Perl-based Unix client (uf80c), and the Windows client

(uf80c.exe), can all perform document management functions via command line options. In many cases,

a login is required. This can be supplied via the -arclogin option in the form “userid/password”. In

addition, the clients can prompt for login information by supplying the special syntax –arclogin ask,

and/or this information can be stored.

If login information is not supplied:

 The Unix client will look in the files $HOME/.ufarc or /etc/.ufarc for two lines, login=userid and

pswd=password. These are stored in clear text, so the only effective security for this is to use

user-specific .ufarc files (in $HOME) and make sure they are readable only by the user.

UnForm Version 8.0

98

 The Windows graphical client will prompt in a window for login information, and can optionally

save this information so that it will not continue to prompt. To reset this information, use the

-arclogin ask option to force a new login window. The stored, encrypted information can be

removed from the uf80c.ini file in the local Windows directory to force a new login.

Triggering Archiving of UnForm Jobs

In addition to using archive commands in rule sets, you can use command line options to establish

default values and to trigger archiving even in cases there rule sets do not contain archive commands, or

if no rule set is invoked and jobs are passed through to output.

At a minimum, you should specify a library, using the –arclib option. Other options that set archive

properties can be used, but care needs to be taken as these are generic options that will apply to all

documents that are not archived via specific archive commands.

-arclib "libpath"

-arcdoctype "doctype"

-arcdocid "docid" (if not supplied, an auto-generated number is created)

-arcsubid "subdoc ID"

-arcsubtitle "subdoc title"

-arctitle "title"

-arccats "cat1.1|cat1.2|cat1.3;cat2;cat3.1|cat3.2;..."

-arckeywords "kw1;kw2;..."

-arcnotes "notes" (use \n character sequence to embed line breaks)

-arcentityid “entityid”

-arcargs "uf80c args for subjob"

-arcsep char (separator for category segments - default is |)

-arcdtm yyyymmddhhmmss (normally automatically calculated)

-arcsubdtm yyyymmddhhmmss (normally automatically calculated)

The keywords setting can be a semi-colon delimited list, or a number indicating how many keywords to

generate from content (-1 or "all" for all). The default number of keywords is found in uf80d.ini. When

keywords are scanned, there is a file (ufnonwrd.txt by default) that contains words and patterns to ignore.

Use \; or \| (or \<sep char>) to embed delimiters in keywords or categories. Use \\ to embed a backslash.

Note ; and | characters (and spaces) must be protected from the shell, so keywords and categories in

particular should be quoted, as well as any argument with spaces in it.

-arcsubid "subid*" will sequence the key to prevent overwrites. Using "subid*" will force "subid*".

Adding External Documents

UnForm Version 8.0

99

To add external documents to a library, bypassing any UnForm processing of the input, use the –arcput

command line option, in conjunction with the –i option to name the file to add. Note this differs from

archiving of UnForm jobs, as the input file is not processed through a rule set, but rather written directly

into the archive. In addition, further options may (and probably should) be used:

-arclib "libpath"

-arcdoctype "doctype"

-arcdocid "docid" (if not supplied, an auto-generated number is created)

-arcsubid "subdoc ID"

-arcsubtitle "subdoc title"

-arctitle "title"

-arccats "cat1.1|cat1.2|cat1.3;cat2;cat3.1|cat3.2;..."

-arckeywords "kw1;kw2;..."

-arcnotes "notes" (use \n character sequence to embed line breaks)

-arcentityid “entityid”

-arcargs "uf80c args for subjob"

-arcsep char (separator for category segments - default is |)

-arcdtm yyyymmddhhmmss (normally automatically calculated)

-arcsubdtm yyyymmddhhmmss (normally automatically calculated)

-arclogin "userid/pswd" | ask

The keywords setting can be a semi-colon delimited list, or a number indicating how many keywords to

generate from content (-1 or "all" for all). The default number of keywords is found in uf80d.ini. When

keywords are scanned, there is a file (ufnonwrd.txt by default) that contains words and patterns to ignore.

Use \; or \| (or \<sep char>) to embed delimiters in keywords or categories. Use \\ to embed a backslash.

Note ; and | characters (and spaces) must be protected from the shell, so keywords and categories in

particular should be quoted, as well as any argument with spaces in it.

-arcsubid "subid*" will sequence the key to prevent overwrites. Using "subid*" will force "subid*".

Write access to a library is required to add a document to it.

Document Retrieval

The command line can be used to extract a document image from a library. To do so, you must supply

the –argget command line option, along with identifying options to indicate the library, document type,

document ID, and image sub ID. The –o option is used to specify where the document should be placed,

typically with a “client:” prefix, like –o client:/tmp/myfile.pdf.

-arcget

-o filename

-arclib "libpath"

-arcdoctype "doctype"

UnForm Version 8.0

100

-arcdocid "docid"

-arcsubid "subdoc ID"

-arclogin "userid/pswd" | ask

Read access to the library is required.

When used in conjunction with the –p winpvw driver, a local view of the document is presented on the

workstation running the UnForm client.

When used in conjunction with –arcget, the –arcsubid option supports two special suffixes, “-<” and “-

>”, to return the first or last sub ID that matches the sub ID string. For example, a value of “@UnForm-

>” would return the last sequential @UnForm sub ID in an auto-sequenced library. Escape the suffix as

“\->” to look for the literal value.

Document Deletion

The command line can be used to delete a document image from a library. To do so, you must supply

the –arcdel command line option, along with identifying options to indicate the library, document type,

document ID, and optionally an image sub ID.

-arcdel

-arclib "libpath"

-arcdoctype "doctype"

-arcdocid "docid"

-arcsubid "subdoc ID"

-arclogin "userid/pswd" | ask

If subid is supplied, just that subid is deleted. If no subid is supplied, the full document record is

deleted, including category indexes and all subid images.

Delete access to the library is required.

Document Listings

To list libraries, use the –arclistlibs command line option:

-arclistlibs

-arclistfmt tab|csv|pipe

-o “output file”

To list document types in a library, use the –arclisttypes option:

-arclisttypes

-arclib “library”

-o “output file”

-arclogin “userid/pswd” | ask

UnForm Version 8.0

101

To list documents in a library, use the following options:

-arclist

-arclib “libname”

-arclistfmt tab|csv|pipe|html|xml|xmlf

-arcorder id|date|title|category

-arcstart "starting point in order specified"

-arcend "ending point in order specified”

-arcfilter "filter string"

-arcsep char (used to parse start/end values for category segments)

-arclogin "userid/pswd" | ask

You must have read access to a library to list documents in it.

The columns listed include document type, document ID, date, time, title, the document storage file path,

and entity ID. If you specify the category order, then the category’s segments are added as a single

column. Otherwise, no category information is shown. If the list format is html or xml, then notes,

keywords, links, and categories are added to the list.

The start and end range values relate to the order. For example, if the order is “id”, then the start and

end ranges refer to document type and ID sequences. For segmented ranges, such as for type and ID

values, or category segments when listing in category order, separate them with the –arcsep value (a pipe

(|) by default). For example:

-arcorder id –arcstart “Invoices|000152”

Be sure to quote the range if it contains characters, such as pipes or spaces, which are significant to the

operating system. For date ranges, enter dates in the structure yyyymmddhhmmss (as many characters

are significant to your request). For example, -arcstart 200612011800 –arcend 200612020800 for the

range from 6:00 PM on December 1, 2006 through 8:00AM on December 2, 2006.

To filter documents returned in the list, use the –arcfilter option. The filter can be a simple word or

phrase, a simple wildcard containing * and/or ? characters such as “Acme*”, or a regular expression

prefixed with a tilde, such as “~[0-9][0-9]\.[0-9][0-9]”. Filters are applied to a concatenation of the

document type, document ID, date, time, and title values, and in the case of category order, the

categories are filtered as well. If the list format is html or xml, then the notes, keywords, and categories

are added to the list. Keywords and categories, though not category segments, are delimited with spaces

rather than semicolons when filtered. If the list format is xmlf, then a base64-encoded version of the

image file is also added to the xml document.

To list documents and their associated image information, use the -arclistdocs command line option

rather than the -arclist option. The same options as shown above for –arclist apply.

UnForm Version 8.0

102

When used in conjunction with the –p winpvw driver, a local view of the listing is presented on the

workstation running the UnForm client.

Searching for Documents

To search a library, use the –arcsearch command line option:

-arcsearch

-arclib “library”

-arclistfmt tab|csv|pipe|html|xml|xmlf

-o “output file”

-arclogin "userid/pswd" | ask

Refine the search by adding any appropriate arguments from this list: -arcdoctype, -arcdocid, -arctitle,

-arcentityid, -arcdate, -arcdtmupdated, -arckeywords, -arcnotes, -arccats, -arclinks, -arctext, or –arcsubid.

Each of these arguments can be a wildcard (*value* or value*), an exact value “12345”, a range

“12/1/2007-12/31/2007”, or a regular expression (“~[0-9][A-Z]”). You can use “not” to look for

archives that do not match a criteria, and “and” or “or” to search for multiple values or alternate values.

Searches are optimized when possible. The best optimizations are document IDs, entity IDs, small date

ranges, and multi-level categories.

Note that document types and document IDs are case-sensitive when optimized.

Testing Existence of Documents

To test the existence of a library, document type, document ID, or image sub ID:

-arcexists

-arclib “library”

-arcdoctype “type”

-arcdocid “docID”

-arcsubid “subid”

-o “[client:]outputfile”

No login is required. You can test for just the library, a library and document type, a library and

document type and document ID, or all four elements. The system prints a 0 or 1 to the output device,

plus a CRLF (0=not found, 1=found).

Importing Documents from sdStor

UnForm can import images from an sdStor library. It performs this by extracting the text documents

from the library and running them as UnForm jobs. The import is performed for a single library,

specified using the –arcimport option, which also allows specification of the sdStor login and password:

UnForm Version 8.0

103

-arcimport “sdstor_libname;login/pswd”

The default UnForm library will match the path used for the sdStor library. To override this default,

add: -arclib “libname”.

A few additional command line options are added automatically in order to:

 Retain the original date and time of the sdStor document

 Retain the title and keywords from sdStor

 Add an additional keyword “sdstor sdStorID”

 Add a category “sdstor|stStorID”

The keyword and category additions are provided to help link documents in sdStor with documents

added via the import to an UnForm library.

For enhanced processing, specify a rule file using the –f rulefile option, and use archive commands in

the rule file to provide the document settings desired. When using a rule file, be sure to not specify a

date and time, so the command line options that capture the date and time from sdStor will not be

overridden.

The import is processed by extracting all the documents from the sdStor library and placing them in the

rpq directory (the direct TCP/IP printing queue), where they are automatically processed sequentially.

As each document is added to the queue, a log line is printed to the command line’s output, so it is

recommended that a –o option be used to send log output to a server file (don’t use the client: prefix on

the output file), as imports can be time consuming. The amount of time spent extracting to the queue,

and the amount of time it takes for the queue to be processed, depends on the number and size of

documents in the sdStor library.

UnForm Image Manager
An optional companion product to UnForm archiving is the Image Manager client. This program can be

installed on any Windows workstation on the network where the UnForm server is running. This tool is

designed to obtain images from the Windows file system or any scanner available to the Windows

system where it is installed. Those images can be identified automatically or manually, then uploaded to

an archive library.

Typically such images are linked by document type, document ID, and a unique sub ID to other images

in a library. For example, a signed delivery document could be identified by the customer and order

number, and be stored as an image version of the order.

The Scanning Workstation supports OCR and barcode recognition, and VBScript-based job definitions,

to help automate the process of image identification and management when dealing with known formats.

This is particularly useful when scanning images generated internally by UnForm.

UnForm Version 8.0

104

The Scanning Workstation includes a comprehensive help file that contains more information.

Functions Related To Archiving
When processing a job, UnForm can not only add documents to an archive, but it can also extract

documents from a library for use in processing. For example, a statement job could be designed to

extract a list of invoice PDF images and attach them to the statement using the images command.

To retrieve a document during an UnForm job, use this function in a code block:

getarc(library$,doctype$,docid$,subid$,filename$[,errmsg$])

If filename$="", it will return a temporary file containing the document. This temporary file will be

erased at the end of the job. If a filename is supplied, that file will be created and will not be erased at

the end of the job.

If errmsg$ is present, it will return any error if the document can't be found or if another unexpected

error occurs.

To convert a PDF file into an image, using Ghostscript, use this function:

pdftoimage(fromfile$,tofile$,format$ [,resolution [,errmsg$]])

This function will invoke Ghostscript, either on the UnForm server or on the UnForm Support Server, to

convert the PDF file in fromfile$ to an image file in tofile$. The format of the output will is named in

format$, and it must match one of the [driver] names found in uf80d.ini. The image is created at the dpi

specified in resolution, or 300 dpi if not.

If tofile$ is null, it will be returned with a temporary file name that will be erased when the job is

complete.

Any error message is returned in errmsg$.

Ghostscript must be configured in the [drivers] section of the uf80d.ini file, or an UnForm Support

Server with Ghostscript configured must be available. Note that the images command automatically

performs this step function if it encounters a PDF file name.

To test if a library exists, use the libexists() function:

libexists(lib$) returns 0 if library lib$ doesn't exist, or 1 if it does.

To obtain a list of image subids associated with a document, use the getsubids() function:

getsubids(lib$,doctype$,docid$[,dlm$])

UnForm Version 8.0

105

Returns a list of document sub IDs, such as the @text and @UnForm subids automatically generated by

the archive command. The list is returned as a delimited string, with the default delimiter being a

semicolon. If the delimiter occurs in any subid, it is escaped with a \. The returned value may be used

by the parse functions.

When a series of document images should be attached to a page produced by an UnForm job, you can

extract the desired documents to work files, using the getarc() function, and append them to the page,

optionally tiled, using the images command.

To determine if a document or sub document exists, use these functions, which return 0 if the specified

entity does not exists, or 1 if it does:

 docidexists(lib$,doctype$,docid$)

 subidexists(lib$,doctype$,docid$,subid$)

Building Demo Archive Data
The UnForm server includes a Unix shell script called arcdemo.sh in the samples sub-directory. The

shell script can be executed to initialize and build demo archive data based on the arcdemo.rul samples.

Windows installations can produce the same list by choosing the Configure button and clicking the

Other tab in the Server Manager.

Transferring Archives to A New System
The archive libraries are subdirectory structures that are binary compatible between operating systems

(see exception, noted below), so it is possible to move them between Windows, Unix, and Linux servers

if necessary. In addition to the library directories, there are several files in the UnForm server directory

that reference the full paths of the various library directories, or are used for library security. These files

are:

ufarcacc.dat User-library access rights

ufarcgac.dat Group-library access rights

ufarcgrp.dat Groups table

ufarclib.dat Libraries, identified by their full path

ufarcusr.dat Users table

If the libraries are moved to the same path names on the new system, then all that is required is to copy

these files to the new UnForm server directory. Note that simple library names are converted to use the

full path of the UnForm server directory, plus the “arc” subdirectory, so the UnForm server should also

be installed in the same path on the new system to take advantage of this capability.

If the libraries are to be moved to a new path on the new system, then the library, user-library access

rights, and group-library access rights tables will need to be created using the browser administrator

interface. In addition, any rule file archive commands and external scripts that reference library paths

UnForm Version 8.0

106

will also need to be updated before executed. The users table and groups table can be copied “as is”,

since they do not reference library path names.

Note that a few operating systems do not support zlib compression. Libraries created on a system with

zlib support are not compatible with systems that do not support it.

UnForm Version 8.0

107

MIGRATING ARCHIVING FROM UNFORM 7.X TO
UNFORM 8.0
UnForm 8.0 and 7.1 share the same archive library format, so it is possible for libraries created under 7.1

to be left in place, or copied "as is" to new library locations for 8.0 to use. In fact, it is safe to let both

7.1 and 8.0 maintain the libraries at the same time during a migration period. If libraries are moved to

new paths, 8.0 adds a new library definition feature, "aliases", which allows a library path to be

recognized as multiple names. This feature is useful when there are external links to libraries that can't

be updated to utilize a new location.

Note that libraries from UnForm 7.0 are not 100% compatible with 8.0 library structures, so can't be

shared between an active 7.0 and 8.0 server. Archive records updated by 8.0 will not be compatible with

7.0. Therefore, to migrate from 7.0 to 8.0, you must make copies of all libraries and ensure that 8.0 uses

the new library paths.

Migrate to 8.0 on a new system
To migrate UnForm 7.x data to a new UnForm 8.0 installation on a new server, first install 8.0 on the

new system, using the same directory as 7.x on the old system. Next, copy all library directories

(including those in the default “arc” subdirectory) to the same paths on the new system.

Then copy these files to the UnForm server directory:

 ufarcacc.dat – library/user access table

 ufarcgrp.dat – groups table

 ufarcgrc.dat – library/group access table

 ufarclib.dat – library full paths and properties

 ufarcusr.dat – user table

If you wish to use new paths for any libraries, you may do so, but will need to use the browser interface

Library maintenance function to change library path names before any archiving activity or browser

access to the libraries takes place. Any library location changes require that the library table be updated

to reflect the new physical library locations.

If using, install the uf80a.pl (Unix) or uf80a.exe (Windows) to the cgi scripting directory on your web

server, and create a uf80a.ini file in the same directory with a server=name-or-IP configuration line to

direct the web server to the new UnForm server (or begin using a local web server on the new system).

 In order to continue to print from the old system to the new one, install an UnForm 8.0 client on the old

system, and add a –server name-or-IP option to the uf80c command lines to submit print jobs to the new

server.

UnForm Version 8.0

108

Migrate to 8.0 on the same system
To migrate to 8.0 on the same server as the 7.x installation, install the 8.0 server into a new directory,

then copy any libraries in the former 7.x "arc" directory to the new 8.0 "arc" directory. Other libraries

can be left in place or moved if desired (though 7.0 libraries should be copied rather than left in place

unless 7.0 is no longer to be used). Any library location changes require that the library table be updated

to reflect the new physical library locations.

Take steps to ensure no UnForm printing will take place to the 8.0 server, then copy these files to the

UnForm server directory:

 ufarcacc.dat – library/user access table

 ufarcgrp.dat – groups table

 ufarcgrc.dat – library/group access table

 ufarclib.dat – library full paths and properties

 ufarcusr.dat – user table

Use the browser interface Library page to modify the library paths to each of your new library locations.

As you do so, the custom user and group access records will be updated with the new library name.

Be sure to update any rule files that have full paths to library names in archive commands, so printing

archives will update the new library locations.

At this point, you can begin submitting print jobs to the UnForm 8.0 server.

UnForm Version 8.0

109

WINDOWS SUPPORT SERVER

The Windows Support Server is a no-charge companion product that can be installed on any Windows

2000 or higher computer on the network where the UnForm server runs. If the UnForm server is running

on Windows, then the Support Server is already installed and can be enabled through server

configuration. If the UnForm server is not running on Windows, you can install the Support Server

separately and configure these lines in the [defaults] section of uf80d.ini:

sshost=hostname or IP address of Support Server

ssport=listening port number

In addition, the sshost() code block command can be used to set the support server machine and port

during job processing.

The following features are supported:

 Image scaling and conversion

The UnForm server can utilize a local copy of Image Magick or Image Alchemy to perform

image scaling and conversion, but these products are not always readily available for some Unix

operating systems. In addition, the image command supports two options, gamma n and rotate n,

which the Support Server honors. This feature is used automatically by UnForm whenever an

image conversion or scale is required, if Magick or Alchemy is not configured for use at the

server.

 GhostScript-based Image Output

The UnForm server can utilize a local copy of Ghostscript to produce image output and to

convert PDF files to other formats. However, the latest versions of Ghostscript are not readily

available on all operating systems. By installing a Windows version of Ghostscript on the

support server, the UnForm server can rely on it to perform the conversions. This feature is used

automatically by UnForm whenever a PDF-to-image conversion required, if GhostScript is not

configured for use at the server.

 Database Access

The support server can be configured to access data base sources via ODBC or more recent

database access technologies. UnForm rule files can connect to these data sources and retrieve

data for use in UnForm jobs.

Data sources are configured using the Support Server configuration window. UnForm jobs can

then use the dbconnect() and dbexecute() code block commands.

 Microsoft Fax

The Microsoft fax server, a free product available for Windows 2000 and up (and pre-installed

on Windows XP and up), can be easily set up on the support server or another Windows server

mk:@MSITStore:C:/SDSI/uf70/supserv/uf7ssvr.chm::/functions.htm

UnForm Version 8.0

110

on the network. The support server can then use the Microsoft fax client to send faxes on behalf

of UnForm jobs.

UnForm jobs can use the msfax() code block command as soon as Microsoft Faxing is

configured.

 Extended Barcode Functionality

Support for additional barcode options (for pcl, pdf, and postscript output) is offered with the

Windows Support Server. Two new 1D symbologies plus four 2D symbologies are supported,

plus rotation and human-readable text lines and some other options. See the barcode command

for more details.

Configuration note: in order to fax PDF documents using the Support Server, you must install and

configure Ghostscript on that server. The Support Server can then convert PDF files to tif for faxing.

The reason for this is that Acrobat doesn’t support the Windows shell’s “printto” action, which

Microsoft Fax uses to convert documents to faxable tif format.

The following table describes the various code block functions that are supported when the Support

Server is available.

sshost(SERVER$,PORT) Sets the support server hostname and port. Default values are

defined in the uf80d.ini file in the sshost and ssport settings.

This command allows for dynamic changing to a different

server.

dbconnect(NAME$, TIMEOUT,

EMSG$)

Connects to the database source identified by name$. The

support server configuration is used to define the names and

associate them with data source connection strings. Typically

done in a prejob code block.

dbexecute(NAME$, CMD$,

TIMEOUT, FDELIM$, RDELIM$,

RESPONSE$, EMSG$)

Executes the SQL command cmd$ and returns zero or more

result rows in response$. Columns are delimited by fdelim$

(tab - chr(9) - by default). Rows are delimited by rdelim$ (CR-

LF - chr(13)+chr(10) - by default).

msfax(FILENAME$, FAXNUM$,

TAGS$ [, EMSG$])

Faxes filename$, normally an UnForm-generated PDF file, to

the fax number specified in faxnum$. Numerous supported

tags can be specified in tags$, in the format

tag1=value;tag2=value,...

The format of faxnum$ can be a simple phone number, or

multiple numbers separated by semicolons, or tags in the

format:

name1=fax1; name2=fax2, ...

mk:@MSITStore:C:/SDSI/uf70/supserv/uf7ssvr.chm::/functions.htm

UnForm Version 8.0

111

Quote the entire tag if it contains semicolons: "Smith; Cline;

Robert=9,1-555-555-5555". This will involve use of quote

characters in the expression, using chr(34) or 22. For

example:

Faxnum$=chr(34) + name$ + “=” + faxno$+chr(34)

Note that fax numbers may need to be complete, using for

example "9,1" as a prefix for an outside line, a pause, and a

leading 1 before the area code, depending on fax server use of

dialing rules.

Tags supported are:

Cover Standard coversheet name based on the fax

server, such as cover=generic.

Localcover

personalcover

Personal or fax client-side cover sheet.

Subject Subject for cover sheet.

Note or Notes Notes for cover sheet. Use \n for hard line

breaks.

Time A human-readable date and time to send

the fax, if not immediately.

Receipt

Attachfax

An email address to send fax result

reporting to. Note that you must be using a

Server version of Microsoft Fax with

Microsoft Exchange and enable SMTP

receipt delivery for this to work.

If a receipt is specified, you can

additionally use the attachfax option to

have the receipt email include the fax

image.

Alert This tag’s presence requests that the fax

client issue a message box regarding the

fax disposition.

Server Set the Microsoft Fax Server computer

name, if the server is not running on the

same system as the UnForm support server.

ToName If a single fax number is supplied, this tag

is an alternate way to specify the recipient

name.

FromName Alternative tag to set the sender name.

FromCompany Alternative tag to set the sender company

name.

UnForm Version 8.0

112

Other sender tag names that may be used by a cover page:

 name

 title

 company

 department

 title

 homephone

 officephone

 faxnumber

 email

 streetaddress

 city

 state

 zipcode

 country

UnForm Version 8.0

113

DESKTOP DELIVERY AND FORMS

UnForm 8.0 provides two features that enable users on the network where the UnForm server runs to

receive documents or fill out forms at the time UnForm jobs run. These features are provided via a high-

performance HTTP server that is included as part of the UnForm server. This HTTP server is configured

via the [httpd] section of the uf80d.ini file (the port can also be configured in the server manager when

UnForm is installed on Windows). By default, the port is 27282. Once this server is running, users can

use any web browser to connect to the server using one of these URLs:

http://servername:port Presents a portal page with links to the delivery browser or

monitor.

http://servername:port/dtbrowse.html Presents the delivery browser, which displays documents

waiting for the user, and monitors for form requests.

http://servername:port/dtmonitor.html Presents the delivery monitor, which is a small browser

window that provides a summary of documents waiting for

the user, and monitors for form requests.

Optionally, you can supply a query string suffix “?ips=uniqueid” to the above URL structures. The

uniqueid value can be something that will add uniqueness to the IP address that the browser monitors

with, supporting Terminal Server environments where the same IP address would be used for all users.

Typically there is an environment variable, such as %SESSIONNAME%, that identifies a particular

session on the server. By passing this information to both the URL and UnForm job submissions,

deliveries and forms can be sent to the correct user session.

When users connect to the server, they must login using an UnForm login. These logins are maintained

using the web browser interface used to administer archive access, so user maintenance serves a dual

purpose. This login is maintained using standard HTTP authentication, and the browser may or may not

offer to remember the login.

Note that in addition to the desktop delivery addresses above, the browser interface for archiving and

administration can be accessed as http://servername:port/arc.

Desktop Delivery
The delivery of documents is performed by the dtdel() code block function. When this function is

executed, a copy of the file to deliver is stored securely on the server. The desktop browser and monitor

poll the server for new documents to display, and when new documents are available, they are listed as

available or are immediately displayed.

Documents are not stored indefinitely. The system purges documents based on the dtage and dtviewage

parameters in the [defaults] section of uf80d.ini. These values specify the number of days unviewed

documents, and viewed documents, are maintained, respectively.

http://servername:port/arc

UnForm Version 8.0

114

The dtdel function has the following syntax:

 dtdel(filename$,title$,userid$,ip$[,style[,errmsg$]])

The filename$ argument can be either a file that resides on the UnForm server or a message in the

format of “msg:message text”. It will typically be a PDF file that was generated using a jobexec()

command, or it could be the job’s output file, delivered in a postdevice code block. If it is a message,

the text is merged with the message template “http/files/msg.html”, and it is always treated as a popup

(style=1). As the popup is based on an HTML template, you can embed HTML code in the message

text. You can also use “\n” as a synonym for “
” as a convenience.

The title$ argument is a document title that will display in the delivery browser.

The userid$ and/or ip$ arguments are used to identify which user should receive the document. The

preferred method is to specify a userid$ value. If no user ID is specified, then an IP address can be used.

Only a browser logged in as the specified user, and/or connected from that IP address will be notified of

the delivery and will be able to access it. The IP address reported in uf.clientip$ is typically the IP

address of the computer that submitted the UnForm job, though in some circumstances it will be the

address of a server computer rather than a user computer.

As IP addresses can change if DHCP is used or static IPs are re-assigned, or may not be available if the

user is accessing the server via a router with NAT translation, care must be taken when using an IP

address. They are suitable in local networks for popup styles of delivery, assuming that purge times

(dtage and dtviewage) settings are short.

A suffix can be appended to the ip$ value. This suffix must match the value used in an ips=uniqueid

query string in the browser monitor launch. For example: uf.clientip$+clientenv(“SESSIONNAME”).

The style argument can be 0 or 1. A value of 0 indicates the monitor and browser windows will display

the presence of the delivery. A value of 1 indicates that the browser will immediately display the

document as well. If the style argument is not supplied, 0 is assumed.

The errmsg$ variable will return an error message if an error occurs while storing the document. It will

return null (“”) if no error occurs.

Desktop Forms
Desktop form support is configured the same way as desktop delivery. The same HTTP server and

clients are used. Unlike desktop delivery, which will store documents for when the user logs in, it is

critical that the user be connected when the form is to be presented.

The form is launched with the dtform() code block function. The user specified is notified that a form is

ready to be presented, and he or she can accept or cancel the form. If the user neither accepts nor cancels

the request within a specified amount of time, the request times out.

UnForm Version 8.0

115

Data is sent to the form, and returned from the form, using a URL-encoded data string. There are several

functions provided to manage this string.

The form itself is an HTML form document, stored in the http/files directory under the UnForm server.

These forms should have a hidden field called cancel with a value of 0 for a regular submission, or 1 for

a cancelled form. Other than that, any standard HTML form widgets can be used, including text boxes,

text areas, radio buttons, checkboxes, and selection lists.

To provide default values for form fields, specify the named value(s) in the data string argument of the

dtform command, and include ~name~ tags in the HTML document. For example an input field for a To

address might look like this:

<input type=”text” size=”30” name=”to” value=”~to~”>

If the data string supplied to the dtform function contains to=someone@somewhere.com, then that email

address will be presented as the default value when the form is displayed.

The dtform function has the following syntax:

dtform(formname$,title$,userid$,ip$,datastr$,response[,timeout[,errmsg$]])

The formname$ value is the base name of the html form file found in http/files. For example,

“emailform.html” could be used to use the sample email form provided with UnForm.

The title$ value is what is shown to the user when notified that the form needs to be displayed.

The userid$ and/or ip$ arguments are used to identify which user should receive the document. The

preferred method is to specify a userid$ value. If no user ID is specified, then an IP address can be used.

Only a browser logged in as the specified user, and/or connected from that IP address will be notified of

the delivery and will be able to access it. The IP address reported in uf.clientip$ is typically the IP

address of the computer that submitted the UnForm job, though in some circumstances it will be the

address of a server computer rather than a user computer.

A suffix can be appended to the ip$ value. This suffix must match the value used in an ips=uniqueid

query string in the browser monitor launch. For example: uf.clientip$+clientenv(“SESSIONNAME”).

The datastr$ is a URL-encoded string with form field values defined as name=value pairs as in normal

web programming. It must be a string variable in order to receive form values back, which can then be

decoded using the urlgetfld() function. If the string contains values when dtform is executed, those

values are used in the form, wherever a ~name~ tag is found. To create the string with URL-encoded

name=value pairs, use the urlsetfld() function.

The response variable returns one of these codes:

 0 indicating the form was submitted

 1 indicating the form was cancelled

UnForm Version 8.0

116

 2 indicating the form request timed out

 3 indicating the user refused the form

Any non-0 responses are logged in the server log file. Rule sets that use the dtdel() function should

query and react to non-0 responses as appropriate.

The timeout value is the number of seconds the user has to respond to the form request. Once the user

accepts the form, they may take as long as needed to complete the form. However, the job will be halted

waiting for the form submission, so users must understand that forms they accept should be submitted as

soon as possible. If the user doesn’t accept the form within the specified number of seconds, a timeout

response will be provided. The default timeout value is 30 seconds.

If a timeout of -1 is specified, then the form request step is skipped, and the form is displayed

automatically. If no monitor is running or the user does not respond to the form, the job will be hung, so

do not use this option unless you know the monitor is active and the user is available. This step might be

used as an immediate follow up to a previous form that the user did respond to.

If an unexpected error occurs, it will be returned in errmsg$, if provided in the function arguments.

URL-encoded strings are comprised of name-value pairs with special character encoding. Use the

following functions to create or parse the URL-encoded data string:

urlgetfld(datastr$,name$) Returns the value of the name$ field. The value is returned without

URL encoding.

mailto$=urlgetfld(datastring$,”to”)

urlsetfld(datastr$,name$,value$) Returns a URL-encoded string with the field name$ set to value$.

The field is added if necessary.

datastring$=urlsetfld(datastring$,”to”,someone@somewhere.com)

urldelflds(datastr$,names$) Returns the a URL-encoded string after removing the fields

specified in name$ from the URL-encoded string datastr$.

Multiple fields can be separated by commas.

datastring$=urldelflds(datastring$,”to,from,subject,body”)

urlgetnames$(datastr$) Returns a list of field names in the data string.

fldlist$=urlgetnames$(datastring$)

count=parsec(fldlist$,”,’)

UnForm Version 8.0

117

ADDRESS BOOKS
UnForm supports multiple address books to assist in delivery of documents to email or fax addresses.

Address books can be created and maintained directly in the archive browser interface, or

programmatically via rule set code blocks.

Address books utilize a concept of an Entity ID, which is an identifier for a particular entity, such as a

vendor or customer, or any other unique contact that might be required for an application. In addition to

an entity ID, an address record is identified by an optional document type. This allows a single address

book to be utilized, for example, for customer addresses for sales, delivery, or ad hoc contact. Each

combination of entity ID and document type can have a delivery address, either email or fax.

Specifically, the fields maintained in an address book record are:

 Entity ID

 Document Type

 Entity Name

 Contact Name

 Send To (email address or fax number)

 Combine

The combine field can be leveraged by the deliver command, which has the capability to combine

multiple documents in a batch that are targeted to the same delivery address.

The browser interface provides address book maintenance features to users who are granted address

book maintenance rights. This maintenance feature includes an ability to import and export an address

book in a CSV format for easy maintenance using third-party tools or text editors. Many applications

and report writers can produce CSV files, allowing the upload of address book information.

In addition, when address books are populated with entity ID's that match document entity ID's, email

address suggestions are offered when viewing documents in the browser interface.

In addition to user interfaces, address books can be programmed within rule sets. There are two

functions for simple read and write of address book records, getaddress() and putaddress(), plus the

"addrbook" object, that provides greater flexibility. Using these facilities, you can create rule sets for

importing and management of address book entries, as well as utilizing address books for delivery

addresses for emailing, faxing, or the new deliver command, which offers batch handling and automated

email and fax delivery capabilities.

UnForm Version 8.0

118

DATABASE ACCESS
UnForm supports access to databases from rule set code, using one of two techniques.

Windows Support Server Access

One technique users the Windows Support Server to access data sources available on the machine where

the support server runs. The Windows Support Server configuration window enables database

connections to be configured and given a name, and two code block functions: dbconnect() and

dbexecute() are provided to communicate with the named connection to return the results of a query.

The syntax of these two functions is:

[success=]dbconnect(name$[,timeout[,errmsg$]])

[success=]dbexecute(name$, command$, timeout, fdelim$, rdelim$, response$ [,errmsg$])

Both functions return 1 if successful, 0 it not. This technique was available in starting with UnForm 7.0.

Server-based Access

The second technique, added in UnForm 8.0, supports access to database sources directly within the

UnForm server. When using this method, you connect to a data source identified with a string

construction, optionally supplying a user and password login, as well as other optional arguments. The

sqlconnect() function provides the functionality, and returns a connection channel number.

Note that secure passwords can be configured in the browser interface and referenced in the sqlconnect()

function, using the syntax "store:ID" rather than a plain text password.

After connecting, send SQL commands to the database channel using the sqlexecute() function. Access

the data returned by the command, if any, using the sqlfetch() function, which can return one, many, or

all rows from the query, in a delimited string.

When done with the data source, you can close the channel with the close(chan) command.

The syntax of the three functions is:

chan=sqlconnect(datasource$[,user$,pswd$ [,otheroptions$ [,errmsg$]]])

[success=]sqlexecute(chan,command$[,errmsg$[,result$[,fdelim$[,rdelim$]]]])

count=sqlfetch(chan,result$[,count [,errmsg$ [,fdelim$ [,rdelim$]]]])

There are four types of databases supported, though not all types are supported on all platforms. The

"uf80c -v" command shows which database types are supported. The four types are ODBC, Oracle,

DB2, and MySQL. Note that ODBC is supported on Unix/Linux, as well as Windows, if either the

unixODBC or iODBC package is installed.

The syntax of the datasource$ argument identifies the database type and data source:

UnForm Version 8.0

119

 odbc:dsn connects to the ODBC data source name (also called the DSN), as configured in the

Windows ODBC administrator or in the unixODBC/iODBC configuration.

 oracle:sid connects to the Oracle System ID, using local Oracle client libraries.

 db2:database connects to the DB2 database specified.

 mysql:database[:hostname] connects to the MySQL database named, optionally on the host

specified.

Most databases require a login and password in order to access a database. The user and password must

be supplied in those cases.

Additional options that can be supplied in the otheroptions$ argument, as a semicolon-delimited list.

Options include:

 access=read|write

 strip (if present, causes trailing spaces to be trimmed from fields)

 textmax=val (sets the maximum amount of text returned from a text field, default=4096)

 timeout=seconds

Once a connection channel has been created, you can then send SQL commands to the channel using the

sqlexecute() function. That function can optionally fill a results variable with all the rows returned by

the query, or you can use the sqlfetch() function to return rows one or many at a time.

Below is a simple example showing how to use the three functions:

prejob{

chan=sqlconnect("odbc:sampdb","userid","password")

if chan>0 then:

 e=sqlexecute(chan,"select member_id, last_name, first_name from member")

 if e>0 then:

 while sqlfetch(chan,row$)

 row$=sub(row$,09,"|")

 allrows$+=row$+$0a$

 wend

 end if

 close(chan)

end if

}

text 10,2,{allrows$}

UnForm Version 8.0

120

DESKTOP CLIENT
The UnForm Desktop Client (DTC) client is an optional Windows application that provides streamlined

access to UnForm document management facilities from a user's Windows desktop. DTC communicates

with UnForm via the internal HTTP server. It downloads a specialized rule file that controls its

processing. The primary purpose of DTC is as a monitor that watches for windows to appear and gain

focus, present buttons related to those windows, and to submit data to the unform server to retrieve

documents or perform other actions related to the unform server.

The configuration of DTC includes a user login and password, which is used to submit the data for rule

set processing. Note this does not replicate to the user's browser, so separate session logins are required

when a job launches a browser window.

The rule file contains rule sets, which are composed of three things: detection statements, button and

panel commands, and a prejob code block that is executed when the user clicks a button.

When the rule file is loaded by DTC, it then begins monitoring for window focus changes on the

desktop. When a window passes detection for a rule set, a small, user-sizable window is displayed with

the defined buttons. When the user clicks a button, a job is run on the server, which executes the rule set

and returns the value of cgiresponse$ to DTC, which then displays the response in one of several ways.

Note that since detection can be based on user rather than window, it is also possible to construct an

interface that always displays regardless of what window currently has focus on the user's system.

Deployment
DTC can be installed directly from the server's "dtcinst" folder, by running the setup.exe or

uf8dtc_setup.msi file. It can also be installed with a browser via the internal HTTP server portal, using

the server's address and HTTP port, such as http://192.168.1.10:27282. Note this is one level higher

than the normal /arc path to the server.

Once run, DTC will attempt to communicate with the server, but will need to be configured with a login

and password, and an optional rule file. Right-click the "uf" DTC system tray icon to configure. A

default rule file can be configured in the [dtc] section of uf80d.ini.

DTC Rule Sets
Desktop Client rule sets are similar to print job rule sets in many respects, but are limited in structure to

a small number of commands. Other commands are ignored.

DTC rule sets require three things: detection logic, button definitions, and a prejob code block that

creates responses to buttons that are pressed by the user and data that is submitted from DTC. Detection

statements are used to specify which applications and/or window titles to monitor as focus changes

between applications and windows on the user's workstation. As the active window or application

UnForm Version 8.0

121

changes, different rule sets become active and an associated DTC application window will appear. The

contents of that window are controlled by other rule set commands: dtcbutton, dtchelpfile, and dtcpanel.

These commands are use to construct and present a user interface associated with a window or

application. The user can then copy, paste, or type data into the button text fields, and when a given

button is pressed, the rule set is executed on the server, and the prejob code block is executed.

The syntax for the above mentioned rule set commands is as follows:

Detect

Detect 0, item, "[^][~]match text"

 0,0 tests space separated exe name, window title, and UnForm login name
 0,1 tests window title
 0,2 tests exe name
 0,3 tests UnForm user login
 0,4 tests Windows domain\user

A prefix on the detection text can specify a case-insenstive match, regular expression match, or case-

insensitive regular expression match:

 ^ case insensitive text match
 ~ case-sensitive regular expression
 ^~ case-insensitive regular expression

Each time window focus changes on the user’s system, detection is processed for all rule sets. Any rule

sets that pass detection cause presentation of that set’s application popup window. It is possible for

multiple windows to be displayed at the same time.

Title

Title "window title"

The title command can be used to specify the application popup window title. The title defaults to the

rule set name.

DTCPanel

DTCPanel "title"

The dtcpanel command names a tab panel for subsequent button commands. When a form is submitted,

panel titles become section headers for the cgi.data$ field, which is an INI file structured string. If no

panel commands are present, a single un-tabbed panel is presented, and the cgi.data$ field contains a

single section header, [*].

UnForm Version 8.0

122

DTCHelpfile

DTCHelpFile "filename"

If present, the DTC window will offer a help toolbar button. The purpose is to allow integrator-

generated help content associated with the rule set's DTC window. The filename should be an HTML

file available on the UnForm server. The file is loaded into a browser control.

DTCButton

DTCButton "title" [,style clipboard|nbclipboard|text|nbtext|button|title|nbtitle] [,args "job arguments"]

[,width chars] [,match "regex"] [,library "name"] [,doctype "value"] [,parsevalue ["ruleset"]]

The DTCbutton command is interpreted by DTC for presentation and action upon click. Note that

expressions are not supported, only literal values.

Style

This optional argument defines the style of the button provided to the user. The default style is

"clipboard".

Clipboard Provides a text box and a small submit button, and monitors the clipboard for

changes to place text in the text box.

Nbclipboard Provides a text box, but no submit button. It monitors the clipboard for

changes to place in the text box.

Text Provides a text box and a small submit button. This is intended for simple user

entry.

Nbtext Provides a text box, but no submit button.

Button Provides a submit button with the title as the button caption.

Title Provides a text box and a small submit button, and monitors the window title

for changes to place in the text box.

Nbtitle Provides a text box, but no submit button. It monitors the window title for

changes to place in the text box.

Args

Options passed to the to the UnForm job running the rule set. There are automatic rule file and rule set

arguments (-f and –r, respectively) to ensure the rule set with the button configuration is the one

executed when a submission takes place.

Width

This defines the width of the button, in nominal characters. Without a width, the title width is used. Use

this to ensure consistent widths when multiple buttons are presented.

Match

UnForm Version 8.0

123

The match option is honored by the clipboard and nbclipboard styles. The clipboard value must match

the specified regular expression in order to be pasted into the text field.

Library, Doctype

These two options in tandem are honored by the clipboard and nbclipboard styles. The clipboard value

must be a valid document ID within the library and doctype specified in order to be pasted into the text

field.

ParseValue

If this option is present, the value from the clipboard or window title is sent to the server for parsing.

The server will run the current rule set or the optionally specified one, and use the value returned from

the server in cgiresponse$ in place of the clipboard or title value. The rule set receives cgi.button$,

cgi.panel$, and cgi.parsevalue$ when the request is sent.

Code Block Response For Buttons

Once one of the buttons is pressed, the equivalent of a web form is submitted to the UnForm server, to

run the same rule set that contains the detect and button commands (-f and –r are used, along with any

args options and a hard-coded "-p pdf"). The following values are available in the cgi$ template:

cgi.button$ Returns button title, indicating which button was pressed.

cgi.selected$ Returns text of a text field associated with the button.

cgi.panel$ Returns the name of the active panel when the button was pressed, or

"*" if no panels are defined.

cgi.data$ Returns all the panels and text fields in an INI file format. Panel titles

are used as section headers, and text and clipboard field text boxes are

returned in name=value format. If no panels are provided, a single

section header [*] is supplied.

This format allows multiple fields of data to be submitted and

interpreted by the rule set, by using the getinival() function, passing

cgi.data$ as the first argument. For example,

name$=getinival(cgi.data$, "CustPanel", "Name") would set name$ to

the value of the Name field in the CustPanel panel.

cgi.parsevalue$ Returns the value of the clipboard or window title in cases where the

parsevalue option is specified. Note that if this value is present, DTC

is submitting a request for reformatting of this data. It is not a result of

the user pressing a DTC submit button. No cgi.selected$ or cgi.data$

is sent.

Use the prejob code block to interpret these items, and generate a cgiresponse$ string value. This value

is returned to DTC for processing. DTC interprets the response in these ways:

UnForm Version 8.0

124

 http: or https: prefix performs shell launch to display URL in the default browser

 error: message text (use \n for CRLF) displays an error style message box

 message: message text (use \n for CRLF) displays an information style message box

 other text renders in local browser control, and assumes HTML content

The webapi object can be used to generate http responses. Note these http values can also be used in tags in a pure html response.

If no cgireponse$ is available, the print job result is returned instead, allowing artificial print jobs to

execute (by generating text pages in a prejob code block, and allowing normal rule set processing to

handle the job). The print job will be in PDF format.

Code Block Response For ParseValue Requests

If a clipboard or title button is configured with the parsevalue option, DTC will submit that value to the

server for parsing.

The following values are available in the cgi$ template:

cgi.button$ Contains the button title, indicating which button contains the

parsevalue option.

cgi.panel$ Contains the name of the active panel, or "*" if no panels are defined.

cgi.parsevalue$ Contains the value of the clipboard or window title in cases where the

parsevalue option is specified.

Use the prejob code block to interpret these items, and generate a cgiresponse$ string value. This value

is returned to DTC for processing. DTC interprets the response in these ways:

 error: message text (use \n for CRLF) displays an error style message box

 other text is used to replace the original value from the clipboard or window title

UnForm Version 8.0

125

RULE FILES

Rule files are text files that contain descriptions of form enhancements. There can be any number of

these enhancements, called rule sets, in a rule file. A header line composed of a unique name enclosed

in square brackets indicates a new rule set. For example, an invoice form rule set would begin with the

line [Invoice], followed by lines indicating enhancements to the invoice output sent by the application.

Without a rule set to work with, UnForm will not perform any enhancements. UnForm determines

which rule set to work with based on either a command line option (-r), or detect commands contained

in the rule set.

The enhancements that follow the [form-name] line are made up of commands and (usually) a list of

parameters separated by commas. The available enhancements are described on the following pages.

Unless otherwise noted, all column and row specifications are 1-based (i.e. the first column is 1, rather

than 0).

Commands that have parameters accept either a space or an equal sign between the keyword and the first

parameter; page 66 and page=66 are equivalent.

If a command and its parameters require a large amount of text, it is possible to split a command across

multiple lines by adding a backslash character at the end of a line to indicate the command continues on

the next line. You can have as many continuation lines as necessary. UnForm removes leading spaces

and tabs from continuation lines, so you can use indention to improve readability, as long as you

remember to place any required spaces before the backslash on the initial line. For example:

text 1,30,"This line of text is continued \

 on this line.",12,cgtimes

Note that the UnForm Design Tool puts continuation lines back together, so this feature is useful only

when using a text editor for rule file development.

The driver differences and support for different keywords is noted. Note, however, that when a

command indicates all drivers, this doesn't necessarily indicate support by html. For the HTML driver,

please refer to the HTML chapter.

UnForm Version 8.0

126

Content-based Rule Sets

In addition to rule files, it is also possible to include a rule set in the content of a job, by beginning the

job with a name in square brackets, like [ruleset]. If UnForm sees this line structure as the first line of a

job, it then reads the input stream until it encounters a form-feed (ASCII 12, hex 0C), and then doesn't

process the rule file at all. Instead, it uses the rule set provided for the job. The first character after the

form-feed is treated as the start of the document, so take care that you don't have an extra line-feed that

would throw off line numbers.

Using this technique, it is possible for applications such as report generators to enhance output

programmatically.

UnForm Version 8.0

127

ACROSS

Syntax

across n [,gap]

Description

This instructs UnForm to allocate virtual pages across the physical page, evenly spaced within the left

and right margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale

images, barcodes, or attachments. Also see the down command.

Across can be used inside an 'if copy' block, but is only compatible with non-collated copies. As a

result, copy-specific across is only available in the laser driver, and only in conjunction with the copies

command, not pcopies.

If the optional gap value is specified, it indicates the number of horizontal pixels between each virtual

page. If it is not specified, the default is to use one column (as opposed to pixels).

See the 132x4 rule set in advanced.rul for an example of using the across and down commands.

Drivers: laser, pdf, ps

PostScript input not supported.

UnForm Version 8.0

128

ANNOTATE, CANNOTATE

Syntax

1. annotate col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr},"msg | url"|{expr},

[text|link|stamp] [,name name|{expr}] [,title title|{expr}] [,width width] [,color colorname] [,rgb rrggbb]

[,opacity opacity] [,style style]

2. annotate "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr},"msg | url"|{expr}, [text|link|stamp] [,name “name”|{expr}] [,title

title|{expr}] [,width width] [,color colorname] [,rgb rrggbb] [,opacity opacity] [,style style]

Description

This PDF-only command adds an annotation element at the specified position and size. Three types are

supported: text, link, and stamp. The default is text.

If cannotate is used, then cols and rows are interpreted to be the opposite corner of the region, and

columns and rows are calculated by UnForm.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that

matches the regular expression regexpr. In these cases, there may be no affected regions, or several.

column and row are 0-based in these formats. The search for text or regexpr can be limited to a region

on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@" character in

text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Text annotations display as an icon, which if clicked will open a text window displaying the message

with the optional title in the title bar. The border can be controlled by the style, color, and width options.

The icon can be set with the case-sensitive name option: Comment, Help, Insert, Key, NewParagraph,

Note, or Paragraph. The default icon is Note. To ensure the case is maintained, the name should be

enclosed in quotes.

Link annotations perform an action when clicked. The action is defined in the message. It can be a

URL, such as http://abc.com or mailto:sales@abc.com, or it can be a Javascript action, entered as

javascript:script code. Note the javascript command can be used to add functions at a document level

which can be used in annotation actions.

Stamp annotations place a stamp rather than an icon on the form. When clicked, the message is

displayed as in a text annotation. The stamp image shown is identified by the case-sensitive name value,

which can be one of these:

UnForm Version 8.0

129

 Approved

 Experimental

 NotApproved

 AsIs

 Expired

 NotForPublicRelease

 Confidential

 Final

 Sold

 Departmental

 ForComment

 TopSecret

 Draft

 ForPublicRelease

Style and Width values apply to the annotation border. The style can be S (solid), D (dashed), B

(beveled), I (inset), or U (underline). Width is expressed in pixels at the current dpi.

Examples

annotate 70.5,64,10,2.25,”http://acme.com/docs/terms.htm”,link,style U, title “Click to view our Terms

and Conditions”

annotate “TOTAL:”,0,1,15,1.5,”Please contact our credit department at 555-123-4567 for more

information”, title “Credit Terms?”,name “Help”

Drivers: pdf

http://acme.com/docs/terms.htm

UnForm Version 8.0

130

ARCHIVE

Syntax

archive “libpath”|{expr},”doctype”|{expr} ,”docid”|{expr} [,subid subid|{expr}] [,title title|{expr}]

[,notes notes|{expr}] [,keywords kws|{expr}] [,categories|cats cats|{expr}] [,link|links links]

[,entityid|entid entity ID|{expr}] [,args args|{expr}] [,dtm|date yyyymmddhhmmss|{expr}] [,subtitle

subtitle|{expr}] [,subdtm|subdate yyyymmddhhmmss|{expr}]

Description

This command causes UnForm to add two versions of the current document to the library specified. The

first document is a PDF version formatted as the current rule set specifies, the second is the input stream

text from which the PDF document was generated. The PDF version has a default sub ID of

“@UnForm”, but this can be overridden by specifying a subid. The sub ID of the text version is “@text”.

Note that as the formatted document is generated as a PDF, the rule set must be designed to successfully

produce PDF output. In particular, any images or attachments need to be available in PDF format, or be

designed to use automatic image conversion.

The elements of the archive command are evaluated as each page of the job is printed. If they change,

then a sub-job is executed using the pages to that point as input. In this manner, a batch job with

multiple documents can be archived as multiple documents rather than as a single large document. For

example, if an invoice run is processed, and the docid is derived from the invoice number, then each new

invoice number during the job will produce a new document in the archive.

The library is a path name on the UnForm server. If it doesn't exist, it will be created and a library

pointer record will be created. If it isn't a full path, the library is created using the full path of the "arc"

directory under the UnForm server, such as "/usr/lib/unform80/arc/library".

An archive document is identified in a library by the document type doctype and document ID docid. A

document can also contain further information: title, notes, keywords, date and time, and categories.

Further, each document can contain multiple versions identified by a subid, each of which contains a

title and date and time. See the Archiving and Document Management chapter more information

about each of the archive elements.

If any archive command elements are not supplied, the following defaults are used:

 The document type is set to the rule set name

 The document ID is set to a 10-digit sequential number

 The title is set to the value of the title command, if any, or is derived from text input

 Keywords are derived from unique words in the content

 The date and time is set to the current date and time

 Command line arguments, such as –arclib or –arcdoctype, supply remaining defaults

UnForm Version 8.0

131

If the subid ends with an asterisk, such as “Formatted*”, then UnForm will not overwrite duplicate sub

ID values. Instead, a 5-digit sequence will be added to ensure up to 99,999 versions of a document can

be added.

If the keywords value begins with “*;”, the * is replaced with auto-derived keywords based on content,

so you can have both auto and custom keywords using this structure. The keywords parameter can also

be the word "all", or a number, indicating the maximum number of keywords to calculate (-1 means the

same as 'all', and 0 means no keywords should be calculated).

Categories should be structured with vertical bars separating segments and semi-colons separating

categories. For example: “CustPO|”+custname$+”|”+custpo$ + “;” + “Salesperson|”+slspid$. There can

be any number of categories, and each category can contain up to ten segments.

Links provide outbound linking to other documents, within or without the archive system. This value is

a semi-colon delimited list of links, each of which can be in one of the following formats:

 A full URL, optionally matching a URL used to load a document or image from a library, or a

URL to an outside page or document. This structure, if it begins with http:// or ftp://, can be

prefixed with a title in the format of title=URL. If the title is specified, that becomes the visible

link in the browser.

 A simplified pipe-delimited structure of library|doctype|docid[|subid], which is displayed in the

browser interface as a URL link to the document or image named by library, document type,

document ID, and optionally image sub ID.

There can be any number of links in the list.

An entity ID can be set to tie this document to a particular code that can be used to filter access in the

browser interface. A user login can be assigned to an entity ID, and that user can only view documents

with a matching entity ID.

The args option can be used to specify UnForm command line arguments to pass to the sub-job used to

generate the archive PDF file. For example, if you only want to archive copy 1 of a job, you could pass

“-ce 1” (copies enabled 1).

If more than one archive command is present in a rule set, then archives are generated for all of them.

For example, a second archive command might be added to produce a full job archive in addition to

archives for individual documents. Note this differs from version 7.x, where only one archive command

was honored.

Examples

archive "demo_accounting","ApAging"

UnForm Version 8.0

132

This first example simply archives the A/P aging report to the demo_accounting library, under the

document type “ApAging”. The document ID will be automatically generated as a 10-digit sequential

number, and the entire job is archived as a single document. The title and keywords are derived

automatically from the content.

archive "demo_sales","ArStatement",{arcid$},title {arctitle$},cats {arccats$}, args “-ce 1”

This example archives statements to the demo_sales library. The document ID, title, and categories are

expressions derived from code block variables. The sub-job that generates the PDF document will have

a “-ce 1” command line argument, which enables copy 1 only, so the archived copy will only be of the

rule set’s first copy. The sample rule file arcdemo.rul contains the full Statement rule set where this

example comes from.

Drivers: laser, pdf, ps

UnForm Version 8.0

133

ATTACH

Syntax

attach "filename" | {expr}

Description

This will add the specified file to the output. The file will be added before any other text or data for a

given copy is sent to the printer, so this can work as an overlay file, or it can be placed in the output

instead of any text or other output, appearing like a stand-alone attachment.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which

will be interpreted as the file name as each copy prints.

When used as an attachment, assign a copy to the attachment, and use the notext keyword to suppress

printing of text, like this:

if copy 1

 # the standard format

 # duplexing? add duplex 1 in this copy

 text …

 box …

 etc…

end if

if copy 2

 # the attachment

 attach "/usr/UnForm/attach/attach1.pcl"

 notext

end if

When processing the file, UnForm will remove any printer initialization codes and page ejects from the

file.

PCL Attachments

An easy way to create an attachment file is to use a Windows workstation and install a PCL5 type printer

(not a PCL6 or PCL/XL driver, which will produce the wrong type of format). Set the port for the

printer to FILE:. Then create the attachment using any word processor and print to that printer.

Windows will ask for a file name, and when printing is complete, the resulting file is suitable for use as

an attachment. If your document contains fonts that are not present in the printer you will be using, be

sure to modify the print driver to print True Type Fonts as graphics, if possible.

UnForm Version 8.0

134

PostScript Attachments

PostScript attachments are rendered simply as full page images, meaning the file can either be an EPS

file or a JPG file (JPG files are only supported by color printers). UnForm simply prints the image,

scaled to the printable region of the page.

PDF Attachments

UnForm attaches PDF documents by merging the objects on page one with those of the current page of

output. Objects are placed in the exact same position and size as found in the attached document.

UnForm 8.0 supports PDF files up to version 1.4 (introduced with Acrobat 5). Some files that specify a

later revision are still compatible, but new a file structure element was added at PDF 1.5 that is not

supported by UnForm. Specifically, the unsupported feature is called an Object Stream. Former

versions of UnForm did not support Linearized (also known as Optimized or Fast Web View) PDF files,

nor files with incremental updates. Version 8.0 now supports these formats.

To create an attachment, use a PDF printer or other method to save a document in PDF format, choosing,

if possible, to generate a file compatible with Acrobat 5 or below, or version 1.4 or below. There are

many free and commercial tools available to produce PDF files, from Adobe and other vendors. Of note,

Microsoft Office supports a "Save As" PDF feature with an Add-in that can be downloaded from

Microsoft's web site.

PDF files are often available from third parties or government entities, and many of these are compatible

with UnForm. Sometimes these files are designed with unusual page sizes or internal offsets that cause

their elements to be in unexpected positions. UnForm is unable to re-position objects, so such files

might need to be re-created using a PDF printer or other tool that will realign the objects using normal

page dimensions.

 Note that the object merging technique can cause issues when a landscape attachment file is designed to

perform landscape formatting by rotating a portrait page, as UnForm executes landscape via a landscape

page size rather than rotation. The result is a fundamental incompatibility between the two documents.

To work around this, consider using UnForm commands to produce the document, or use the image

command with a 'page n' option, supported when Ghostscript is available and configured.

Drivers: laser, pdf, ps

UnForm Version 8.0

135

AUTHOR

Syntax

author "authorstring" | {expression}

Description

If this command is present, then PDF document creation adds an author authorstring, or the result of

expression, to the document content. This value is available in the General Properties Display dialog in

the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 8.0

136

BARCODE (PCL,PDF, PS)

Syntax

1. barcode col|{numexpr}, row|{numexpr},"value"|{expr},symbology,height,spc-pixels [,text] [,rotate

degrees] [,start char] [,stop char] [,truncate] [,mode mode] [,cols cols] [,rows rows] [,usess] [,notrim]

2. barcode "text|~regexpr|!=text|!~regexpr[@left,top,right.bottom]", col|{numexpr}, row|{numexpr}, "",

symbology, height, spc-pixels, getoffset cols, getcols cols [,eraseoffset cols] [,erasecols cols] [,text]

[,rotate degrees] [,start char] [,stop char] [,truncate] [,mode mode] [,cols cols] [,rows rows] [,usess]

[,notrim]

Description

col and row determine the upper left corner of the barcode. If used, numexpr is a Business Basic

expression that generates a numeric value for the column or row.

value is a text string, up to 28 characters, to barcode (when using the Support Server, there is no limit on

characters). Often this is symbology-dependent. If check digits are required, they are generated

internally in UnForm. Within barcode families, if a unique symbology is associated with a specific

length, then UnForm will internally select the correct symbology. For example, if a 9-digit zip code is

specified with symbology 900 (5-digit post net), then symbology 905 will be used automatically.

Windows Support Server

Some options require the Windows Support Server for barcode image generation. The support server is

bundled with Windows versions of UnForm, and available stand-alone (at no charge) to support Unix

and Linux installations, assuming that the Unix/Linux system has network access to a Windows system

running the support server.

If any of these options are used, or the usess option is provided, then UnForm will attempt to use the

support server to generate the barcode.

The support server-only options are:

 text, which enables human readable text below the barcode

 rotate, which rotates the barcode image 90, 180, or 270 degrees

 start and stop characters, overriding the default Codabar characters of A and B, respectively

 truncate, which trims right edges off PDF417 barcodes

 mode value for Maxicode barcodes

o 2 or 3 is for the transportation industry

o 4 sets encoding to up to 93 characters or 138 digits

o 5 encodes up to 77 characters with more error correction

o 6 encodes programming messages for a scanner or reader

UnForm Version 8.0

137

 cols and rows determine the dimensions of a PDF417 barcode (generally only cols is set, and

rows is determined by the data to encode)

In addition, the support server is required to generate the following barcode symbologies:

 950 Planet

 960 OneCode (also called Intelligent Mail)

 1000 PDF417

 1100 Maxicode

 1200 Data Matrix

 1300 Aztec

expr is a Business Basic expression that generates the text to barcode.

symbology is one of the following numbers:

Code Description

100 UPC VERSION A

105 UPC VERSION A + 2 DIGIT SUPPLEMENTAL ADD-ON

110 UPC VERSION A + 5 DIGIT SUPPLEMENTAL ADD-ON

125 UPC VERSION E

126 UPC VERSION E supporting number series 1, 6-digit input

130 UPC VERSION E + 2 DIGIT SUPPLEMENTAL ADD-ON

135 UPC VERSION E + 5 DIGIT SUPPLEMENTAL ADD-ON

150 UPC/EAN/IAN – 13

155 UPC/EAN/IAN – 8

200 INTERLEAVED 2 OF 5 – 2:1 CHECK DIGIT

205 INTERLEAVED 2 OF 5 – 2:1 NO CHECK DIGIT

220 INTERLEAVED 2 OF 5 – 3:1 CHECK DIGIT

225 INTERLEAVED 2 OF 5 – 3:1 NO CHECK DIGIT

300 STANDARD CODE 2 OF 5 – 2:1 CHECK DIGIT

305 STANDARD CODE 2 OF 5 – 2:1 NO CHECK DIGIT

320 STANDARD CODE 2 OF 5 – 3:1 CHECK DIGIT

325 STANDARD CODE 2 OF 5 – 3:1 NO CHECK DIGIT

400 CODE 39 (3 OF 9) – 2:1 NO CHECK DIGIT

405 CODE 39 (3 OF 9) – 2:1 CHECK DIGIT

410 CODE 39 (3 OF 9) – 2:1 NO CHECK DIGIT (FULL 128 ASCII)

415 CODE 39 (3 OF 9) – 2:1 CHECK DIGIT (FULL 128 ASCII)

440 CODE 39 (3 OF 9) – 3:1 NO CHECK DIGIT

445 CODE 39 (3 OF 9) – 3:1 CHECK DIGIT

450 CODE 39 (3 OF 9) – 3:1 NO CHECK DIGIT (FULL 128 ASCII)

455 CODE 39 (3 OF 9) – 3:1 CHECK DIGIT (FULL 128 ASCII)

500 CODE 93

600 CODE 128 – SERIES "A"

UnForm Version 8.0

138

605 CODE 128 – SERIES "B"

610 CODE 128 – SERIES "C"

700 CODABAR – NO CHECK DIGIT

705 CODABAR – CHECK DIGIT

900 USPS Post net – 5 DIGIT

905 USPS Post net – 9 DIGIT

910 USPS Post net ABC – 11 DIGIT

The following symbologies require the Windows Support Server

950 USPS Planet

960 USPS Intelligent Mail (Aka: OneCode, the 4-State Customer Barcode, 4CB and USPS4CB)

1000 PDF417 (2D)

1100 Maxicode (2D)

1200 Data Matrix (2D)

1300 Aztec (2D)

height is expressed in points or pixels. If it is an integer, such as 50 or 175, then it is treated as pixels at

300 dpi. If it is a floating-point number, like 18.7 or 12.0 (it contains a decimal point), then it is treated

as points (1 point=1/72 inch). The maximum height is 3000 pixels.

spc-pixels is the number of pixels allocated to spacing between bars, from 1 to 50, the default being 2.

In syntax 2, triggered by a quoted value as the first argument, barcodes will be generated at all locations

on a page where the text or the regular expression regexpr occurs. The value(s) to barcode will be based

upon what text matches occur. Each match will determine the value to barcode based on the word found

(up to the first space or the end of the line), and the placement of the barcode. The value to barcode can

be adjusted by the getoffset cols (integer columns from the location of the match) and getcols cols

(number of columns to use for the value). The location of the barcode can be adjusted by the col and

row parameter, where 0,0 is the location where the match is found. The match text found can be erased

from the report by setting eraseoffset cols and erasecols cols.

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

The search for text or regexpr can be limited to a region on the page by adding a suffix in the format

'@left,top,right,bottom'. To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

Normally, UnForm will trim trailing spaces from the value being barcoded. If the notrim option is

present, trailing spaces will not be trimmed. This can be critical if the barcode data contains spaces that

must be retained. For example, a Code 128 barcode uses encoding that can produce space characters for

valid data, so the notrim option should be used to prevent valid data from being truncated.

Version 5 Note: The positioning algorithm for PDF versions of the barcode was modified in Version 5

to match the positioning of laser barcodes. If your application depends on this older algorithm, then you

UnForm Version 8.0

139

can modify your ufparam.txt file (preferably by copying it to ufparam.txc and then modifying that file, to

avoid losing your changes during an update) to add (or change) 'v4pdfbcd=1' in the [defaults] section.

Drivers: laser, pdf, ps

Examples:

barcode 10.5,22,{get(10,21,5)},900,12.0,2 will add a 12.0 point high, 5-digit post net barcode based on

a zip code found at column 10, row 21.

barcode "bcd:@16,22,20,55",0,0,"",600,75,2, getoffset 4, getcols 10, erasecols 14 will search for data

starting with "bcd:" in the region starting at column 16, row 22, through column 20, row 55, barcode the

10 characters following it, and erase the underlying text.

UnForm Version 8.0

140

BARCODE (ZEBRA)

Syntax

barcode col|{numexpr}, row|{numexpr}, ("value" | {expr}), symbology, height, spc-pixels, text

[above|yes|no], rotate [90|180|270], ratio rvalue, checkdigit, start startc, stop stopc, ucc, mode m,

security s, cols c, rows r, symbolno val, totsymbol val, chkhmn val, magfactor val, ecis val, errctrl val,

menusymbol val, appendid val, model val, hqml val, nabk val, symboltype val, sepheight val, segwidth

val, width39 val, ratio39 val, height39 val, heightpdf val, widthpdf val, quality val, escchar val

Description

col and row define the upper left corner of the barcode. If used, numexpr is a Business Basic expression

that generates a numeric value for the column or row.

value is a literal value to barcode, expr is a Business Basic expression that generates the text to barcode.

symbology is one of:

Symbology Name Options Used

1 Code 11 rotate,checkdigit,height,text,above

2 Interleaved 2 of 5 rotate,height,text,above,checkdigit

3 Code 39 rotate,checkdigit,height,text,above

4 Code 49 rotate,height,text,mode

5 Planet rotate,height,text,above

7 PDF417 rotate,height,security,cols,rows,truncate

8 EAN-8 rotate,height,text,above

9 UPC-E rotate,height,text,above,checkdigit

A Code 93 rotate,height,text,above,checkdigit

B CODEABLOCK rotate,height,security,cols,rows,mode

C Code 128 rotate,height,text,above,checkdigit,mode

D UPS Maxicode mode,symbolno,totsymbol

E EAN-13 rotate,height,text,above

F Micro PDF417 rotate,height,mode

I Industrial 2 of 5 rotate,height,text,above

J Standard 2 of 5 rotate,height,text,above

K ANSI Codabar rotate,checkdigit,height,text,above,start,stop

L LOGMARS rotate,height,above

M MSI rotate,checkdigit,height,text,above,chkhmn

O Aztec rotate,magfactor,ecis,errctrl,menusymbol,symbolno,appendid

P Plessey rotate,checkdigit,height,text,above

Q QR Code rotate,model,magfactor,hqml,nabk

R RSS (Reduced Space Symb) rotate,symboltype,magfactor,sepheight,height,segwidth

UnForm Version 8.0

141

S UPC/EAN extensions rotate,height,text,above

T TLC39 rotate,width39,ratio39,height39,heightpdf,widthpdf

U UPC-A rotate,height,text,above,checkdigit

X Data Matrix rotate,height,quality,cols,rows,formatid,escchar

Z Postnet rotate,height,text,above

Many options are required only by certain symbologies. The options used are given in the table above.

For details about use and required values for options, see the ZPL reference manual available from Zebra

Technologies Corporation (http://zebra.com).

For Maxicode, you may specify a mode of 2 for UPS US addresses, 3 for UPS non-US addresses, or 4

for non-UPS coding (the default is 2). The data must consist of 2 segments:

Segment 1:

 Mode 2: 3-digit class of svc, 3-digit country code, 9-digit zip code

 Mode 3: 3-digit class of svc, 3-digit country code, 6-character zip code

Zebra requires this segment; the remaining segment format is specified by UPS.

Segment 2:

 Data content as required by UPS, starting with the "[)>"+$1E$ header.

For modes other than 2 or 3, segment 2 can contain variable content.

height is either an integer, interpreted as the number of pixels, or a decimal number, such as 20.0 or

40.6, interpreted as points (1/72 inch).

spc-pixels is the narrow bar width in pixels, from one to 10, defaulting to 2.

Following spc-pixels, the options can be in any order.

Rotate will rotate the barcode the given number of degrees.

Ratio will modify the wide bar to narrow bar ratio, from 2.0 to 3.0 in 0.1 increments. The default ratio

is 2.0. Some symbologies have fixed ratios.

text or text yes will print the human readable value below the barcode. text above (or just above) will

print this value above the barcode.

text no will not print the value, even if that is the default for the given symbology.

checkdigit will cause a checkdigit to be calculated and printed by the printer.

start char will set the start character, if used by the symbology.

UnForm Version 8.0

142

stop char will set the stop character.

ucc will set the UCC Case Mode on code 128 barcodes.

mode m will set the mode code, which is symbology dependent. The UCC Case Mode may be set for

code 128 with 'mode U'. The code 49 mode can be A for auto, or 0-5 as defined in the ZPL

programmers' guide.

security n will set the security and/or error correction level for the PDF417 bar code. n can be a digit

from 0 to 8.

cols c, rows r will set the cols and rows values for the PDF417 barcode. If not set, this barcode will

assume a 1:2 row to column aspect ratio. c can range from 1 to 30, r from 3 to 90, and the product of c x

r can't exceed 927.

For other options, see reference materials offered by Zebra Technologies Corporation (http://zebra.com).

Drivers: zebra only

UnForm Version 8.0

143

BIN

Syntax

bin bin-code

Description

The bin keyword is used to specify the output bin for any copy. Larger, departmental laser printers often

have two or more bins, allowing print job output to be separated. In UnForm, you can specify a bin for

each copy, or for the whole job.

bin-code is printer-specific, with 1 generally being the top, face-down bin, and 2 being a side or rear

face-up bin. Some models may offer additional bins; see your printer's documentation for additional bin

codes.

The printer model’s (-m command line option) PPD file (or generic pcl.ppd or ps.ppd files) can specify

*OutputBin bin-code entries which are used if present.

Drivers: laser, ps

UnForm Version 8.0

144

BOJ, BOP, EOJ, EOP

Syntax

{boj | bop | eoj | eop}"text string" | {expr}

Description

These keywords provide the ability to add escape codes to the beginning of the job (after the printer is

initialized but before any data prints), before each page of each copy, after each page of each copy, and

after the job ends, just before the printer is re-initialized.

The escape sequences can be entered as a quoted text string or an expression in braces.

When entering a text string, it is possible to include non-printable characters with angle bracket notation,

such as "<27>&k10G", where "<27>" is used to include an escape character.

UnForm will normally provide all the control needed for a job. These keywords are included to handle

unusual requirements, such as perhaps adding PJL coding to a job for special paper handling

requirements.

An expression can take advantage of the getppd() function to load control sequences for PCL or

PostScript out of the printer’s PPD file (as specified by the –m command line argument or as the generic

pcl.ppd or ps.ppd).

Prior releases supported an unquoted format for hex strings. UnForm no longer supports this

syntax. If your rule file contains hex strings, convert the commands like these examples:

 boj 1b266c3247 change to boj { ath(“1b266c3247”) }

 boj 1b 26 6c 32 47 change to boj { ath(stp(“1b 26 6c 32 47”,3,” “)) }

Examples:

This example shows adding PJL codes to a job, setting the title to "Title Of Job".

boj "<27>%-12345X@PJL<10>@PJL JOB NAME=<34>Title Of Job<34><10>@PJL ENTER

LANGUAGE=PCL<10>"

Drivers: laser, ps only

UnForm Version 8.0

145

BOLD, ITALIC, LIGHT, UNDERLINE

CBOLD, CITALIC, CLIGHT, CUNDERLINE

Syntax

1. bold|italic|light|underline col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. bold|italic|light|underline "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr},

row|{numexpr}, cols|{numexpr}, rows|{numexpr}

If cbold, citalic, clight, or cunderline is used, then columns and rows are interpreted to be the opposite

corner of the region, and columns and rows are calculated by UnForm.

Description

The region indicated by the col, row, cols, and rows parameters will have the indicated attribute (bold,

italic, light, or underline) applied. All text in the input within that region, but not text generated by text

keywords, will be affected. If used, numexpr is a Business Basic expression that generates a numeric

value for the column, row, columns, or rows.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that

matches the regular expression regexpr. In these cases, there may be no affected regions, or several.

column and row are 0-based in these formats. The search for text or regexpr can be limited to a region

on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@" character in

text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Note that the font command is a more powerful alternative to these commands, and it also offers support

for fonts that support specific weights or styles other than these.

Examples:

bold 1,5,30,4 bolds a region from column 1, row 5, for 30 columns and 4 lines.

underline "TOTAL:",0,0,36,1 underlines a region beginning at a position where the text "TOTAL:" is

found, extending for 36 columns. If "TOTAL:" isn't found, the keyword is ignored until the next page is

analyzed.

UnForm Version 8.0

146

Drivers: laser, pdf, ps. underline and light is supported on laser only. Not all pcl fonts support the

light and bold options.

PostScript input not supported.

UnForm Version 8.0

147

BOX, CBOX

Syntax

1. box col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]

[,rgb rrggbb] [,dbl|double [gap]] [,left l] [,right r] [,top t] [,bottom b] [,icols=gridcols]

[,irows=gridrows] [,ccols=gridcols] [,crows=gridrows] [,lcolor=color] [,lcolor rgb=rrggbb]

[,scolor=color] [,scolor rgb=rrggbb]

2. box "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color] [,rgb rrggbb] [,dbl|double [gap]] [,left l]

[,right r] [,top t] [,bottom b] [,icols=gridcols] [,irows=gridrows] [,ccols=gridcols] [,crows=gridrows]

[,lcolor=color] [,lcolor rgb=rrggbb] [,scolor=color] [,scolor rgb=rrggbb]

If cbox is used, then columns and rows are interpreted to be the opposite corner of the box, and columns

and rows are calculated by UnForm.

Description

A box of the indicated dimensions will be drawn. All dimensions can be specified to 2 decimal places,

in the range of -255 to +255. Whole number col and row represent center points; lines are drawn to the

center point of the character position identified in order to facilitate connections between lines. This

differs from the shade keyword, which shades full character cells. It may be easier to use the box

keyword's shade parameter than to calculate shade positions that are offset from similar box parameters.

To draw lines rather than boxes, simply set the cols or rows to 1 or 0 (1 is a special rule maintained for

historical reasons), or use the line command. If both cols and rows are 1, then a vertical line is drawn 1

character high. To draw a box that is 1 column wide or 1 row deep, use 1.01 or .99. If used, numexpr is

a Business Basic expression that generates a numeric value for the column, row, columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches

the regular expression regexpr. In these cases, there may be no boxes drawn, or several. column and

row are 0-based in these formats and can be negative if required. The search for text or regexpr can be

limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal

"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Line Thickness

UnForm Version 8.0

148

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels

to use when drawing the box outline. The default thickness is 1 dot. UnForm always uses dots at 1/300

inch. If a shade parameter is desired, then the thickness parameter is required.

The left, right, top, and bottom options override the specified thickness for any given side of the box.

Setting "left 0", for example, would erase the left side of the box, while "right 4" would set the right side

to 4 pixels wide.

The double or dbl option indicates a double-lined box. Both the inner and outer lines will be drawn at

the normal thickness, and the optional gap may be specified to set the pixels between each line. The

default gap is 1 pixel. The gap must be a digit between 1 and 9.

Shading

The optional shade parameter may be used to specify a "percent gray" value from 1 to 100. Most laser

printers can only print about 8 different shades of gray, so a value of 45, for example, may print the same

pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any shade at

all: a shade level of 0 will force a white interior, even if another box or shade command draws shading

inside the bounds of the box. If an interior color is specified, shading is ignored. A shade value of -1 is

equivalent to no shading at all.

Color

Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or you

can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is

green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use

"lcolor" or "lcolor rgb" for lines, and "scolor" or "scolor rgb" for shade.

Grids

The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.

gridcols specifies one or more vertical column settings in the structure of

column[:thickness[:shade[:color|rrggbb]]]. Multiple columns can be delimited by any character other

than digits, the decimal point (.), and the colon. Each column designates a vertical line to draw from the

top to bottom edges of the outer box. If a thickness is specified, then the line is drawn using that

thickness (0 would draw no line at all). The default thickness is 1. If shade is specified, then a shade

region is drawn from the left edge or prior column. gridrows is identical in structure to gridcols, but

specifies the horizontal rows rather than vertical columns. The "icols" and "irows" introducers indicate

columns and rows relative to the upper-left corner of the outer box. The "ccols" and "crows" introducers

indicate absolute columns and rows. In each case, any column or row specification outside the bounds

of the box is ignored.

For partial shading, partial color shading, or multiple color shading, see the shade keyword. You can

improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher

dpi settings, by using the gs command.

UnForm Version 8.0

149

Examples:

box 5.5,2.5,34,3,2,10 will draw a box 34 columns wide and 3 lines high, at column 5.5, line 2.5. The

box border will be 2 dots wide (1/150 inch). It will be filled with 10% gray shading.

box 1,1,55,1 will draw a horizontal line, 55 columns wide, at column 1, line 1.

box "Customer Total",-1,-1,60,3 will draw a box around the text "Customer Total", beginning 1

column before and 1 row up, for 60 columns and 3 rows.

cbox 12,{start_row-.5},40,{end_row+.5} will draw a box with the top and bottom lines based on two

numeric variables, which would have been previously calculated in a prepage or precopy code block. In

using the cbox version, the second pair of numbers indicates the lower-right corner, rather than the

number of columns and number of rows. The code block used to calculate these positions might look

something like this code, which finds the first and last rows that contain any data in the row range of 22

through 55:

prepage{

start_row=0,end_row=0

for line=22 to 55

 if trim(text$[line])>"" then if start_row=0 then start_row=line

 if trim(text$[line])>"" then end_row=line

next line

}

cbox .5,22,80.5,66,3, ccols=10.5 30 55.5 67.5, crows=23.25:1:20 60 will draw a box from column 0.5,

row 22 through column 80.5, row 66. The lines of this outer box will be 3 pixels wide. Inside this box

will be vertical lines at columns 10.5, 30, 55.5, and 67.5. Also inside the box will be a 1 pixel high

horizontal line at row 23.25, with 20% shading from row 22 to row 23.25, and another 1 pixel horizontal

line at row 60.

Drivers: All (gridcols and gridrows options supported only in laser, ps, pdf), zebra only support 0% or

100% shading.

UnForm Version 8.0

150

BOXR, CBOXR

Syntax

1. boxr col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]

[,rgb rrggbb] [,tl=topleft] [,tr=topright], [,bl=bottomleft], [,br=bottomright] [,icols=gridcols]

[,irows=gridrows] [,ccols=gridcols] [,crows=gridrows] [,lcolor=color] [,lcolor rgb=rrggbb]

[,scolor=color] [,scolor rgb=rrggbb]

2. boxr "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color] [,rgb rrggbb] [,tl=topleft] [,tr=topright],

[,bl=bottomleft], [,br=bottomright] [,icols=gridcols] [,irows=gridrows] [,ccols=gridcols]

[,crows=gridrows] [,lcolor=color] [,lcolor rgb=rrggbb] [,scolor=color] [,scolor rgb=rrggbb]

If cboxr is used, then columns and rows are interpreted to be the opposite corner of the box, and

columns and rows are calculated by UnForm.

Description

A box with rounded corners of the indicated dimensions will be drawn. All dimensions can be specified

to 2 decimal places, in the range of -255 to +255. Whole number col and row represent center points;

lines are drawn to the center point of the character position identified in order to facilitate connections

between lines. If used, numexpr is a Business Basic expression that generates a numeric value for the

column, row, columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches

the regular expression regexpr. In these cases, there may be no boxes drawn, or several. column and

row are 0-based, in these formats, and can be negative if required. The search for text or regexpr can be

limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal

"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels

to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at

1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Corner Rounding

To specify the degree of rounding for different sides, specify values for tl, tr, bl, and br, as desired. The

specification for each corner is col:row:scale, where col is the number of columns from the corner to

UnForm Version 8.0

151

begin the rounding, row is the number of rows from the corner to begin rounding, and scale is the level

of rounding, from –100 for fully convex, to 100 for fully concave, where 0 becomes a straight line from

the column and row break points. If no rounding options are specified at all, then UnForm will apply

default rounding to all four corners. If any rounding is specified, then any unspecified corners become

square corners.

Shading

The optional shade parameter may be used to specify a "percent gray" value of from 1 to 100. Most

laser printers can only print about 8 different shades of gray, so a value of 45, for example, may print the

same pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any shade

at all: a shade level of 0 will force a white interior, even if another box or shade command draws shading

inside the bounds of the box.

Color

Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or you

can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is

green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use

"lcolor" or "lcolor rgb" for lines, and "scolor" or "scolor rgb" for shade.

Grids

The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.

gridcols specifies one or more vertical column settings in the structure of

column[:thickness[:shade[:color|rrggbb]]]. Multiple columns can be delimited by any character other

than digits, the decimal point (.), and the colon. Each column designates a vertical line to draw from the

top to bottom edges of the outer box. If a thickness is specified, then the line is drawn using that

thickness (0 would draw no line at all). The default thickness is 1. If shade is specified, then a shade

region is draw from the left edge or prior column. gridrows is identical in structure to gridcols, but

specifies the horizontal rows rather than vertical columns. The "icols" and "irows" introducers indicate

columns and rows relative to the upper left corner of the outer box. The "ccols" and "crows" introducers

indicate absolute columns and rows. In each case, any column or row specification outside the bounds

of the box is ignored.

For partial shading, partial color shading, or multiple colors shading, see the shade keyword. You can

improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher

dpi settings, by using the gs command.

Zebra Printers

Zebra output supports rounded corner boxes somewhat differently than laser/pdf output. All corners

have the same scale of rounding, so the first corner option (tl, rt, bl, br) is used for all corners. The scale

value must be a number from 1 to 8, indicating the scale of rounding the printer performs. For example,

tl=::6 would apply a rounding scale of 6. The col and row parameters of the corner specification are

ignored.

UnForm Version 8.0

152

Examples:

boxr 10,9.5,70,4.25,2,5,lcolor=blue will draw a box with default rounding on all corners, with a 2 pixel

edge and 5% shading. The edge line will be drawn in blue if the output device supports color.

cboxr 0.5,60,80.5,66,1,0,bl=3:1.5:75,br=3:1.5:75 will draw a box with corners 0.5,60 and 80.5,66, with

a 1 pixel border, no shading, and just the bottom left and right corners rounded. The rounding will start

3 columns and 1 row from the corners, and be rounded outward.

Drivers: laser, pdf, ps (laser cannot have –nohpgl specified), zebra (see notes)

UnForm Version 8.0

153

CIRCLE

Syntax

1. circle col|{numexpr}, row|{numexpr},radius|{numexpr} [,thickness] [,shade] [,color|lcolor colorname]

[,scolor colorname] [,color|lcolor rgb rrggbb] [,scolor rgb rrggbb]

2. circle "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr},

row|{numexpr},radius|{numexpr} [,thickness] [,shade] [,color|lcolor colorname] [,scolor colorname]

[,color|lcolor rgb rrggbb] [,scolor rgb rrggbb]

Description

A circle with the center at the column and row specified, with the radius specified, will be drawn. All

dimensions can be specified to 2 decimal places, in the range of -255 to +255. If used, numexpr is a

Business Basic expression that generates a numeric value for the column, row, and radius. The radius is

specified as a number of columns. For a fixed measure radius, use an expression with the inchtocols() or

cmtocols() function.

If syntax 2 is used, then the circle is drawn relative to any occurrence of the text, or of text that matches

the regular expression regexpr. In these cases, there may be no circles drawn, or several. column and

row are 0-based, in these formats, and can be negative if required. The search for text or regexpr can be

limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal

"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels

to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at

1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Shading

The optional shade parameter may be used to specify a "percent gray" value of from 1 to 100. Most

laser printers can only print about 8 different shades of gray, so a value of 45, for example, may print the

same pattern as 50.

Color

Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or you

can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is

green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use

"lcolor" or "lcolor rgb" for lines, and "scolor" or "scolor rgb" for shade.

UnForm Version 8.0

154

Examples

The following will draw a circle centered in an 80 by 66 form, with a 2.5 inch radius, a blue 2-pixel wide

border, and a 5 percent interior shade.

circle 40.5,33,{inchtocols(2.5)},2,5,lcolor blue

Drivers: laser, pdf, ps (laser cannot have –nohpgl specified)

UnForm Version 8.0

155

COLS

Syntax

cols n

Description

This keyword specifies the number of columns to use for the form or report. The base font is scaled to

accommodate this many columns. If present, this value will override any calculation based on the cpi

keyword.

The number of columns n can be any value up to 255.

Examples:

cols 80 will set the print pitch to accommodate 80 columns per page.

Drivers: all

UnForm Version 8.0

156

COMPRESS, NOCOMPRESS

Syntax

compress

nocompress

Description

If zlib support is available on the UnForm server (most operating systems support it), then UnForm will

use the “deflate” compression method by default. This produces very compact PDF files. If you do not

wish to produce such compressed files (for example, you want to see the PDF commands contained in

the file), then you can use the nocompress option (or the –nocompress command line option) to turn off

this default compression mode.

If no zlib support is available, the compress command can be used to use the RLE compression

algorithm. This is most effective when repeated characters like spaces are present in the output, such as

wide reports with empty space between columns. Compression requires extra processing and will

therefore affect performance.

Compression can also be turned on with the –compress command line option.

You can determine if zlib support is enabled by viewing the version information produced by the uf80c –

v command line.

Drivers: pdf only

UnForm Version 8.0

157

CONST, GLOBAL, LOCAL

Syntax

const|global|local ID=value

Description

The const keyword provides the capability to use a named value as a parameter to other keywords. If,

for example, you want to place a series of text values at a certain column position, but may need to

adjust the position in the future, and then set a constant ID to the column position value, then use the ID

in the column position of all the text values.

const COLPOS=22.25

text COLPOS,30,"Text line 1"

text COLPOS,31,"Text line 2"

text COLPOS,32,"Text line 3"

A given constant ID can be reused, and references to it in subsequent rule set lines will reflect the new

value. Also, a constant defined before the first rule set in the rule file will apply to any rule sets in the

file, unless the same ID is reused in any particular rule set. The global command may be used in place

of const for one of these pre-rule set constants. Likewise, the local command can be used in place of

const inside a rule set.

Note that case does make a difference. "COLPOS" and "colpos" are different constants. Take care not to

use constant names that may inadvertently cause unintended replacements. For example, it may be

tempting to use a constant named "font", but this would conflict with any font command. There would

be no conflict, however, between a constant named FONT and a lower-case font command.

Constant names are limited to 255 characters, and constant values are limited to 65,536 characters. If

you use a quoted value, the outer quotes are removed before the value is substituted into the rule file

commands. You can therefore include quotes inside a quoted constant. Unquoted values are trimmed of

leading and trailing spaces.

Long constant values can be built by including the constant name in multiple const commands, like this:

 Const VAL=”Initial Value”

 Const VAL=”VAL plus this appended data”

 Const VAL=”VAL and still more appended data”

Drivers: all

UnForm Version 8.0

158

COPIES, PCOPIES

Syntax

copies copies

pcopies copies

Description

These keywords are used to generate multiple copies of the form. The number of copies is specified by

the number copies. If the copies form is used, then the entire print job is duplicated the number of times

indicated. If the pcopies form is used, then each page is duplicated as it is printed, so the pages come

out collated together for each page.

The two versions of this keyword are mutually exclusive; the last one that is found in the rule set is the

one used. Note also the -c and -pc command line options can be used, though these keywords take

precedence, if specified.

Individual copies can be managed to any degree necessary via "if copy n" rule set logic, and also full

programming logic with the "precopy {}" and "postcopy {}" logic entry points. Use this to modify the

output device for specific copies, or to modify the content of specific copies.

To add attachments that are separate pages from the standard form pages, assign a copy to the

attachment, and add a notext keyword for that copy.

pcopies 2

if copy 2

notext

attach "/usr/UnForm/attachments/attach1.pcl"

end if

Examples:

copies 2 will print the entire report twice.

pcopies 3 will print each page three times.

Drivers: all, pdf driver treats copies as pcopies

UnForm Version 8.0

159

COVER
Syntax

cover "ruleset"|{expr} [, "rulefile"|{expr} [,"args"|{expr}]]

Description

Processes the named rule set (optionally in a different rule file) as a subjob, using the first page of text of

the current job as the input stream. The resulting one page of output is used as an initial page of the

main job. Both pcl and ps output will generate cover pages for each output file when the job is broken

into multiple output designations. If arguments are specified, they are passed to the subjob, in addition

to the -r/-f options named by the ruleset and rulefile options.

In addition to the cover command, the -cover command line argument, as well as the coverset$,

coverfile$, and coverargs$ code block variables, can be used to generate cover pages. Also, setting

nocover=1 in a code block will disable cover page generation. This can be used to turn off the effect of a

-cover command line option.

Example

This example will generate a cover page from the corpcover rule set in covers.rul, passing it a name and

number parameter. The corpcover rule set could retrieve the name and number in a prejob code block,

using prm("name") and prm("number").

cover "corpcover","covers.rul",{"-prm "+quo+"name="+name$+";number="+faxnum$+quo}

UnForm Version 8.0

160

CPI

Syntax

cpi characters-per-inch

Description

The cpi keyword indicates what pitch UnForm should use when printing the text of a form or report.

From this, along with the paper dimensions, UnForm can determine the columns per page and ensure

that the proper pitch is selected. As UnForm uses cpi to calculate a cols value, cpi values are rounded to

allow even character spaces. It is advisable to use cols rather than cpi.

See also lpi, cols, rows.

Examples:

cpi 16.66 will set the character spacing to a common "compressed" character pitch.

Drivers: laser, pdf, ps, zebra

UnForm Version 8.0

161

CROSSHAIR

Syntax

crosshair

Description

If this command is present in a rule set, then UnForm will generate a crosshair grid over the page,

making rule file development easier. Crosshair mode can also be turned on from a code block with the

crosshair$ variable.

Drivers: laser, pdf, ps

UnForm Version 8.0

162

DELIVER

Syntax

 deliver "send to"|{expr},"docid"|{expr} [,combine yes|true|1 |{expr}] [,args "list"|{expr} [,tag

"value"|{expr}, ...]

Description

The deliver command generates subjobs whenever the document ID and output format changes,

producing either fax or email files as needed based on the list of "send to" values. The output format is

determined by the deliver.ini file, and if the recipient is an email or fax destination. Multiple

destinations can be provided in a comma-separated list and each will get their own copy of the

document. If the combine option is on (yes, true, or 1 turn it on), then all documents for a given

destination are combined into a single transaction. Note that not all fax systems offer support for

multiple documents in a single transaction (i.e. msfax). The document ID is used as the basis for the

file name to be sent, which can be useful when emailing to provide meaningful attachment file names.

The args option specifies command line options passed to the subjob. The deliver.ini configuration can

also add more options. Other tag names are used to substitute values in the delivery gateway's

configuration lines in deliver.ini. More details are provided in that file, and in the Deliver Configuration

chapter.

Any number of tags can be specified, using user-defined tag names. When the delivery is executed, the

deliver.ini configuration is scanned and occurrences of %tagname are substituted with the provided

value.

Multiple delivery commands can be used. This may be desired if different arguments, such as cover

pages or -prm parameters, are desired to distinguish email from fax jobs for formatting. If this is the

case, the document ID should also vary, since only a unique ID and output type cause a new subjob to be

executed.

When the subjob is executing, both uf.subjob and uf.deljob are true (1).

CSV formatted logs are maintained in the ./deliver directory (or other configured directory named in

logdir= in deliver.ini. The logs are named yyyymmdd.csv and record date/time, to, file, success,

response and error messages, and optionally the tags.

Note that code blocks can also use the deliver() function, managing the file to be delivered with

jobstore/jobexec functions or other techniques.

Example

deliver {faxnum$},{"Invoice "+invno$},name {contact$},subject {"Invoice "+invno$},

UnForm Version 8.0

163

 note "Your invoice is attached.\n\nThank you for your business."

UnForm Version 8.0

164

DETECT

Syntax

 detect column(s),row(s),"[^[!]]text"

 detect column(s),row(s),"[^[!]]~regexpr"

Description

This option is used to identify a form from the data read by UnForm. If the -r option is used on the

UnForm command line, then detect keywords are ignored. Otherwise, each rule set's detects are

analyzed until a match is found. If more than one detect keyword is specified for a rule set, then the job

must match all of them. Detection occurs only at the start of the job, using the first page of data read

from the input stream.

If column and row are 0, then the whole page is scanned for the occurrence of the text. If column is 0

and row is greater than 0, then the whole line is scanned. If column is greater than 0 and row is 0, all

rows are scanned.

column and row can contain ranges in the format from-through, such as '20-25' for the columns (or rows)

20 through 25.

The format of the quoted third parameter determines how the detection scan is handled. If plain text is

specified, then a literal match for text is performed. If the text begins with the prefix character ~, then a

regular expression search for regexpr is performed.

If the text begins with ^, then a case insensitive match is performed.

Following the optional ^ character, but before the ~ character, may be a ! character, indicating a scan for

NON-matches.

The following prefix sequences are valid: ^, ^~, !, !~, ^!, ^!~, meaning, respectively: case insensitive

text, case insensitive regular expression, text not found, regular expression not found, case insensitive

text not found, case insensitive regular expression not found.

DTC Rule Sets

When the UnForm Desktop Client processes detect statements, it honors certain options. For details, see

the Desktop Client rule set section.

Examples:

detect 0,2,"INVOICE" would search for INVOICE anywhere on line 2.

UnForm Version 8.0

165

detect 10-12,4,"~../../.." would match a date format at column 10, 11, or 12, on row 4.

detect 65-66,6-8,"!~../../.." would match a date format NOT occurring at column 65 or 66, on rows 6

through 8.

detect 0,2-3,"^invoice" would match INVOICE, Invoice, invoice, etc. anywhere on lines 2 or 3.

Drivers: all

UnForm Version 8.0

166

DOWN

Syntax

down n [,gap]

Description

This instructs UnForm to allocate virtual pages down the physical page, evenly spaced within the top and

bottom margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale

images, barcodes, or attachments. Also see the across command.

Down can be used inside an 'if copy' block, but is only compatible with non-collated copies. As a result,

copy-specific down is only available in the laser driver, and only in conjunction with the copies

command, not pcopies.

If the optional gap value is specified, it indicates the number of vertical pixels between each virtual

page. If it is not specified, the default is to use 1 row (as opposed to pixels).

See the 132x4 rule set in advanced.rul for an example of using the across and down commands.

Drivers: laser, pdf, ps

PostScript input not supported

UnForm Version 8.0

167

DPI

Syntax

dpi 300 | 600 | 1200

Description

The dpi keyword instructs PCL printers to print at the specified dots per inch. The default dpi value is

300; however, many printers are capable of printing at 600 or 1200 dpi (or possibly even higher values).

This takes more printer memory, but results in crisper characters and lines.

Drivers: laser only

UnForm Version 8.0

168

DSN_SAMPLE

This command is used exclusively by the UnForm Designer tool, to store the name of a sample text file

to apply to previews generated in the design environment.

UnForm Version 8.0

169

DTCBUTTON

Syntax

DTCButton "title" [,style clipboard|nbclipboard|text|nbtext|button|title|nbtitle] [,args "job arguments"]

[,width chars] [,match "regex"] [,library "name"] [,doctype "value"] [,parsevalue ["ruleset"]]

Description

The DTCButton command is interpreted by the UnForm Desktop Client for presentation in an

application integration window. For each DTCButton command, an input field is constructed, along with

a submission button, and presented on the form associated with the rule set. The DTCPanel command

can be used to categorize the buttons in panels. Input fields are presented in the same order as presented

in the rule set. Note that expressions are not supported.

Style

This optional argument defines the style of the button provided to the user. The default style is

"clipboard".

Clipboard Provides a text box and a small submit button, and monitors the clipboard for

changes to place text in the text box.

Nbclipboard Provides a text box, but no submit button. It monitors the clipboard for

changes to place in the text box.

Text Provides a text box and a small submit button. This is intended for simple user

entry.

Nbtext Provides a text box, but no submit button.

Button Provides a submit button with the title as the button caption.

Title Provides a text box and a small submit button, and monitors the window title

for changes to place in the text box.

Nbtitle Provides a text box, but no submit button. It monitors the window title for

changes to place in the text box.

Args

Options passed to the to the UnForm job running the rule set. There are automatic rule file and rule set

arguments (-f and –r, respectively) to ensure the rule set with the button configuration is the one

executed when a submission takes place.

Width

This defines the width of the button, in nominal characters. Without a width, the title width is used. Use

this to ensure consistent widths when multiple buttons are presented.

Match

UnForm Version 8.0

170

The match option is honored by the clipboard and nbclipboard styles. The clipboard value must match

the specified regular expression in order to be pasted into the text field.

Library, Doctype

These two options in tandem are honored by the clipboard and nbclipboard styles. The clipboard value

must be a valid document ID within the library and doctype specified in order to be pasted into the text

field.

ParseValue

If this option is present, the value from the clipboard or window title is sent to the server for parsing.

The server will run the current rule set or the optionally specified one, and use the value returned from

the server in cgiresponse$ in place of the clipboard or title value. The rule set receives cgi.button$,

cgi.panel$, and cgi.parsevalue$ when the request is sent.

UnForm Version 8.0

171

DTCHELPFILE

Syntax

DTCHelpFile "filename"

Description

When the UnForm Desktop Client presents an application integration form (defined using DTCButton

and DTCPanel commands), there is a toolbar help button available. If a DTCHelpFile command

specifies a file, the help button is enabled, and when pressed, the HTML file specified is loaded in a

browser window on the DTC user's workstation. The help file must be in HTML format, and must be

available to the UnForm server using normal HTTP interface locations, in the ./web/en-us or

./web/language path, in the home UnForm directory.

UnForm Version 8.0

172

DTCPANEL

Syntax

DTCPanel "panelname"

Description

The DTCPanel command can specify a panel name for DTCButtons that follow. The buttons will be

presented within a tab panel, using panelname as the title. This command is interpreted by the UnForm

Desktop Client.

UnForm Version 8.0

173

DUMP

See the image command.

UnForm Version 8.0

174

DUPLEX

Syntax

duplex mode [, left-offset] [, top-offset]

Description

Duplex printing, if supported by your printer, causes printing on both sides of the paper.

mode can be 1 for long-edge binding, or 2 for short-edge binding. A mode of 0 will print in simplex

(single-sided) mode.

left-offset and top-offset are optional values in decipoints (1/720
th

 inch) that indicate how far to shift the

page printing from the left and top edges, respectively. Note that margins may need to be adjusted (with

the margin keyword) if offsets are used.

Note that any duplex command will cause a page eject on a laser printer, so timing of the duplex

command is important. For example, if you use pcopies 2, and the second reserved for a back side

attachment, the duplex command should be in the 'if copy 1' block. This forces copy 1 to be on the front

side and copy 2 to follow on the back side. This concept is shown in the example below.

The printer model’s (-m command line option) PPD file (or generic pcl.ppd or ps.ppd files) can specify

*Duplex mode entries which are used if present.

Note that when working with multiple copies to produce pages or unique formats in duplex mode (i.e.

terms and conditions on the back page of primary forms), only the pcopies command will work, as it is

critical that the copies be printed in sequence rather than at a job-level.

Examples:

pcopies 2

if copy 1

 duplex 1

 # complete form for front of page

end if

if copy 2

 # attachment for back of page

 notext

 attach "terms.pcl"

end if

Drivers: laser, ps (the left offset and top offset options are ignored in PostScript, use margin instead)

UnForm Version 8.0

175

EMAIL

Syntax

email { to | {toexpr} }, { from | {fromexpr} }, { subject | {subjectexpr} }, { msgtxt | {msgtxtexpr} } [,cc

"cc"|{ccexpr}] [,bcc "bcc"|{bccexpr}], [,attach "attach"|{attachexpr}] [,otherhead|oh

"otherhead"|{otherheadexpr}] [,login "login"|{loginexpr}] [,password|pswd "password"|{passwordexpr}]

[,logfile filename]

Description

The PDF document being created will be emailed as an attachment upon completion, using the

information supplied. The name of the attached file is supplied with the "-o" argument on the UnForm

command line, or can be overridden by setting the variable output$ in a prejob code block.

Each of the first 4 values is positional, and each can be a literal value or an expression enclosed in curly

braces. The to value is the only required value, and must be a fully qualified email address, or a comma-

separated list of email addresses. The from value, if supplied, must also be a fully qualified email

address. If it is not supplied, then a default address will be used from the mailcall.ini file.

Note that the expressions are resolved as of the last copy of the last page of the job. If you need to use

data from an initial page, use a prejob code block to assign variables, and then use those variables in the

expressions.

In order to use this command, the mailcall.ini file must be edited to configure a mail server

(server=value) line. See the Email Integration chapter for more detail about configuration, and also for

information about using direct calls to the MailCall program bundled with UnForm. Direct calls enable

more control over email processing.

The msgtxt value can contain line-feed characters to break lines. These characters can be added in

expressions as CHR(10) functions or as $0A$ hex literals, or with the literal backslash-n (\n) character

sequence. Note that if the message text starts with a structure "<value>", then it is assumed to be an

HTML message, and the appropriate header tag is set to send the message as HTML.

Optional arguments can follow the message text value in any order, prefixed by the appropriate option

name:

cc Followed by a literal that is, or an expression in curly braces that resolves to, a list

of email addresses separated by commas. These addresses become the CC, or

carbon copy, list for the email.

bcc Followed by a literal that is, or an expression in curly braces that resolves to, a list

of email addresses separated by commas. These addresses become the BCC, or

blind carbon copy, list for the email. Blind carbon copy addresses are stripped

from the email header before the message is sent.

UnForm Version 8.0

176

attach Followed by a literal that is, or an expression in curly braces that resolves to, a list

of additional attachment files, separated by commas. Note that the PDF job itself

is always emailed as an attachment, so only use this option for adding additional

attachments to the message.

otherhead or oh Followed by a literal that is, or an expression in curly braces that resolves to, one

or more line-feed or "\n" delimited custom email headers.

login Followed by a literal that is, or an expression in curly braces that resolves to, a

login name. Some mail servers are configured to require a login and password for

authentication. This value and the password value are then required.

password or pswd Followed by a literal that is, or an expression in curly braces that resolves to, a

login password. Some mail servers are configured to require a login and password

for authentication. This value and the login value are then required.

logfile Followed by a file name to which SMTP logging will be written.

Example

prejob{

email_to$=trim(get(1,1,50))

invoice_no$=get(60,5,6)

}

email {email_to$}, "sales@acme.com", {"Invoice number "+invoice_no$}, "Please pay the attached

invoice promptly.\n\nBest regards,\n\nAcme Distributing", cc "accounting@acme.com"

Drivers: pdf only

UnForm Version 8.0

177

ERASE, CERASE

Syntax

1. erase col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. erase "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr}

If cerase is used, then columns and rows are interpreted to be the opposite corner of the region, and

columns and rows are calculated by UnForm.

Description

The text from the input, in the region indicated by the column, row, columns, and rows parameters, is

erased. This keyword may be used to easily clear unwanted text from the output. The text is erased after

text expressions and prepage and precopy code blocks are executed, so the information to be erased is

available to those routines. If used, numexpr is a Business Basic expression that generates a numeric

value for the column, row, columns, or rows.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that

matches the regular expression regexpr. In these cases, there may be no erased regions, or several.

column and row are 0-based in these formats. The search for text or regexpr can be limited to a region on

the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@" character in text

or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Also see the erase option of the hline and vline keywords.

When erase is used with PostScript input, it is converted internally to a shade command with a shade

percent of 0, resulting in erasure of the region from the overlay. Rule set output commands, such as text

or box, are layered on top of the erased region.

Examples:

erase 1,5,30,4 erases text from a region from column 1, row 5, for 30 columns and 4 lines.

erase "John Smith",0,0,10,1 erases all occurrences of "John Smith" from the page.

Drivers: all

UnForm Version 8.0

178

FIXEDFONT

Syntax

fixedfont fontcode

The fixedfont keyword overrides the default fixedfont setting found in the [default] section of the

ufparam.txt file. If there is no fixedfont value in that file, then the fontcode 4099 (Courier) is used.

The fontcode specified is used for the text sent to UnForm by the application. It must be a non-

proportional, scalable font, except in the circumstance where a non-scalable font provides the exact pitch

required by UnForm to lay out the columns within the margins.

Drivers: laser only

UnForm Version 8.0

179

FONT, CFONT

Syntax

1. font col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode]

[,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,fixed | proportional]

[,color] [,rgb rrggbb] [,justification] [,upper|lower|proper] [,fit] [,weight w|weightname] [,style

style|stylename] [,column n]

2. font "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic]

[,underline] [,light] [,shade percent] [,fixed | proportional] [,color] [,rgb rrggbb] [,justification]

[,upper|lower|proper] [,fit]] [,weight w|weightname] [,style style|stylename] [,column n]

If cfont is used, then columns and rows are interpreted to be the opposite corner of the region, and

columns and rows are calculated by UnForm.

Description

The font keyword applies font control to all input stream text in the defined region of column, row,

columns, and rows. The other parameters are all optional. If used, numexpr is a Business Basic

expression that generates a numeric value for the column, row, columns, or rows.

If syntax 2 is used, then font attributes are applied relative to the occurrence of text or the regular

expression regexpr. In these cases, there may be no attribute regions, or several. column and row are 0-

based in these formats, and can be negative if required. The search for text or regexpr can be limited to a

region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@"

character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Font Names and Numbers

fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all

PCL5 compatible printers. Alternately, font fontcode can specify a specific fontcode supported by your

printer. For example, if your printer supports True Type Arial, specify "font 16602". Bitmap fonts (as

opposed to scalable fonts) should not be used. fontname and fontcode can also be specified from the

"ufparam.txt" file. UnForm uses HP/GL by default for laser output, and justification is supported on all

native printer fonts. However, if the –nohpgl command line option is used, then only certain, known

fonts (found in fonts.txt in the UnForm directory) can be properly justified, if the center, decimal, or

right justification option is used. When producing PDF output, only native PDF fonts are supported. All

others are mapped to one of these fonts: Courier, Helvetica, or Times-Roman.

UnForm Version 8.0

180

Symbol Sets

symset can be any symbol set supported by your printer. The default symbol set is "9J", using a

Windows ANSI character set. symset can also be a name from the "ufparam.txt" file. The pdf driver

only supports the Windows ANSI symbol set.

Point and Pitch Sizes

size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a

fixed font. Values range from about 4 to 999.75. The default is based on the rows per page. Note that

for proportional fonts, the larger the number, the larger the size printed. Fixed fonts are the opposite.

Attribute Styles

The words "bold", "italic", "underline", and "light" will apply the indicated attribute(s) to the text.

Shaded Text

percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.

Fixed and Proportional Text

Any font code below 4100 is presumed to be fixed (mono-spaced), and codes 4100 and up are presumed

to be proportional. To override this assumption, specify one of the words "fixed" or "proportional".

Color

Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or you

can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is

green (00-FF), and bb is blue (00-FF).

Justification

justification can be one of the following words: "left", "center", "right", or "decimal". UnForm will

remove leading and trailing spaces from the text and justify it within the column specification. Decimal

justification will use a "." character unless a "decimal=character" line is placed in the ufparam.txt file

under the [defaults] section.

Text Case Conversion

The mutually exclusive "upper", "lower", and "proper" options will convert the text in the fonted region

to all UPPER, lower, or Proper case. Proper case capitalizes the initial letter of each word or word

segment preceded by a non-letter or non-digit character.

Fit to Width

If the "fit" option is used, then each line in the font region is scaled down, if necessary, to fit within the

defined number of columns for the region. This differs from the text command's fit option, in that each

line is treated distinctly, rather than the entire set of lines being calculated as a unit.

Weight and Style

Some laser printer fonts must be specified with given weight or style in order to be selected by the

printer. For example, the font Clarendon Condensed is only available if the condensed style is specified,

by adding "style 4" or "condensed" to the font command. Style and weight options and codes can be

UnForm Version 8.0

181

found in the ufparam.txt file. Note that fonts are expressly designed for certain weights and styles, and

simply specifying an unsupported value does not produce the desired result. In fact, it may result in

selection of a different font entirely. Check your printer's documentation or control panel prints for

supported fonts.

Note that if you use identical font commands for two adjacent or overlapping regions, UnForm will

combine the regions. For proportionally spaced fonts, the result will be misaligned columns. To avoid

this, you can add non-operational options, like "black" or "shade 100" to alternating commands, so

UnForm will not treat them as identical. Alternatively, use the column option (8.0.04), specifying a

unique column between 0 and 222 to prevent region combining.

Examples:

font 10,20,29,50,cgtimes,12,center will change the text in the region starting at column 10, row 20, for

29 columns and 50 rows, to 12-point cgtimes. The text will be centered within the 29 column width.

cfont 1,20,132,52,courier,16.67 will change the font of the region specified to 16.67 pitch courier.

Since courier is a mono-spaced font, the number 16.67 is interpreted as a pitch (characters per inch)

rather than a point size.

cfont {pos("Description"=text$[22]},23,{pos("Units"=text$[22])-1},60,univers,10 will calculate the

starting and ending column based upon where "Description" and "Units" occur in line 22, and change the

font for that column range, for rows 23 through 60.

Drivers: all, but note the following:

PDF: maps pcl font names and numbers to Courier, Helvetica, or Times-Roman. Symbol set 9J is the

default and the only symbol set supported.

Ps: maps pcl font names and numbers to a setting defined in the [psmap] section of ufparam.txt.

Matching Type1 font files can be installed in the psfont directory.

zebra: symbol sets are not supported. size is limited to scalability of the font in the printer's firmware,

typically integer multiples of the base font size in dots. Color is not supported, nor is justification.

Shading can be either 100% (black) or 0% (white). Font names are not mapped. Specify fonts instead

as font codes, which must be internal font identifiers, such as a-f, 0-9. See the ZPL documentation for

font codes.

The fit option is only supported in laser, ps, and pdf drivers.

PostScript input not supported.

UnForm Version 8.0

182

GS

Syntax

gs [yes | on | no | off]

Description

The gs command can be used to control graphical shading. The command by itself or followed by the

words "yes" or "on" will turn on graphical shading. Any other parameter value will turn graphical

shading off, resulting in the highly efficient, though not as finely rendered, internal laser shade

commands. The –gs command line option can be used to specify graphical shading by default.

If dpi is set to 600 or above (and the printer supports 600 dpi printing), graphical shading is even more

finely rendered. Note that some faxing products that convert pcl code into low-density bitmaps provide

more readable output without graphical shading. You can selectively turn graphical shading on or off

within "if copy" blocks.

Using the gs command will add approximately 2000 bytes of additional overhead to a job.

Example:

gs on

if copy 2

 gs off

 output {"|vfx –n " + faxnumber$ +" –F pcl"}

end if

Drivers: laser only

UnForm Version 8.0

183

HLINE

Syntax

hline "text" [,erase] [,extend] [,thickness]

Description

Any horizontal occurrence of the text indicated, of at least the length indicated, will be replaced with a

horizontal line. The text must be composed of a single character repeated any number of times. There

can be multiple hline keywords in a rule set, if needed. For example, if both dashes (-) and equal signs

(=) are used for lines in a form, both can be specified in separate hline keywords.

This keyword is useful if the application already produces boxes and lines with standard characters.

Also see the vline keyword.

As with all box drawing, UnForm will consider line endpoints to be at the center position of a character,

which may impact how lines intersect. Lines are drawn 1 pixel (1/300 inch) thick.

If the "erase" option is used, then no line is drawn. Instead, the horizontal text values are simply

removed from the output.

If the "extend" option is specified, the lines are extended ½ character left and right. The thickness

parameter specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format

'@left,top,right,bottom'. To use a literal "@" character in text, it is necessary to specify "\@".

Example:

hline "---" will search the report for 3 or more horizontal dashes. All such dashes found will be

replaced with a horizontal line.

Drivers: all

PostScript input not supported.

UnForm Version 8.0

184

HSHIFT

See the shift command.

UnForm Version 8.0

185

IF COPY … END IF

Syntax

if copy n,n,…

…

end if

Description

The if copy command will cause any following commands, up to an end if command, to apply only to

the copy or copies specified. The feature is used to manipulate the content of various copies. For

example, you may wish to add a text message on a specific copy, or suppress a region of text with a

white shade. When combined with attach and notext keywords, attachments can be added without the

printing of text.

end if indicates that conditional processing of the rule set is done, and keywords apply to all copies

again. The end if keyword may also be entered as endif or fi.

Examples:

if copy 2 will process keywords following this line, until an endif keyword is found, and apply keywords

only to copy 2.

if copy 3,4,6 will apply keywords to the 3 copies identified.

Drivers: all

UnForm Version 8.0

186

IF DRIVER … END IF

Syntax

if driver name

…

end if

Description

The command if driver will cause any commands to apply only when the rule set is evaluated under the

driver name. The driver is specified with the command line option "-p", and defaults to "laser".

Common drivers are laser, pdf, ps, and zebra. If Ghostscript drivers are configured, then other driver

names are available based on the [drivers] configuration in the server’s uf80d.ini file.

The command ‘if driver zebra’ applies to any Zebra driver specification (Zebra drivers include suffix-

based information).

end if indicates that conditional processing of the rule set is done, and keywords apply to all copies

again. The end if keyword may also be entered as endif or fi.

Example:

This example will use the image "pdflogo.pdf" when "-p pdf" is used on the command line.

if driver pdf

 image 1.5,2,15,6,"pdflogo.pdf"

end if

Drivers: all

UnForm Version 8.0

187

IF EXPRESSION … END IF

Syntax

if expression

…

end if

Description

The if expression block test evaluates the expression as Business Basic syntax to determine if the

enclosed UnForm rule set commands should be included in the current job. Rule set parsing occurs after

the command line is parsed, but before the job is executed. The expression can therefore use uf.xxx

values and access -prm values via the gbl() or prm() functions.

end if indicates that conditional processing of the rule set is done, and normal parsing continues. The

end if keyword may also be entered as endif or fi.

Examples

if uf.pdftitle$=""

 title "Default Title"

end if

if prm("email")>""

 # command line contained -prm email=xxx

 email {prm("email")},...

end if

Drivers: laser, pdf, ps, zebra

UnForm Version 8.0

188

IMAGE

Syntax

image col|{numexpr}, row|{numexpr} [, cols|{numexpr}, rows|{numexpr}], "file" | {expr} [,color],

[,nocache] [,option code] [,shade percent] [,gamma gamma] [,rotate rotate][,page pagenum|{expr}

Description

The image command is used to print an image file specified by file or the expr which resolves to a file

name to each page when the output position is the column and row indicated. This option is typically

used to add graphic logos to forms. The column and row can be specified with decimal fractions to

1/100 character.

The optional cols and rows parameters are used in most circumstances. Specifically, they are not used

for native PCL images (.pcl or .rtl files), or for raw Zebra images (.zpl). In those cases, the columns and

rows options are ignored. For Postscript and PDF images, and for images that are scaled and converted

for use in PCL output, columns and rows are required. If not supplied in those circumstances, then each

defaults to the cols and rows that measure one inch. It is generally advisable to include these parameters

to ensure that all versions of output will produce the desired size whenever possible.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,

columns, or rows.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which

will be interpreted as the file name as each copy prints.

Images typically require some degree of processing or parsing during a print job. To avoid extra

overhead for images that are used repeatedly, the final images are cached for reuse in later jobs.

However, in some cases it may be preferable to avoid caching images. For example, signature images

are often used only once, and caching them would waste space and cache management processing time.

To turn off caching of an image, use the nocache option. Note that cached images that remain unused

for a period of time (defined by imageage=days in uf80d.ini) are removed from the cache file

(images.dat) automatically.

The color option indicates that a color image should be produced. The –ci and –color command line

options set the color option on by default for all images. This option is ignored when printing native

format images, such as .pcl or .rtl images, but it may determine what file name substitutions might occur

in some output formats.

The shade option can be used to apply shading to the image to reduce it's intensity and allow other data

to show through the image. In PDF output, transparency must be enabled for this to work.

UnForm Version 8.0

189

The gamma value can be used to modify the colors when an image is being converted to native format.

Images that contain RGB color information often display differently on different devices and as a result

can appear darker or lighter than expected when printed. A gamma value greater than 1 lightens an

image, while a value less than 1 darkens it. This value is passed to the conversion program (Image

Magick or the Windows Support Server). It is ignored when using image files that are already in native

format for the output.

Rotation can occur when an image is being converted to native format. This value is passed to the

conversion program (Image Magick or the Windows Support Server). It is ignored when using image

files that are already in native format for the output.

The page option is supported for PDF images and PDF output. See the discussion below.

Image handling varies considerably based on the output format, and the type of image provided to the

image command. Image files can be considered "native", meaning they can be inserted by UnForm

directly into the output with little or no processing, or they can be other image formats that require

conversion first. Conversion is automatic, assuming either Image Magick or the Windows Support

Server are configured and available for UnForm's use.

The publisher also maintains an image conversion tool at http://unform.com. This tool allows users to

upload images in non-native format and produce native images for use within UnForm jobs.

PCL Output

UnForm considers an image with a .pcl, .prn, or .rtl extension to be a native PCL image. These images

are parsed to remove PCL instructions that could cause a page eject, and positioning code is inserted at

runtime to place the image in the correct location on the page. Otherwise, the image is passed through to

the output unchanged.

If an image is not in native PCL format, such as a .jpg or .tif file, then it must be converted at runtime to

PCL format. During this conversion process, the image is also scaled to the size required. The

conversion and scaling process is accomplished with Image Magick, if configured in the uf80d.ini file,

or via the Windows Support Server, if configured in uf80d.ini or with a sshost() code block command.

Internally, the image is first converted to a bitmap in color or black and white format, and then resolved

into a PCL image internally.

UnForm Version 8.0

190

Notes on Native PCL Images

Some PCL images contain width and height information. However, since passing through a

width and height would apply a default crop size to any additional image without width and

height information, UnForm strips out this width and height coding. Unfortunately, color PCL

images must contain width and height information to prevent the printer from displaying a black

band from the right edge of the image to the right margin. Therefore, when printing to a color

printer, UnForm must pass the image width and height coding to the printer. To trigger this

parsing behavior, you can do one of two things: add a "color" option to the image command, or

add a –gw, -ci, or –color option to the UnForm command line.

One side effect of passing this coding through is that you can't also use images that do not have

size information. Generally, this means you can't mix color and black and white PCL image files

in the same job.

If the row is 0 or 255, then UnForm will apply no positioning to the output. In this case, the

positioning desired should be present in the file. UnForm will scan the file, looking for image

information and possibly position data. Just that information will be sent to the output device. If

the row is greater than 0 and less than 255, then UnForm will ignore any positioning that might

be contained in the image file, and instead place the upper left corner of the image where

specified. This feature only works with pcl images that include positioning data.

PDF Output

If UnForm is producing PDF output, and the image file name ends in .pcl, .prn, or .rtl, then the file name

is modified to have a .pdf extension automatically. This allows a single fixed file name to accommodate

both laser and PDF output without special logic.

Because PDF files can contain various image formats, including full-color (24-bit) jpeg files, and

supports both color and black and white image data, UnForm goes through several logical steps to

determine how best to insert the image.

 If the image file extension is .pcl, .prn, or .rtl, UnForm instead looks for a file of the same name,

but with a .pdf extension. If the file is not found, a warning error is issued and no image is

produced. Otherwise, native .pdf handling is performed.

 If the image is in .pdf format, and the 'page n' option is not used, UnForm parses the file for the

first image on the first page, and inserts that image object in the output. Note that UnForm's

parser supports PDF files revision 1.4 and below.

If the 'page n' option is used, then UnForm will use Ghostscript 8.10 or higher to produce a

scaled image of the specified page. This page image will be in either color or black and white

format, depending on whether color or black and white image output is being produced. If

Ghostscript is not configured in the uf80d.ini file or via the Windows Support Server, this option

UnForm Version 8.0

191

results in a warning message and no page image is produced.

 If the image command or command line indicates color output, and the image file extension is

jpg or jpeg, Unform checks its size and colors setting. If it is a 24-bit jpeg file and its size is no

more than 50% larger than the specified size (based on cols and rows), then the file is inserted

directly into the output.

 If no conversion facilities are available (no Image Magick configuration and no Windows

Support Server), and the image is a 24-bit jpeg file, it is inserted into the output.

 UnForm attempts to convert and scale the image file into either a black and white pdf image, or a

24-bit color jpeg image, depending on the whether the output is color or not.

Due to internal buffer management, PDF file names can't exceed 75 characters.

PostScript Output

PostScript image output must be in either eps or jpeg format. Black and white laser printers do not

support jpeg images. Color laser printers support both eps files and both gray scale (8-bit) and color (24-

bit) jpeg images.

UnForm performs these logical steps to determine how to insert the image:

 If the image file extension is .pcl, .prn, or .rtl, then the file name is modified to have either a .eps

extension (for black and white output) or a .jpg extension (for color output). If the file exists, the

new file name is processed.

 If the file extension is jpeg and the output is color, the file is inserted in the output.

 If the file extension is eps, the file is inserted in the output.

 Other image formats are converted to jpeg or a black and white PostScript raster image, using

either Image Magick or the Windows Support Server. If these facilities are not available, a

warning error is issued and the image is not inserted.

Zebra Output

UnForm scans the first block of the file to determine if it is a native ZPL image file. ZPL images begin

with the characters "~DG" followed by some comma-delimited data. If so, the image is inserted in the

output.

If the file is not a native ZPL image, UnForm attempts to convert it to a bitmap using Image Magick or

the Windows Support Server, and then to a ZPL image. During this process, the image is scaled to the

size specified by the cols and rows parameters. If the conversion fails, then a warning error is issued and

no image is inserted.

UnForm Version 8.0

192

Zebra does not support color or shaded images.

Examples:

image .5,1.25,"/usr/UnForm/logo.pcl" will place the raster image contained in the named file at

column .5, row 1.25.

image {icol},{irow},{icols},{irows},{logo$} will place an image file specified in the variable logo$ at

the position specified by the variables icol and irow. If used in a pdf driver or when automated

conversion and scaling is invoked, the variables icols and irows would specify the image size (more

specifically, its bounding box) in columns and rows. All the variables would have to be created in a

code block, such as prejob{} or prepage{}.

Drivers: all.

UnForm Version 8.0

193

IMAGES

Syntax

images "filelist"|{expr} [,across n] [,down n] [,res|resolution n] [,color] [,tray value|{expr}]

Description

Appends image files from the filelist, which can be a literal or an expression. The list may contain any

number of semi-colon delimited file names. Each is converted to a native image in sequence and added

to pages following the current page, optionally scaled and tiled based on the across and down options.

The images are produced at 300 dpi unless otherwise specified. The images will by default be produced

in black and white unless pcl color images are indicated with a uf80c –color (or –ci) command line

option, or if the color option is specified in the images command.

Note that images, particularly color images and high resolution images, can become quite large, resulting

in larger print jobs or pdf files than are typical.

Images must be scalable, so therefore images need to be in a format that can be converted via configured

image conversion and scaling programs or the UnForm Windows Support Server. Further, of course,

one of these image conversion options must be enabled. Common formats include jpg, tiff, bmp, and

png. Specifically, pcl images cannot be used as they are not scalable. In addition, if Ghostscript is

available on the server or the Windows Support Server, then pdf files can be included. This is

particularly useful when used with UnForm archive libraries, as pdf images can be extracted from the

libraries and appended to a job. See the Statement example in samples/arcdemo.rul for an example of

using the images command along with functions to extract archive images as PDF files.

The images command can involve a great deal of image processing. Performance benefits can be

achieved with PDF files if Ghostscript 8.10 or higher is available, either on the UnForm server

(indicated by the pdffitpage=1 entry in uf80d.ini) or via the Windows Support Server.

The tray option is provided to draw paper from the tray specified for the pages produced by the image

attachments. The tray value should match the syntax found in the tray command, or can be an

expression that produces an equivalent text value.

An images command may be placed inside an 'if copy' block or be run with an exec() command in a code

block in order to append images only on selected copies or pages.

Examples

images “termsconditions1.jpg;termsconditions2.jpg”

images {all_invoices$},across 2, down 2, resolution 150, tray 5

UnForm Version 8.0

194

Drivers: laser, pdf, postscript

UnForm Version 8.0

195

ITALIC

See the bold keyword.

UnForm Version 8.0

196

JAVASCRIPT

Syntax

javascript "text"|{expr}

Description

`

This command adds document-level javascript to the pdf document. This code is executed as the

document opens, so can be used to invoke actions when the document is opened or to define functions

for use in annotation actions specified with a javascript: url in the annotate command.

Examples

javascript “function showMessage(msg) { alert msg; }”

prejob{

crlf$=$0d0a$

js$=”function showMessage(msg)”+crlf$+”alert msg;”+crlf$+”}”

}

javascript { js$}

Drivers: pdf only

UnForm Version 8.0

197

KEYWORDS

Syntax

keywords "keywordstring" | {expression}

Description

If this command is present, then PDF document creation adds a keyword keywordstring, or the result of

expression, to the document content. This value is available in the general properties display dialog in

the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 8.0

198

LANDSCAPE, RLANDSCAPE

Syntax

landscape or rlandscape

Description

This keyword will ensure that UnForm produces output in landscape (horizontal) orientation. The

default orientation is portrait (vertical), unless UnForm encounters a PCL control code setting landscape

mode (hex 1B266C314F) on the first page. Use of this keyword will force landscape mode regardless of

PCL control codes found in the input.

The rlandscape command will turn on reverse landscape mode.

Note that landscape is supported inside 'if copy' blocks, allowing different copies to be in different

orientations.

Also see the portrait keyword.

Drivers: laser, ps, pdf (rlandscape is laser only)

UnForm Version 8.0

199

LCOPIES

Syntax

lcopies n | {expr}

Description

Setting this value will cause UnForm to add a thermal printer copies command (^PQ in Zebra) to the

print output, specifying the printer generate n or numeric expression expr duplicate labels. This is

different than using an UnForm copies or pcopies command, as it instructs the printer to generate

duplicate labels at the printer, rather than allowing for distinct formatting for different copies. The

benefit of using this command is that the copies are produced by the hardware and not the print stream

output, so overhead is reduced and performance is higher.

Alternatively, in a prepage or prejob code block, the variables lcopies$ or zcopies$ can be set to a

numeric string (i.e. lcopies$=str(10)).

Drivers: zebra

UnForm Version 8.0

200

LDARKNESS

Syntax

ldarkness n | {expr}

Description

Setting this value will cause UnForm to send a thermal printer darkness command (~SD in Zebra) to the

printer. The darkness parameter can be a number n or a numeric expression expr. The value of n should

be an integer between 0 and 30, based upon current ZPL documentation.

Alternatively, in a prepage or prejob code block, the variables ldarkness$ or zdarkness$ can be set to a

numeric string (i.e. ldarkness$=str(5)).

Drivers: zebra

UnForm Version 8.0

201

LIGHT

See the bold keyword.

UnForm Version 8.0

202

LINE

Syntax

1. line col1|{numexpr}, row1|{numexpr}, col2|{numexpr}, row2|{numexpr} [,thickness] [,color|lcolor

colorname] [,rgb rrggbb]

2. line "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col1|{numexpr}, row1|{numexpr},

col2|{numexpr}, row2|{numexpr} [,thickness] [,color|lcolor colorname] [,rgb rrggbb]

Description

A line is drawn between the first column and row and the second column and row. All dimensions can

be specified to 2 decimal places, in the range of -255 to +255. If used, numexpr is a Business Basic

expression that generates a numeric value for the columns and rows.

If syntax 2 is used, then the line is drawn relative to any occurrence of the text, or of text that matches

the regular expression regexpr. In these cases, there may be no lines drawn, or several. col1 and row1

are 0-based, in these formats, and can be negative if required, and col2 and row2 are the number or

columns and rows to draw from the offset position. The search for text or regexpr can be limited to a

region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@"

character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

The origin point of a line is the center of a cell. In other words, position 1,1 is the center of the first

character cell, 0.5,0.5 is the upper left corner of the cell, and 1,1 is the lower right corner of the cell.

This is consistent with the box command.

This positioning is different from version 7.0, requiring that column positions be shifted 0.5 columns

left, and row positions be shifted 0.5 rows up.

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels

to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at

1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Color

Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or you

can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is

green (00-FF), and bb is blue (00-FF).

UnForm Version 8.0

203

Examples

The following will draw a light blue line from the upper left corner to the lower right corner of a page:

line 0.5, 0.5, 80.5, 66.5, 1, rgb 008000

The following will underline the word “TOTAL”, in conjunction with a font command:

font “TOTAL:”,0,0,5,1,cgtimes,12

line “TOTAL:”, 0, .75, {textwidth(“TOTAL:”, “cgtimes”,12,0)},0

Drivers: laser, pdf, ps (laser cannot have –nohpgl enabled)

UnForm Version 8.0

204

LOAD

Syntax

load "filename"

Description

The load command is similar, but not identical, to the merge command. Its purpose is to insert rule set

text from a disk file. The entire contents of the file is loaded into the rule set in place of the load

command.

This differs from merge in that the merge command loads a specific rule set by its name (identified in

the file as [name], whereas the load command loads the entire file.

UnForm Version 8.0

205

LOCKCOLS

Description

When the label dimensions and cols setting are established, UnForm scans mono-spaced internal fonts

for the closest match that will not exceed the cols specified, then recalculates the cols to agree with the

font selected. This allows print stream text and all other enhancements to scale together. However, it

also causes labels to shrink in printable area width, sometimes very noticeably, resulting in graphical

commands not being placed where expected. This option was added to prevent this recalculates from

occurring, at the expense of losing the print stream scale matching. With this option, graphical

commands will print where expected on the label, but may not align with print stream output.

Drivers: zebra only

UnForm Version 8.0

206

LPI

Syntax

lpi line-height

Description

The lpi keyword indicates the vertical line height UnForm should use when printing the text of a form or

report. From this, along with the paper dimensions, UnForm can determine the rows per page and

ensure that the proper vertical placement is selected for each line. To save time and effort, use the rows

keyword and UnForm will calculate the lpi.

See also cpi, cols, rows.

Examples:

lpi 8 sets 8 lines per inch.

lpi 6.6 uses a common laser printer value based on 66 lines in a 10 inch printable page length on letter

paper.

Drivers: all

UnForm Version 8.0

207

LSPEED

Syntax

lspeed n | {expr}

Description

Setting this value will cause UnForm to send a thermal printer speed command (^PR in Zebra) to the

printer. The value of n or result of expr should be an integer between 2 and 6, or between 8 and 12,

based upon printer documentation.

Alternatively, in a prepage or prejob code block, the variables lspeed$ or zspeed$ can be set to a

numeric string (i.e. lspeed$=str(2)).

Drivers: zebra

UnForm Version 8.0

208

MACRO

Syntax

macro n

Description

This keyword will cause UnForm to invoke macro number n in the LaserJet printer. This macro must be

defined and downloaded to the printer as a permanent macro. This keyword could be used to call a

macro for a company letterhead, for example. For more information, see the Working With Macros

chapter.

Drivers: laser only

UnForm Version 8.0

209

MACROS

Syntax

macros on|off

Description

This keyword causes UnForm to invoke (or not invoke) macros for fixed raster elements (box, shade,

text, image, and attach). Macro usage can significantly reduce the data transfer requirements to the

printer, most noticeably on a serial or parallel connection with many pages of similar output. The printer

must have enough memory to store and execute the macros.

The default macros setting is "off"; the "-macros" command line option establishes the default macros

setting to "on". This keyword overrides either default for this rule set.

Macros are numbered from 0 to 32767. UnForm will start macro definitions at 32000 unless the

"[defaults]" section, "macrono" field is set to a different value in the ufparam.txc file. If a site uses

macros and finds a conflict with this number, then the value should be changed to allow an available

contiguous range for UnForm.

Drivers: laser only

UnForm Version 8.0

210

MARGIN

Syntax

margin[s] left, right, top, bottom

Description

The margin keyword is used to increase the margins used by UnForm when calculating row and column

positions. Normally, UnForm will use a 0.25 inch margin on all 4 sides, based on the paper size in use.

If you need to increase any margin, you can specify the dot offsets desired. Note that the values for left,

right, top, and bottom are entered in dots, which default to 300 dpi, but can be modified by the dpi

keyword.

For example, margin 75,75,0,150 (at 300 dpi) would set left and right margins to 0.5 inches, the top

margin would remain at 0.25 inches, and the bottom margin would be 0.75 inches.

Drivers: laser, pdf, ps

UnForm Version 8.0

211

MERGE

Syntax

merge "ruleset" [, "rulefile"]

Description

This command will insert the contents of the ruleset into the currently parsed rule set. If the rulefile

parameter isn't supplied, the current rule file is used. Otherwise, rulefile is opened in the UnForm

directory or by full path, if specified, and is scanned for ruleset. This command can be used to

incorporate common elements into many rule set formats. For example, a name and address heading

could be placed into a rule set called "address_header", and various forms could use the command

merge "address_header" to include the commands it contains.

Note that if no rulefile is specified, then the rule file specified for the job is used for the merge, even if

the merge is nested within another merge that specifies another rule file.

Unlike other UnForm commands, merge works within code blocks, such as precopy or prepage, as well

as outside of code blocks.

Drivers: laser, pdf, ps, zebra

UnForm Version 8.0

212

MICR

Syntax

micr col|{numexpr}, row|{numexpr}, "account"|{expr}, "check"|{expr}

Description

Prints MICR font at the col and row specified, for laser check printing. If used, numexpr is a Business

Basic expression that generates a numeric value for the column and row. The account number must be

in the format :123456789:xxx", where the colons surround the 9-digit bank number, and the balance of

the account number is terminated with, or contains, a quote. Quotes can be identified in a text literal

with <34>. A space after the bank number and terminating colon is optional. When the MICR code is

generated, colons or A become a "transit" symbol, B becomes an "amount" symbol, quote or C become

an "on us" symbol, and a hyphen or D becomes a dash . Account numbers can contain these symbols,

spaces, and digits. The check number can be up to 12 digits long. This keyword supports 8 inch checks

only, not the smaller 6 inch variety, which requires a different format for the MICR.

If no "on us" symbol is present in the account number (i.e. no <34> or C character), then one is appended

automatically.

The fixed bank number is typically hard-coded, but can be an expression if enclosed in braces {}. The

check number will generally be an expression, which can use get() to retrieve the number from the

application print, or can be a variable defined in a prepage{} block.

Note that with proper soft font configuration, you can use the text command to print MICR encoded data

in any format, such as that required by a deposit slip. The same MICR soft fonts included for use with

this command can be used as text soft fonts.

Example:

micr 6,42.25,":123456789:9999-1234<34>",{trim(get(65,5,6))} would print a MICR encoded line with

the indicated bank and account number, and a check number derived from the input stream data printed

at column 65, row 5, for 6 characters.

Drivers: laser, ps only

UnForm Version 8.0

213

MOVE, CMOVE

Syntax

1. move col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, newcol|{numexpr},

newrow|{numexpr} [,retain]

2. move "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr}, movecols|{numexpr}, moverows|{numexpr} [,retain]

Description

cmove causes cols and rows to be interpreted as the opposite corner of the region to be moved.

The move keyword moves a block of text to a new location on the page. Syntax 1 moves the region

indicated by col, row, cols, and rows so the new upper left point is at newcol, newrow. Syntax 2

searches for occurrences of text or the regular expression regexpr, respectively, and uses each location

found as a point from which col and row are measured (0-based movement). The rectangular region

specified is then moved movecols left or right, and moverows up or down. The search for text or regexpr

can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a

literal "@" character in text or regexpr, it is necessary to specify "\@".

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,

columns, or rows, and also the "new" column and row (syntax 1) and the "move" columns and rows

(syntax 2).

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

The optional "retain" parameter will cause UnForm to leave the text in its original location, in effect

copying the text rather than moving it.

Move commands simply shift text around in an internal array, so it is possible for moves to cascade to

other moves. Moves that specify positions (syntax 1) are performed in the order found in the rule set,

then moves that are relative to text (syntax 2) are performed in the order found in the rule set.

Note that move commands occur after any shift or vshift commands. If you would like to move data

based on positions before the shift and vshift commands, consider using a text command with an

expression using the cut() or mcut() functions.

Examples:

UnForm Version 8.0

214

move 5,10,40,4,20,20 moves text at column 5, row 10, 40 columns wide and 4 rows high, to the region

20,20,40,4.

move "Date",0,0,4,1,-4,0 moves all occurrences of the word Date left by 4 columns.

Drivers: laser, pdf, ps

PostScript input not supported.

UnForm Version 8.0

215

NOTEXT, NOOVERLAY

Syntax

notext or nooverlay

Description

This keyword specifies that no report text or graphical print stream data should be printed. Typically,

this would be placed inside an "if copy n" block in order to add an attachment and prevent overwriting of

the form text.

Example:

if copy 2

 attach "/usr/UnForm/attachments/attach1.pcl"

 notext

end if

Drivers: all

UnForm Version 8.0

216

OUTLINE

Syntax

outline [level]

Description

The outline keyword turns on the production of PDF outlines (also called bookmarks) and the automatic

display of the outline when the document is displayed in an Adobe Acrobat Reader. The content of the

outline is set page by page, by setting the variable "outline$" in a precopy or prepage code block. Multi-

level outlines can be specified by delimiting the levels with vertical bar (|) characters in the outline$

string.

If level is supplied, it must be an integer greater than zero. This indicates the highest outline level that

will be initially opened when Acrobat displays the document. The default behavior is to have all levels

open, but with exceptionally large reports, it may be desirable to have just the first 1 or 2 levels initially

opened.

See the outline rule set in advanced.rul for an example.

Drivers: pdf only

UnForm Version 8.0

217

OUTPUT

Syntax

1. output "output-device"

2. output {expression}

Description

The output keyword is used to modify the output device of any copy. Normally, all copies are printed to

the output device specified in the "-o" option, or to standard out on UNIX. However, it is sometimes

desirable to have copies of forms sent to different devices, such as a different laser printer, or a fax

product.

The output-device can be a printer device, a pipe or re-direct (starting with | or >), or a filename. Beware

of pipes or redirects on UNIX, noting that any shell-aware characters, such as ampersands (&), must be

quoted.

If the second syntax is used, expression is evaluated after each page of input has been loaded and the

prepage subroutine has been executed.

When used inside an if copy block, the output for that copy only is changed. Note that this feature is

only supported in the pcl and postscript drivers. When using the pdf driver, any change to output for

different copies is ignored.

The "output$" variable can also be set in a code block for equivalent results.

Example:

if copy 2

output "|lp -daccounting -s"

end if

The above example would send the second copy of the form to the printer named "accounting".

Drivers: laser, ps; pdf only for a job-wide specification outside of "if copy" blocks as PDF output cannot

be changed during printing.

UnForm Version 8.0

218

PAGE

Syntax

1. page rows

2. page cols, rows

Description

Syntax 1 specifies an input page length of no more than rows lines. If a form-feed character is

encountered first, then the page is considered complete also. This keyword is useful if the application

creates a form with line-feeds rather than form-feeds.

If syntax 2 is used, then each page worth of rows is divided into column groups of cols wide and treated

as virtual pages from left to right. For example, if an application prints mailing labels as 4-up labels

each 30 columns wide and 6 rows deep, then the command page 30,6 would produce 4 pages, each 6

rows. This can be useful to convert n-up continuous label print jobs into laser label jobs using the

across and down commands.

If no rows or lpi keyword is specified, then n is assumed to be the rows per page.

Examples:

page 42 treats each 42 lines of input as a full page.

page 42

rows 66 treats each 42 lines input as a full page, but produces output scaled to 66 lines per page.

Drivers: all

PostScript input not supported.

UnForm Version 8.0

219

PAPER

Syntax

paper size

Description

The paper keyword overrides the "-paper" command line option. It tells UnForm the paper size to

instruct the printer to use, and also defines the page size from which UnForm calculates column and row

widths.

Common sizes for laser and PDF output are defined in ufparam.txt in the [paper] section. Such sizes

include:

Value Size

Letter 8.5 x 11 inches

Legal 8.5 x 14 inches

Ledger 11 x 17 inches

Executive 7.25 x 10.5 inches

A4 210 x 297 mm

A3 297 x 420 mm

In addition, you can specify the size in a format widthxheight. This feature defaults to inches and also

supports specification in centimeters or millimeters, using a "cm" or "mm" suffix, such as paper

20x30cm.

If you specify the "custom" paper size for laser output, UnForm will use the defined size for scaling and

will issue the proper custom paper command to the printer, but you may still have to modify the custom

paper setting via the printer's control panel to avoid prompts to load custom paper into the printer.

Drivers: all

UnForm Version 8.0

220

PORTRAIT, RPORTRAIT

Syntax

portrait or rportrait

Description

This keyword ensures that UnForm will print pages oriented in portrait (vertical) fashion. If, while

analyzing the report text, UnForm detects a PCL control sequence to turn on landscape mode, then

landscape will be the default orientation. Use this keyword to guarantee that the orientation will be

vertical.

The rportrait command turns on reverse portrait mode.

Note that portrait is supported inside if copy blocks, allowing different copies to be in different

orientations.

See also the landscape keyword.

Drivers: laser, ps, pdf (rportrait is laser only)

UnForm Version 8.0

221

PRECOPY, PREDEVICE, PREJOB, PREPAGE

POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE

Syntax

precopy | postcopy | prejob | postjob | prepage | postpage {

code block

}

Note: the opening brace "{" needs to be on the same line as the keyword. The closing brace may follow

the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the form or report. They represent

six different subroutines that UnForm executes at specific points during processing. The code block can

be an arbitrary number of Business Basic statements; the total number of statements in all code blocks

can be about 6,000.

 prejob executes after the rule set has been read, and after the first page is read, but before any

printing takes place. Use this code to open files, define string templates, create user-defined

functions, and initialize job variables.

 postjob executes after the last page has been printed. Use this to close out your logic, such as adding

totals to log reports. There is no need to close files, since UnForm will RELEASE Business Basic.

 predevice executes just after a device has been opened. With the laser driver, the output device can

be changed with the output command or by modifying the output$ variable in a prepage or precopy

code block. Whenever a new device is opened for any given copy, this code block is executed. The

programmer can then store information from the page that causes the device to be opened, such as a

customer code or fax information.

 postdevice executes just after the output device has been closed. Use this code block to perform

processing with prior output device, once UnForm has closed the device. For example, if the output

device changed when the customer number changed, then one or more pages for a given customer

would be in the output file and could be sent as a group to a fax product.

 prepage executes after each page is read, but before any printing takes place. Use this to gather data

associated with any page, or to modify the content of the text if you need such modifications to apply

to all copies.

 postpage executes after the last copy of each page has printed.

 precopy executes before each copy is printed. Use this to modify copy text content, to skip specific

copies, or to modify a copy's output device.

UnForm Version 8.0

222

 postcopy executes after each copy is printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable

assignments, and more. Program to your heart's content. UnForm will add extensive error handling

code within your code, and report syntax errors to the error log file or a trailer page.

Note that the merge command, while not executable code, is honored within a code block. The merged

data must be valid code block syntax.

For more details about programming code blocks, see the Programming Code Blocks chapter.

Example:

This example shows how to use various routines to make copy 2 of a form be a conditionally faxed

invoice, using a CSV formatted file containing a customer ID and a fax number.

prejob {

exportfile$=”/exports/faxnums.csv”

today$=dte(0:”YYYY-MM-DD”)

faxlog$=”/exports/logs/fax”+today$+.log”

}

prepage {

invoice$=get(65,5,7)

custid$=get(65,4,6)

custname$=trim(get(10,10,35))

faxnum$=getfilefield(exportfile$, custid$, 2)

}

precopy {

if copy=2 then:

if faxnum$>"" then:

output$="|fx -n "+faxnum$

log(invoice$+" "+custid$+" "+custname$, faxlog$)

 end if

end if

}

Drivers: all, but predevice and postdevice are only supported by laser and pdf drivers.

UnForm Version 8.0

223

PROTECT

Syntax

protect [print] [,annotate] [,extract] [,modify] [,password “password” | {expr}] [, owner

“password” | {expr}]

Description

Without the protect command, UnForm generates a standard PDF document that can be opened,

viewed, printed, and modified by a user. This suffices for most business documents, but if an

application requires protection of the PDF contents, then this command can be used. It adds encryption

and protection to a PDF document.

By default, only viewing access is provided to users. Additional access can be granted by including the

following options:

print adds the ability to print the document.

annotate adds the ability to add text annotations and fill in form fields.

extract adds the ability to copy text or graphics from the document for pasting into other applications.

modify adds the ability to modify document contents.

password "xxx"|{expr} sets user password required for opening document

owner "xxx"|{expr} sets owner password. If the owner password is used to open a document, Acrobat

will allow modification to document permissions. Note an owner password won't automatically enable

restricted options. Instead, it only allows changing of those permissions and saving of those new settings.

Password and owner expressions are interpreted at the start of the job, immediately after the prejob code

block is executed; therefore only page one data, or variables defined in the prejob code block, are

available for use.

Drivers: PDF only

UnForm Version 8.0

224

ROWS

Syntax

rows n

Description

This keyword specifies the number of output rows to use for the form or report. The placement of each

line is calculated to accommodate this many rows within the printable area of the paper. For example,

with letter paper, the printable area is about 10.5 inches; rows 66 will cause each line to be 10.5/66

inches high. If present, this value will override any calculation based on the lpi keyword.

The number of rows (n) can be any value up to 255. It will default to 66 if no rows, lpi, or page

keywords are present.

Note there is an important distinction between the page and rows commands. Rows refers to output

scaling, whereas page defines the number of text lines to read per page from the input stream. However,

if a page command is used, and a rows command is not, then the rows defaults to the value of the page

command.

Examples:

rows 80 will set the line height to accommodate 80 rows per page.

Drivers: all

UnForm Version 8.0

225

SHADE, CSHADE

Syntax

1. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color]

[,rgb rrggbb]

2. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent, skip, times [,extend]

[,color] [,rgb rrggbb]

3. shade "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},

cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color] [,rgb rrggbb]

If cshade is used, then cols and rows are interpreted to be the opposite corner of the shade region, and

columns and rows are calculated by UnForm.

Description

The region indicated by col, row, cols, and rows will be shaded, using the percent as the percent-gray

value. The region parameters can be specified as decimal values to 1/100 character. The region is

based on the full character cell, starting at the upper left corner of the cell. This differs from the box

keyword, which measures from the center point of a cell. The percent can be any value from 0 to 100,

where 0 is white (useful for erasing regions), and 100 is black. The default shade value is 5% (which

renders as 10% in PCL5 devices). PCL5 printers actually support only eight levels of gray, generally:

2%, 10%, 20%, 35%, 55%, 80%, 99%, and 100%. Values less than these are rounded up to the next

supported value. If you wish to issue a shade command that will do nothing, use -1 as the percent.

For compatibility with Version 1 rule files, Version 2 and above will convert shade values of 1, 2, 3, and

4 to 2%, 20%, 55%, and 100%, respectively.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,

columns, or rows.

Syntax 2 provides for repeating regions to be easily specified. The skip parameter is a number indicating

the number of blank lines that follow the shade region. The times parameter is the number of times to

repeat the shade/blank pattern. UnForm will generate multiple rows of shading until either the number

of repetitions is met or the end of the page is found. For example, shade 1,21,80,2,1,2,8 would produce

8 shaded regions, each 80 columns by 2 rows with shade grade level 1. Two blank lines would separate

the shade regions. These two parameters are ignored if the first parameter is a text string, as in syntax 3.

If syntax 3 is used, then the shading is drawn relative to any occurrence of the text, or of text that

matches the regular expression regexpr. In these cases, there may be no shaded regions, or several.

column and row are 0-based, in these formats, and can be negative if required. The search for text or

UnForm Version 8.0

226

regexpr can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'.

To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

All formats support the extend option. This simply expands the shade region by ½ character in all

directions, making it easy to fill in a box that is placed at the mid-point of each character position

surrounding the shade region.

Note that the box keyword also supports shading, and may be more convenient to use if an outlined

shaded region is desired.

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name a

RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and

bb is blue (00-FF).

You can improve the look of shade regions on laser printers, especially at medium shade levels and 600

or higher dpi settings, by using the gs command.

With PostScript input, use a shade percent of 0 to erase a region of the overlay and allow UnForm

graphical enhancements to remain visible.

Examples:

shade 41,3,40,6,2 will fill the indicated region with a medium (20%) shade.

shade 10.5,3.01,40,4.98,25 will shade the indicated region with 25% gray.

shade "No. Item/Desc",0,0,79,1,10,extend will shade from the position the noted text is found, for 79

columns and 1 line. The shaded region will then be extended ½ column and row in each direction. 10%

gray will be used.

shade 1,14,80,2,1,2,12 will produce a repeated pattern of 80 columns wide, 2 lines high, light shading,

followed by two blank lines. The pattern will be repeated 12 times, occupying a total of 48 lines.

Drivers: laser, pdf, ps

For Zebra (0% or 100% only), use a box command.

UnForm Version 8.0

227

SHIFT

Syntax

shift n

Description

The text in the report is shifted n characters to the right (or left, if n is negative). If a report starts in

column 1, but doesn't extend all the way to the right edge of the page, it is possible to shift the data to the

right to allow for box drawing around text elements on the left margin.

The placement of relative shading, drawing, and attributes is determined before any shift.

See vshift also, for shifting text vertically.

Example:

shift 1 will shift all text 1 character to the right.

Drivers: all

PostScript input not supported.

UnForm Version 8.0

228

SUBJECT

Syntax

subject "subjectstring" | {expression}

Description

If this command is present, then PDF document creation adds a subject subjectstring, or the result of

expression, to the document content. This value is available in the general properties display dialog in

the Adobe Acrobat Reader.

Drivers: PDF only

UnForm Version 8.0

229

SYMSET

Syntax

symset "symbolset"

Description

The symset keyword overrides the default symbol set setting found in the [defaults] section of the

ufparam.txt file. If there is no [defaults] section, then the symbol set 10U is used. Symbol set values for

the LaserJet are always integers followed by an uppercase letter. Be sure to quote the symbolset value to

maintain the uppercase letter (unquoted values in rule sets get converted to lowercase by UnForm's rule

file parser).

Symbol sets are used to display specific international character sets or symbols. See your LaserJet

documentation for symbol set codes supported by your printer.

If you plan to use the pdf driver in addition to the laser driver, you should specify your symbol sets as 9J

if you intend to use special characters in the ASCII 128 to 255 ranges.

Drivers: laser only

UnForm Version 8.0

230

TEXT

Syntax

1. text col|{numexpr}, row|{numexpr}, "text" | @name | $name | {expression} [,fontname] [,font

fontcode] [,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,rotate angle]

[,fixed | proportional | prop] [,color] [,rgb rrggbb] [,justification, cols ncols|icols ncols|ccols endcol]

[,wrap] [,fit] [,spacing spacing] [,weight w|weightname] [,style style|stylename]

2. text "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr}, { "text" |

@name | $name | {expression} } [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic]

[,underline] [,light] [,shade percent] [,rotate angle] [,fixed | proportional | prop] [,color] [,rgb rrggbb]

[,justification] [,cols ncols|icols ncols|ccols endcol], [eraseoffset cols, erasecols cols] [,getoffset cols,

getcols cols] [,wrap] [,fit] [,spacing spacing] [,weight w|weightname] [,style style|stylename]

Description

The text indicated in quotes will be printed at the column and row indicated by col and row. The column

and row can be specified to 1/100 character. The position specified becomes the baseline left edge for

the first character. If used, numexpr is a Business Basic expression that generates a numeric value for the

column, row, columns, or rows.

If text begins with "@", such as @company, then the substitution file is searched. In the example

above, if a line company=ABC Company was found, the text "ABC Company" is used. The

substitution file defaults to "subst", but may be specified on the command line with the "-s" option.

If text begins with "$", then the operating system environment is searched for the indicated variable and

its value is used. For example, $USER would use the value stored in the environment variable "USER".

If text should be a literal value that starts with @ or $, then use \@ or \$, respectively.

If braces surround text, then it is taken to be an expression to be evaluated after each page of input has

been loaded and the prepage subroutine has been executed. The expression can be any valid Business

Basic statement that would appear on the right side of an assignment statement and produces a string

data type result. Some UnForm supplied functions and data can be useful, such as TEXT$[], which

contains the text of the page in an array, and GET(col,row,length), a function that returns data from the

TEXT$ array. For example, {"Copy 2, generated on "+date(0)} would generate text similar to this:

"Copy 2, generated on 03/31/99". See the Programming Code Blocks chapter for more information

about programming expressions.

If text contains line-feed characters (CHR(10) or $0A$), or the mnemonic character string "\n", then

UnForm will break the text into multiple lines and space them according to the spacing value. For

example, if the point size is 12, and spacing is set to 1.5, then line spacing is set to 18 points. The

UnForm Version 8.0

231

default spacing is calculated from the number of rows per page, so multi-line text data will match the

vertical placement of single line text data.

If syntax 2 is used, then UnForm will search for occurrences of text or the regular expression regexpr. In

this case, col and row become 0-based offsets from each location where matches are found. In addition,

the erasecols cols and eraseoffset cols can be used to remove match text. The search for text or regexpr

can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a

literal "@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per

line in the search region.

Font Names and Numbers

fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all

PCL5 compatible printers. Alternately, a specific fontcode supported by your printer can be specified by

its font number. For example, if your printer supports True Type Arial, specify "font 16602". Bitmap

fonts (as opposed to scalable fonts) may be specified, but proper use depends on the form's or report's cpi

value matching that of the font. Bitmap fonts have low fontcode values, like 0 for Line Printer, or 4 for

Helvetica. fontname and fontcode values can also be specified from the "ufparam.txt" file.

Note that font 15002 is configured by default (in ufparam.txt) as a reference to the default MICR soft

font, and can be used (with 'fixed, 8' options) to print MICR encoded text lines in cases where the micr

command can't be used, such as with deposit slips, unusual bank account numbers, or non-standard

check sizes.

Symbol Sets

symset can be any symbol set supported by your printer. The default symbol set is "9J", using the

Windows Latin 1 character set (similar to ISO8859-1, but with some additional characters defined). You

can also specify symbol sets by name from the "ufparam.txt" file. Only symbol set 9J is supported by

the PDF and Postscript drivers.

To include non-printable characters, such as control codes or 8-bit characters from a specific symbol set,

include the character's numeric (ASCII) value in angle brackets. For example, to include a copyright

symbol from the Desktop (7J) symbol set, use something like this: "<165>2000 Synergetic Data

Systems Inc.", or use an expression.

Point and Pitch Size

size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a

fixed font. The values range from about 4 to 999.75 with a default of 12. PCL printers generally round

this value to the nearest or smallest ¼ point. Note that for proportional fonts, the larger the number, the

larger the size printed. Fixed fonts, such as Courier, are the opposite. If you specify the "fit" option, then

the size value represents the largest acceptable size.

UnForm Version 8.0

232

Fit and Wrap Options

The "fit" option will scan text for line breaks and decrease the size value as necessary to ensure that all

lines will fit in the number of specified ncols or through endcol. The smallest point size that will be

used is 4, and the largest pitch that will be used is 30.

The "wrap" option will scan text and insert line breaks as needed to ensure no line at the specified size

will exceed the specified ncols. If no spaces exist in word that exceeds the line width, UnForm will print

the word in its entirety, exceeding the allocated space.

The "fit" and "wrap" options are mutually exclusive, and in either case, if no ncols or endcol value is

specified with the "cols" option, then ncols defaults to the page width in columns minus column.

Attribute Styles

The attribute words "bold", "italic", "underline", and "light" will apply the indicated attribute(s) to the

text.

Shading

percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.

Note that the gs command can be used to improve laser printer shading.

Rotation

The "rotate" option will cause the text to be rotated around the baseline left edge at the angle specified.

If the –nohpgl option is used while producing pcl laser output, then the angle must be 90, 180, or 270

degrees. Any angle can be specified for other formats.

Fixed and Proportional Spacing

Specify "fixed" or "proportional" (or "prop") to override the default of fixed for Courier (or any fontcode

below 4100), and proportional for all else. For example, if a mono-spaced font, such as the MICR soft

font, has a font code higher than 4100, then the "fixed" option is required in order to ensure the proper

font is selected, rather than a default proportional font. Proportional vs. fixed carries a very high priority

when a printer chooses a font, and if the desired font is not specified with the correct spacing, a different

font will be chosen by the printer.

Color

Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or you

can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is

green (00-FF), and bb is blue (00-FF).

Justification

justification can be one of the following words: "left", "center", "right", "decimal". UnForm will

remove leading and trailing spaces from the text and justify it within the column specification. Decimal

justification will use a "." character unless a "decimal=character" line is placed in the ufparam.txt file

under the [defaults] section.

UnForm Version 8.0

233

For justification, you must also specify ncols or endcol with the "cols", "icols", or "ccols" option, so that

UnForm can determine the right edge of the justification region.

Weight and Style

Some laser printer fonts must be specified with given weight or style in order to be selected by the

printer. For example, the font Clarendon Condensed is only available if the condensed style is specified,

by adding "style 4" or "condensed" to the font command. Style and weight options and codes can be

found in the ufparam.txt file. Note that fonts are expressly designed for certain weights and styles, and

simply specifying an unsupported value does not produce the desired result. In fact, it may result in

selection of a different font entirely. Check your printer's documentation or control panel prints for

supported fonts.

Get Text From Input Stream

If "getoffset" and "getcols" are specified in a syntax 2 command, then the value printed is taken from the

data stream at the offset and length specified from each occurrence (any text value supplied is ignored).

Further, "eraseoffset" and "erasecols" can be used to remove any data stream text from the point of

occurrence as well.

Barcode Note

The text command can be used to print a human-readable version of a barcode value, which can be

useful in cases where the human readable value differs from the supplied value, such as UPC-E, or when

a check digit value is needed.

Text in this syntax: "bcdsss|value" to print the human readable barcode value for symbology sss and

barcode text value, "ck1sss|value" to print check digit 1, or "ck2sss|value" to print check digit 2. See the

barcode command for symbology values.

Special Symbol Fonts

There is a difference between PDF and laser output for special symbols. In the laser printer

environment, you need to select a symbol set and font that contains the special characters you want, but

in the PDF environment, you need only select the font (font 4141 for Dingbat and 16686 for Symbol).

Once a symbol set or font is identified, use the appropriate decimal value of text to print the character

you want. The easiest way to do this is with angle bracket notation in a literal, like "<182>", or with the

CHR function in an expression, like {CHR(182)}.

On many LaserJet printers, the available symbol sets and fonts differ from those specified in UnForm's

ufparam.txt file, and the only way to know for sure what is available is to do a font list print on the

printer. This should show you the proper symbol set and font number to use for your printer.

Postscript Type1 Fonts

All Postscript printers include a base set of fonts, including Courier, Times-Roman, and Helvetica. The

[psmap] section of ufparam.txt links font numbers to Postscript font names, and the most often used font

numbers are mapped in the default ufparam.txt file. The [psmap] section looks like this:

UnForm Version 8.0

234

[psmap]

Maps pcl font numbers to postscript font names. Each number is

set to up to four font filenames for normal, bold, italic, and

bold-italic fonts in order. If a fontname.pfa or fontname.pfb

file is present in the psfont directory, then it is downloaded when used.

Such fonts must be Adobe Type1 fonts.

psfont/<fontname>.afm files provide metrics.

4099=Courier,Courier-Bold,Courier-Oblique,Courier-BoldOblique

4101=Times-Roman,Times-Bold,Times-Italic,Times-BoldItalic

4102=Courier,Courier-Bold,Courier-Oblique,Courier-BoldOblique

4141=ZapfDingbats

In order to use custom Type1 fonts, follow these steps:

 Install the font’s .pfa or .pfb files, as well as the metric file (.afm) in the psfont directory.

 Assign a unique number to the fonts, using the same normal, bold, italic, and bold-italic sequence

found in the standard font mapping, if the font provides these versions.

 Optionally map a font name to the number in the [fonts] section of ufparam.txt.

 Text or font commands can now specify the font by number (font n) or name.

TrueType Fonts and Unicode

TrueType fonts can be configured by assigning font numbers to font file names in the [ttmap] section of

ufparam.txt, in a manner similar to the [psmap] section described above. In the Windows environment,

the system's Fonts directory is automatically searched as well as the ttfont directory under the UnForm

server, so there is no need to define full paths to system fonts on Windows.

When using a TrueType font, text data must be in Unicode format, where each character is represented

with two bytes rather than one. Standard single-byte encodings therefore need to be converted to

Unicode, by mapping the characters in the string to the proper double-byte characters in Unicode. Most

character sets use the same characters in the 0-127 character range, but vary in the 128-255 range.

Unicode can represent any of these characters with a specific 0-65535 value, allowing any character set

to be represented in Unicode. The tables for most PCL symbol sets as well as several common character

sets are included with UnForm in its unicode directory, and UnForm provides internal and code block

functions to perform mapping.

Normally, UnForm will assume that the text data provided to the command is single-byte data, and it

will internally map the text to a Unicode string based on the symbol set setting. The default symbol set

(9J) matches the ISO-8859-1 character set, so that is the default translation.

If you wish to specify Unicode directly, you can do so in a variety of ways. You must add a "uc" or

"unicode" option to the text command to indicate the text data is already in Unicode format.

UnForm Version 8.0

235

 Use the touc(text$,charset$) function in an expression, which returns the Unicode version of

text$, given that text$ is in the identified character set or symbol set. For example, {touc("Total

Sales","9J")}.

 Specify raw double-byte sequences as hexadecimal in an expression, using hex notation, such

as {00300039}.

 Use the <xhex> syntax in literal text, such as "<x00300039>".

Examples:

text 10,2,"SOLD TO" prints the text SOLD TO at the indicated position.

text 120,3,$LOGNAME prints user's login name at column 120, line 3.

text 1.25,63.25,{"Printed on "+date(0)}, cgtimes, 6, italic would place a small (6 point), italic note

about the date near the lower left corner of a page.

text "TOTAL:",-1,0,"Total:",cgtimes,12,bold,eraseoffset 0, erasecols 6 changes words TOTAL: to

Total: in CGTimes, 12 point, after backing up 1 column from where TOTAL: is found. It also erases the

word TOTAL: to avoid overprinting.

text 67,21,"bcd125|00010000654",univers,12 will print the UPC-E human readable barcode value.

text 20,62,{terms$},cgtimes,10,cols 40,wrap,spacing 1 will print a paragraph of text contained in

terms$ between column 20 and 59, in CGtimes 10 point text, word-wrapping as necessary, using a

nominal line height matching the 10 point text.

text {pos("Item"=text$[20])},21,"Number",cgtimes,12 will print the word "Number" on line 21, in

the same column where the word "Item" is found in line 20.

text 20.5,20,{mcut(10,20,12,40,"","y","y")},cgtimes,12,right will cut text from the data stream, at

column 10, row 20, for 12 columns, 40 rows, retaining line breaks, and print it as a column of 40 rows at

column 20.5, row 20. The column will be printed in the font CGtimes, 12 point size, right justified.

text 1,60,{mcut(1,60,200,5,"","","")},univers,10,wrap,cols 60 will cut a large message block from

the data stream, at column 1, row 60, for 200 columns, 5 rows, removing line breaks. It will then print it

at column 1, row 60, at 10 point size and word wrapping to make it fit within 60 columns.

Drivers: all. PDF driver fonts map to Courier, Helvetica, or Times-Roman based on the [pdfmap]

section if ufparam.txt, and support only symbol set 9J (ISO8859-1 with extensions). PS maps based on

the [psmap] section in ufparam.txt. Zebra fonts are limited in scalability, and the font codes are letters or

numbers that identify internal font codes specified in the ZPL documentation. Zebra shading is limited

to 0% or 100%. Zebra doesn't support colors or decimal justification, or wrap and fit options. Light and

underline options are only supported by the pcl driver.

UnForm Version 8.0

236

TITLE

Syntax

title "titlestring" | {expression}

Description

If this command is present, then PDF document creation adds a title titlestring, or the result of

expression, to the document content. This value is available in the general properties display dialog in

the Adobe Acrobat Reader.

The title command is also honored by the UnForm Desktop Client, though expressions are not

supported.

Drivers: pdf only

UnForm Version 8.0

237

TRANSPARENCY

Syntax

transparency on|yes|off|no

Description

The transparency command turns on or off PDF transparency mode, which affects shading created by the

image, text, box, and shade commands. When transparency mode is on, shading is implemented as a

partial transparency, which allows objects to show through the shade region.

Transparency can also be controlled in the uf80d.ini file (pdftrans=n) or with the -pdftrans or -nopdftrans

command line options.

Drivers: PDF only

UnForm Version 8.0

238

TRAY

Syntax

tray paper-source

Description

The tray keyword can be used to specify the paper source for any copy or for the print job. If, for

example, you have two input trays, one with letterhead stock and one with plain stock, you can specify

which paper stock to use for any form or copy of a form.

Trays can be varied by copy, to pull different paper for different copies.

The paper-source is printer dependent. Typically, tray 1 is an upper tray source, tray 2 is a manual feed

source, and tray 4 and 5 are a lower and middle paper sources. These will likely not coincide with

physical tray numbers labeled on the printer itself, unfortunately. To determine the proper tray values,

see your printer's documentation for the paper source command.

The printer model’s (-m command line option) PPD file (or generic pcl.ppd or ps.ppd files) can specify

*InputSlot paper-source entries which are used if present.

When producing output to a *winprt* Windows printer, the tray command specifieds a tray number that

is assigned by the vendor, typically a number over 256, though there are pre-defined Windows values

published by Microsoft that some vendors honor. A list of tray numbers for a Windows printer can be

obtained with the system object, using the winprttrays$(printer$) method.

Example

tray 5

if copy 2

 tray 4

end if

Drivers: laser, ps, *winprt* only

UnForm Version 8.0

239

UNDERLINE

See the bold keyword.

UnForm Version 8.0

240

UNITS

Syntax

units dpi | char

Description

As UnForm parses a rule set, column and row specifications are normally interpreted as decimal column

and row numbers that align enhancement elements such as boxes and shade regions with characters in

the source data. If you need to specify absolute dot positions, however, you can change the units to dpi.

From that point in the rule set, until a units char is found, row and column values are interpreted as

integer dot positions. Note that the dpi keyword has a direct impact on dpi units, though no impact on

char units.

For example, the following will print two text phrases at column 1 inch, row 1.5 inch.

units dpi

text 300,450,"Hello, world"

dpi 600

text 600,900,"Over printing hello world"

units char

Drivers: laser, ps, PDF

UnForm Version 8.0

241

VLINE

Syntax

vline "text" [,erase] [,extend] [,thickness]

Description

Any vertical occurrence of the text indicated, of at least the length indicated, will be replaced with a

vertical line. The text must be composed of a single character repeated any number of times. There can

be multiple vline keywords in a rule set, if needed.

This keyword is useful if the application already produces boxes and lines with standard characters. See

also the hline keyword.

As with all box drawing, UnForm will consider line end-points to be at the center position of a character,

which may impact how lines intersect. Lines are drawn one dot (1/300th inch) thick.

If the "erase" option is used, then no line is drawn. Instead, the vertical text values are simply removed

from the output.

If the "extend" option is used, the lines are extended ½ characters up and down. The thickness parameter

specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format

'@left,top,right,bottom'. To use a literal "@" character in text, it is necessary to specify "\@".

Example:

vline "|" will search the report for pipe characters. All such characters found will be replaced with

vertical line draw (box) characters.

Drivers: all

PostScript input not supported.

UnForm Version 8.0

242

VSHIFT

Syntax

vshift n

Description

The vshift keyword shifts text vertically down (or up, if n is negative) the indicated number of lines.

The shifting is done before placement of any fixed shading or boxes. Lines shifted out of the printing

region (line 1 through the page specification, or 255 if not specified) are not printed. See the shift

keyword, also, for horizontal shifting.

The placement of relative shading, drawing, and attributes is determined before any shift.

Example:

vshift 1 shifts all text down 1 line, providing room for a box definition at the top of the page.

Drivers: all

PostScript input not supported.

UnForm Version 8.0

243

ZCOPIES, ZDARKNESS, ZSPEED

See the lcopies, ldarkness, and lspeed commands.

UnForm Version 8.0

244

WORKING WITH MACROS

Using macros can increase the speed and efficiency of printing your enhanced forms and documents by

storing fixed raster graphics (e.g. logos) on the printer instead of transmitting these graphics on every

page being printed. With the graphics stored on the printer, only 12 to 14 bytes are transmitted to the

printer to select the macro to print. The time savings for printing are most noticeable when your system

can't communicate to your printer at a high speed. For parallel or local network connections, macro

usage doesn't often make too much difference. However, if you use serial connections or wide area

network printing with low- or shared-bandwidth, then implementing macros can help performance. The

more graphics used in enhancing forms, the more print transmission time you can save by using macros.

The PCL5 specification defines two types of macros: temporary and permanent. Temporary macros are

downloaded at the start of a print job, and can be executed by the printer until it is reset at the end of the

job. Permanent macros remain in printer memory until the printer power is turned off. A number from 1

to 32767 always identifies macros.

To access permanent macros, simply add macro n (n=macro #) to the rule set. To instruct UnForm to

utilize temporary macros, add the macros on command to the rule set. UnForm will then generate

temporary macros for any fixed elements of the job, download them at the start of the job, and execute

them as the job is printed.

If you print large batches of forms at one time, and use a serial or low-bandwidth network connection,

temporary macros can produce considerable time savings by reducing the amount of data transmitted to

the form. For example, if a logo image is 20,000 bytes, and line drawing and shading add another 5,000

bytes, a 50 page form will save about 49 x 25,000 bytes, or about 1.2MB. At typical serial throughput,

this could save as much as 10 minutes of print time. High-speed printer connections (parallel or local

network) only produce minimal time savings, which is sometimes offset by the extra overhead incurred

by UnForm to manage the macros in memory.

UnForm also provides the ability to generate permanent macro files. Permanent macros can be

downloaded when the printer is turned on, and then UnForm can execute them without the overhead of

downloading them at the start of a job. To utilize this enhanced functionality, you must modify the rule

file and create a command line script to load the graphics into the printer.

To use this capability, you should split a rule set into two rule sets. One will be used to generate the

permanent macros (there can be a macro for each copy defined in the rule set); the other will be used as

before, but will replace the elements placed in the macros with macro n commands.

The rule set used to generate the macro can contain these commands that are in fixed positions: image,

attach, box, shade, and text. It can also contain if copy blocks. It should not contain any other

commands or any of the named commands if they incorporate relative positioning. Detect commands

are ignored; you will use the "-r ruleset" command line option instead. The remaining commands should

UnForm Version 8.0

245

be left in the original rule set, and macro n commands added based upon the macro numbers assigned in

the command described below.

Next, you need to generate macro files for each copy that is used in the rule set. To do this, use this

command line:

uf80c –makemacro macro-number –f rulefile –r macro-rule-set –macrocopy copy –o output-file

UnForm will generate a permanent macro in output-file, numbered as macro-number. This is the same

number you would then specify in the regular rule set, as macro macro-number. On UNIX, the output

can be piped directly to the spooler, either by removing the –o option or by using a quoted pipe as the

output file: –o "|lp –o raw –d printername".

UnForm Version 8.0

246

REGULAR EXPRESSIONS

Regular expressions are supported in many of UnForm's keywords, and can be used to great advantage in

detect statements and relative enhancements. Regular expressions are similar to, but much more

powerful than, MS-DOS or UNIX wildcards.

A regular expression is used to match patterns in text. By using special characters, called meta

characters, UnForm can be instructed to search for patterns, such as dates or codes, and use them in

processing. Below is a description of the various meta characters and how to use them.

 The simplest regular expression contains no meta characters. It just matches itself. John will match

any occurrence of the text "John".

 Brackets can be used to match any of a group of values: [Jj]ohn will match both "John" and "john".

 If a range of letters or numbers is valid in a position, then the range can be indicated in a similar

manner: [A-Za-z]ohn will match any letter, upper or lower case, followed by the letters "ohn".

 If single character positions are not enough, then groups of options can be used with parentheses and

vertical bars, like this: (John)|(Jack)|(Jill) Smith, which matches any of the first names, along with

"Smith".

 If any character will do in a position, use a dot: Jo.n will match "Jo", followed by any single

character, followed by "n".

 To repeat any pattern, including a dot, use an asterisk (*) for 0 or more repetitions, or + for 1 or more

repetitions: J.*n will match a "J", followed by 0 or more characters, followed by "n". Jo+n would

match a "J" followed by one or more "o"s, followed by "n".

 You can include multiple meta characters and patterns in the expression. For example, to search for

3 digits followed by 2 letters: [0-9][0-9][0-9][A-Z][A-Z].

 To disable the special meaning of any of the meta characters, prefix it with a backslash. For

example, a phone number might include parentheses; to include them in the expression, they must be

disabled: \(...\)-...-.....

 The meta characters are: ., *, +, (,), |, [,], ^, and $.

UnForm Version 8.0

247

SAMPLE RULE FILES

UnForm is supplied with several sample report text files and associated rule sets. A description of each

report and rule set follows. Each of the sample reports is in the UnForm directory, named "samplen.txt."

All example rule sets can be found in the files simple.rul and advanced.rul in the UnForm directory.

The simple.rul file contains a series of examples that use the sample invoice text file, sample1.txt.

Beginning with the rule set simple1, and incrementally advancing in capabilities through simple4, this

rule file is designed to help a new user learn fundamental UnForm concepts. To try these out, use this

command, varying the rule set name (-r argument) simple1 with one of the four samples, simple1,

simple2, simple3, or simple4:

uf80c –i sample1.txt –f simple.rul –r simple1 –o output-device

The advanced.rul file contains rule sets that show a variety of topics, and is designed to show advanced

concepts. To produce these samples on your own laser printer or to a PDF file, you can use the

following command, substituting the proper sample text file:

uf80c –i sample-file –f advanced.rul –o output-device

For the output device, you can use a device name, like LPT1 or /dev/lp0, a file name, or a quoted pipe

command to a spooler. For example, to print the first sample to a spooler, use something like this:

uf80c –i sample1.txt –f advanced.rul –o "|lp –dhp –oraw"

To produce PDF versions of these files, change the output device to a PDF file name, and add "-p pdf" to

the command line:

uf80c –i sample1.txt –f advanced.rul –p pdf –o invoice_sample.pdf.

Change "-o invoice_sample.pdf" to "-o client:invoice_sample.pdf" to store the output on the client's

system.

A few of the samples don't support detection capabilities, and they must be specified on the command

line with a "-r ruleset" option. If necessary, the documentation will state this requirement.

UnForm Version 8.0

248

SIMPLE1 - invoice rule set (simple.rul)

This is the first example of an invoice rule set, found in simple.rul. To produce this example:

uf80c –i sample1.txt –f simple.rul –p pdf –o client:simple1.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple1]

Detect statements are used to identify this form from any other report that the application might send to

the printer through UnForm. Unlike most form packages, UnForm doesn't dedicate a printer name to a

particular form (though it can be configured to do so). Instead, it reads the first page of data, then

compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that

 a date (mm/dd/yy format) followed by 2 spaces, followed by 7 more characters will appear at

column 61, row 5

 6 characters will appear at column 9, row 11

 a date, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~../../.. " # invoice date and #

detect 9,11,"~......" # customer code

detect 10,21,"~../../.." # ord date and cust code

The following lines define that the dimensions of the page are 80 columns by 66 rows. All positioning

will be based on 80 columns and 66 rows appearing within the printed margins of the page.

cols 80 # max output columns

rows 66 # max output rows

The header section draws a box around the entire form with a cbox command, then adds a logo and

some header text. The" \n" character sequence represents a line break, so you can print a column of text

easily. All the text commands are using the univers font, which is standard in all supported laser

printers and which maps to Helvetica in PDF output.

header section

cbox .5,.5,80.5,66.5,5

image 1,1,12,6,"sdsilogo.pcl"

text 15,2,"Company Name",univers,14,bold

text 15,3,"Company Address\nCompany City, St Zipcode\nCompany Phone",univers,12,bold

text 15,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold

text 70,2,"INVOICE",univers,16,bold

UnForm Version 8.0

249

The upper right of the form contains a box with grid lines and some title text, placed around the existing

text supplied from the input stream (in this example, the file sample1.txt). The cbox command draws an

outer box using the primary dimensions, and then adds internal horizontal lines at rows 6 and 8, and

internal vertical lines at columns 69 and 78. The second row simply duplicates the bottom row, but adds

20% shading between rows 6 and 8.

Additional heading and box sections are drawn in a similar manner, for the remainder of the form. All

the drawing simply adds details on top of, or around, the input data stream.

invoice # section

cbox 60,4,80.5,8,crows=6 8::20,ccols=69 78

text 61,7,"Date",univers,italic,10

text 70,7,"Invoice #",univers,italic,10

text 79,7,"Pg",univers,italic,10

bill to / ship to section

cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20

text 2,11,"Sold To",cgtimes,italic,10

text 45,11,"Ship To",cgtimes,italic,10

ribbon section

cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65

special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19,"Order\nNumber",univers,italic,10

text 10,19,"Order\nDate",univers,italic,10

text 19,19,"Cust.\nNumber",univers,italic,10

text 26,19,"Sls\nPrs",univers,italic,10

text 30,19,"Purchase\nOrder No.",univers,italic,10

text 43,19,"\nShip Via",univers,italic,10

text 57,19,"Ship\nDate",univers,italic,10

text 66,19,"\nTerms",univers,10,italic

detail section

cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 69

text 1,23,"Qty\nOrd",univers,italic,10

text 6,23,"Qty\nShip",univers,italic,10

text 11,23,"Qty\nBkord",univers,10,italic

text 17,23,"\nItem & Description",univers,italic,10

text 52,23,"\nU/M",univers,italic,10

text 56,23,"Unit\nPrice",univers,italic,10

text 70,23,"Extended\nPrice",univers,italic,10

footer section

cbox 57,57,80.5,65,crows=59 63,ccols=69::20

text 58,58,"Sales Amt",univers,11

text 58,61,"Sales Tax",univers,11

text 58,62,"Freight",univers,11

text 58,64.25,"TOTAL",univers,bold,14

UnForm Version 8.0

250

SIMPLE2 – invoice rule set (simple.rul)

This is a somewhat more advanced rule set than simple1, demonstrating how to add fonting,

justification, and text movement to the job. Additional notes are supplied to highlight these concepts.

To prevent simple1's detection code from selecting the job, add a –r option to the command line:

uf80c –i sample1.txt –f simple.rul –r simple2 –p pdf –o client:simple2.pdf

[simple2]

to use this rule set, you need to FORCE the rule set with the -r option

or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding

fonting and justification.

It also cuts and pastes the invoice #/date/pg fields which allows

more room for company name and address to be centered

Also notice first use of relative expression in a text command to fix

a problem with fonting a series of rows. Put a # in front of this

command to see the problem that occurs. See memo section.

detect 61,5,"~../../.. " # invoice date and #

detect 9,11,"~......" # customer code

detect 10,21,"~../../.." # ord date and cust code

cols 80 # max output columns

rows 66 # max output rows

The header section has changed to use center and right justification. Note the use of cols=79 in each

text command, which tells UnForm the bounds of the justification region. For example, the text

"Company Name" is centered in the region starting at column 1, for 79 columns.

header section

cbox .5,.5,80.5,66.5,5

image 1,1,12,6,"sdsilogo.pcl"

text 1,2,"Company Name",univers,14,bold,center,cols=79

text 1,3,"Company Address\nCompany City, St Zipcode\nCompany

Phone",univers,12,bold,center,cols=79

text 1,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold,center,cols=79

text 1,2,"INVOICE",univers,16,bold,right,cols=79

The Invoice number section is re-formatted here, by first drawing a new, vertically-oriented grid and

heading section, then by using text commands with expressions that use the cut() function. The

expression is indicated by the curly braces, such as {cut(61,5,8,"")}, which directs UnForm to resolve

the function as the job processes each page. In the line starting with "text 75,5", the data from the input

stream at column 61, row 5, for 8 characters is cut and replaced with nothing (""), and it becomes the

value printed at column 75, row 5.

UnForm Version 8.0

251

Further down, in the bill to/ship to section, is an example of the mcut() function, which cuts multiple

lines and replaces them with "", retaining line breaks and trimming each line of leading and trailing

spaces.

invoice # section

cbox 67,4,80.5,10,1,crows=6 8,ccols=74::20

text 68,5,"Date",univers,italic,10

text 68,7,"Invoice",univers,italic,10

text 68,9,"Page #",univers,italic,10

cut data from old position and place in new

text 75,5,{cut(61,5,8,"")},cgtimes,bold,10

text 75,7,{cut(71,5,7,"")},cgtimes,bold,10

text 75,9,{cut(79,5,2,"")},cgtimes,bold,10

bill to / ship to section

cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20

text 2,12,"Sold To",cgtimes,italic,10,center,cols=5

cfont 8,11,40,11,cgtimes,bold,10,left

cfont 8,12,40,15,cgtimes,bold,10 # sold to address

text 45,12,"Ship To",cgtimes,italic,10,center,cols=5

cfont 51,11,80,11,cgtimes,bold,10,left

text 51,12,{mcut(51,12,30,4,"","Y","Y")},cgtimes,bold,10

ribbon section

cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65

special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19,"Order\nNumber",univers,italic,10,center,cols=8

text 10,19,"Order\nDate",univers,italic,10,center,cols=8

text 19,19,"Cust.\nNumber",univers,italic,10,center,cols=6

text 26,19,"Sls\nPrs",univers,italic,10,center,cols=3

text 30,19,"Purchase\nOrder No.",univers,italic,10,center,cols=12

text 43,19,"\nShip Via",univers,italic,10,center,cols=13

text 57,19,"Ship\nDate",univers,italic,10,center,cols=8

text 66,19,"\nTerms",univers,italic,10,center,cols=14

This section changes the fonts of the input data stream in the invoice ribbon section. For example, the

first cfont command changes the data in column 1, row 21 through column 8, row 21, to cgtimes, bold,

10 point, centered text. Note how the font command applies to the incoming data stream, which differs

from the text command, which adds additional output to the job. Font commands therefore work with

integer positions, as they modify the character-base data stream as it passes through to the output.

cfont 1,21,8,21,cgtimes,bold,10,center # order #

cfont 10,21,17,21,cgtimes,bold,10,center # order date

cfont 19,21,24,21,cgtimes,bold,10,center # cust #

cfont 26,21,28,21,cgtimes,bold,10,left # sls prs code

cfont 26,22,64,22,cgtimes,bold,10,left # sls prs name

cfont 30,21,41,21,cgtimes,bold,10,center # po #

cfont 43,21,55,21,cgtimes,bold,10,center # ship via

cfont 57,21,64,21,cgtimes,bold,10,center # ship date

cfont 66,21,80,22,cgtimes,10,center # terms

detail section

cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 67

text 1,23,"Qty\nOrd",univers,italic,10,right,cols=4

UnForm Version 8.0

252

text 6,23,"Qty\nShip",univers,italic,10,right,cols=4

text 11,23,"Qty\nBkord",univers,10,italic,right,cols=4

text 17,23,"\nItem & Description",univers,italic,10

text 52,23,"\nU/M",univers,italic,10,center,cols=3

text 56,23,"Unit\nPrice",univers,italic,10,right,cols=11

text 68,23,"Extended\nPrice",univers,italic,10,right,cols=12

This section performs two distinct fonting functions. First, the detail item columns are fonted. Note that

you can't simply font the entire detail section in a proportional font, as the spacing between columns

would be lost. Instead, each column is fonted individually.

However, the data stream for the invoice also contains memo lines in the middle of the detail item lines,

and those memo lines should not be broken into individual columns.

 Therefore, an additional font command is added after the column fonting, which will override any font

characteristics defined for any given data position in a prior font command. This memo section fonting

uses a technique that will scan the page for a pattern (in this example, 4 spaces in the region outlined by

column 1, row 25 through column 4, row 56), and change font characteristics relative to those locations

found. In this example, wherever the 4 spaces are found, fonting will occur 17 columns to the right, 0

rows down, for 60 columns and 1 row. These are the memo lines found in the midst of the item detail

lines.

cfont 1,25,4,56,cgtimes,10,bold,right # qty ord

cfont 6,25,9,56,cgtimes,10,bold,right # qty shipped

cfont 11,25,15,56,cgtimes,10,bold,right # qty b/o

cfont 17,25,50,56,cgtimes,10,left # item # & desc

cfont 52,25,54,56,cgtimes,10,bold,center # u/m

cfont 56,25,66,56,cgtimes,10,bold,right # unit price

cfont 68,25,79,56,cgtimes,10,bold,right # extended

memo section

font " @1,25,4,56",17,0,60,1,cgtimes,10,left

footer section

cbox 57,57,80.5,65,crows=59 63,ccols=67::20

text 58,58,"Sales Amt",univers,11

cfont 58,60,66,60,univers,11,left

text 58,61,"Sales Tax",univers,11

text 58,62,"Freight",univers,11

text 58,64.25,"TOTAL",univers,bold,14

cfont 68,58,79,65,cgtimes,bold,right,14 # totals

UnForm Version 8.0

253

SIMPLE3 – invoice rule set (simple.rul)

This rule set adds copy handling, a watermark, and a barcode. To produce this sample, use this

command:

uf80c –i sample1.txt –f simple.rul –r simple3 –p pdf –o client:simple3.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple3]

to use this rule set, you need to FORCE the rule set with the -r option

or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding

copies, watermark, and a barcode.

dsn_sample "sample1.txt"

detect 61,5,"~../../.. " # invoice date and #

detect 9,11,"~......" # customer code

detect 10,21,"~../../.." # ord date and cust code

cols 80 # max output columns

rows 66 # max output rows

This rule set produces two copies of each page, with each copy sequentially produced as each page is

read from the data stream. The pcopies command indicates this page-oriented copy production. There

is also a copies command, which produces job-oriented copies for laser jobs. Note that PDF output

always is produced as page-oriented copies, whether copies or pcopies is used.

When copies are produced, all rule set content that is not bracketed within 'if copy' blocks is produced

on all copies. The majority of this rule set is outside of such blocks, so the majority will be applied to

both copies. Near the bottom of the rule set is some code that will apply distinctly to each copy.

copies

pcopies 2

header section

cbox .5,.5,80.5,66.5,5

image 1,1,12,6,"sdsilogo.pcl"

text 1,2,"Company Name",univers,14,bold,center,cols=79

text 1,3,"Company Address\nCompany City, St Zipcode\nCompany

Phone",univers,12,bold,center,cols=79

text 1,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold,center,cols=79

text 1,2,"INVOICE",univers,16,bold,right,cols=79

invoice # section

cbox 67,4,80.5,10,1,crows=6 8,ccols=74::20

text 68,5,"Date",univers,italic,10

text 68,7,"Invoice",univers,italic,10

text 68,9,"Page #",univers,italic,10

cut data from old position and place in new

UnForm Version 8.0

254

text 75,5,{cut(61,5,8,"")},cgtimes,bold,10

text 75,7,{cut(71,5,7,"")},cgtimes,bold,10

text 75,9,{cut(79,5,2,"")},cgtimes,bold,10

bill to / ship to section

cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20

text 2,12,"Sold To",cgtimes,italic,10,center,cols=5

cfont 8,11,40,11,cgtimes,bold,10,left

cfont 8,12,40,15,cgtimes,bold,10 # sold to address

text 45,12,"Ship To",cgtimes,italic,10,center,cols=5

cfont 51,11,80,11,cgtimes,bold,10,left

text 51,12,{mcut(51,12,30,4,"","Y","Y")},cgtimes,bold,10

ribbon section

cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65

special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19,"Order\nNumber",univers,italic,10,center,cols=8

text 10,19,"Order\nDate",univers,italic,10,center,cols=8

text 19,19,"Cust.\nNumber",univers,italic,10,center,cols=6

text 26,19,"Sls\nPrs",univers,italic,10,center,cols=3

text 30,19,"Purchase\nOrder No.",univers,italic,10,center,cols=12

text 43,19,"\nShip Via",univers,italic,10,center,cols=13

text 57,19,"Ship\nDate",univers,italic,10,center,cols=8

text 66,19,"\nTerms",univers,italic,10,center,cols=14

cfont 1,21,8,21,cgtimes,bold,10,center # order #

cfont 10,21,17,21,cgtimes,bold,10,center # order date

cfont 19,21,24,21,cgtimes,bold,10,center # cust #

cfont 26,21,28,21,cgtimes,bold,10,left # sls prs code

cfont 26,22,64,22,cgtimes,bold,10,left # sls prs name

cfont 30,21,41,21,cgtimes,bold,10,center # po #

cfont 43,21,55,21,cgtimes,bold,10,center # ship via

cfont 57,21,64,21,cgtimes,bold,10,center # ship date

cfont 66,21,80,22,cgtimes,10,center # terms

detail section

cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 67

text 1,23,"Qty\nOrd",univers,italic,10,right,cols=4

text 6,23,"Qty\nShip",univers,italic,10,right,cols=4

text 11,23,"Qty\nBkord",univers,10,italic,right,cols=4

text 17,23,"\nItem & Description",univers,italic,10

text 52,23,"\nU/M",univers,italic,10,center,cols=3

text 56,23,"Unit\nPrice",univers,italic,10,right,cols=11

text 68,23,"Extended\nPrice",univers,italic,10,right,cols=12

cfont 1,25,4,56,cgtimes,10,bold,right # qty ord

cfont 6,25,9,56,cgtimes,10,bold,right # qty shipped

cfont 11,25,15,56,cgtimes,10,bold,right # qty b/o

cfont 17,25,50,56,cgtimes,10,left # item # & desc

cfont 52,25,54,56,cgtimes,10,bold,center # u/m

cfont 56,25,66,56,cgtimes,10,bold,right # unit price

cfont 68,25,79,56,cgtimes,10,bold,right # extended

memo section

font " @1,25,4,56",17,0,60,1,cgtimes,10,left

UnForm Version 8.0

255

This text line adds a large text watermark on line 56, centered horizontally. The text is printed in

cgtimes, 120 point, with 10% shading applied.

.
watermark

text 1,56,"INVOICE",cgtimes,120,shade=10,center,cols=80,fit

footer section

cbox 57,57,80.5,65,crows=59 63,ccols=67::20

text 58,58,"Sales Amt",univers,11

cfont 58,60,66,60,univers,11,left

text 58,61,"Sales Tax",univers,11

text 58,62,"Freight",univers,11

text 58,64.25,"TOTAL",univers,bold,14

cfont 68,58,79,65,cgtimes,bold,right,14 # totals

The barcode command can be used to add barcodes in many symbologies. It is similar to other

commands, in that you provide a column, row, and value. In addition, you specify a symbology (400 is

Code 3 of 9), a point size or pixel height (14.0, being a decimal rather than integer value, is treated as

point size), and a bar spacing value in pixels. Like most commands, you can use expressions in the

value element of the command. In this example, the data stream data from column 9, row 11, for 6

characters is used on each page, using the get() function within an expression.

text 2,58,"Customer code as 3 of 9 barcode",univers,italic,10

barcode 2,58.67,{get(9,11,6)},400,14.0,4

The following lines produce different output for each of the two copies. Copy 1 is labeled with a text

command to say it is the "Customer Copy", while copy 2 is labeled as "Accounting Copy". Any

commands outside of 'if copy' blocks are applied to all copies.

copy name section

if copy 1

 text 1,65.5,"Customer Copy",univers,12,bold,center,cols=80

end if

if copy 2

 text 1,65.5,"Accounting Copy",univers,12,bold,center,cols=80

end if

UnForm Version 8.0

256

SIMPLE4 – invoice rule set (simple.rul)

This rule set demonstrates the use of constants, graphical shading, colors, and expressions to produce

explanatory notes in the document. To produce this sample, use this command:

uf80c –i sample1.txt –f simple.rul –r simple4 –p pdf –o client:simple4.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple4]

to use this rule set, you need to FORCE the rule set with the -r option

or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding

constants, graphical shading, increases the resolution,

and adds explanatory text commands for cust # and ship to #.

Also adds a copy for a packing slip with no prices.

dsn_sample "sample1.txt"

detect 61,5,"~../../.. " # invoice date and #

detect 9,11,"~......" # customer code

detect 10,21,"~../../.." # ord date and cust code

Constants are simple text names that are replaced by values later in the rule set. They can be used to

simplify maintenance of the rule set, or to make it easier to read. In this example, a series of constants

is defined using the const command, and you will find the names referenced throughout the balance of

the rule set.

const MAXCOLS=80 # max cols to output

const MAXRCOLS=79 # MAXCOLS-1

const LEFTCOL=.5 # use 1 if empty

const RIGHTCOL=80.5 # use LEFTCOL for symmetry

const MAXROWS=66 # max rows to output

cols MAXCOLS

rows MAXROWS

copies

const CUSTOMER_COPY=1

const FILE_COPY=2

const PACK_COPY=3

pcopies 3

The dpi setting applies to laser output only, and instructs the printer to produce output at 600 dpi,

providing a typically crisper, more professional look. In addition, the gs on command turns on

graphical shading mode, so that shade regions and shaded text are rendered as graphical data rather

than using pcl's internal, typically coarse, shade macros.

UnForm Version 8.0

257

dpi 600

gs on # turn on graphical shading

enhancement constants

const HSHADE=30

const ISHADE=20

const DSHADE=10

const HFONT=univers,11

const IFONT=univers,italic,10

const DFONT=cgtimes,10

const DBFONT=DFONT,bold

header section

cbox LEFTCOL,.5,RIGHTCOL,{MAXROWS+.5},5

image 1,1,12,6,"sdsilogo.pcl"

text 1,2,"Company Name",HFONT,14,bold,center,cols=MAXRCOLS

text 1,3,"Company Address\nCompany City, St Zipcode\nCompany

Phone",HFONT,12,bold,center,cols=MAXRCOLS

text 1,6,"Web: www.myweb.com\nEmail:

sales@myweb.com",HFONT,bold,center,cols=MAXRCOLS

text 1,2,"INVOICE",HFONT,16,bold,right,cols=MAXRCOLS

invoice # section

cbox 67,4,RIGHTCOL,10,1,crows=6 8,ccols=74::ISHADE

text 68,5,"Date",IFONT

text 68,7,"Invoice",IFONT

text 68,9,"Page #",IFONT

cut data from old position and place in new

text 75,5,{cut(61,5,8,"")},DBFONT

text 75,7,{cut(71,5,7,"")},DBFONT

text 75,9,{cut(79,5,2,"")},DBFONT

The cbox command shown here uses constants defined above, plus shows the use of color options, which

are supported by PDF and color laser output. In this example, the interior is colored in cyan, and the

lines are colored in blue. Alternately, RGB hex triplets (such as 800000 for dark red) can be specified

using the rgb, scolor rgb, or lcolor rgb options.

bill to / ship to section

cerase 1,11,MAXCOLS,11 # erase cust#,ship# used later in text commands

cbox LEFTCOL,11,RIGHTCOL,18.5,5,cyan,lcolor=blue,ccols=7::ISHADE 43.5 50::ISHADE

text 2,12,"Sold To",IFONT,center,cols=5

cfont 8,11,40,11,DBFONT,left

cfont 8,12,40,15,DBFONT # sold to address

This text command shows an example of how to use an expression to construct a message using a

combination of hard-coded text and information from the data stream. In this example, the phrase

"Your customer code is" is concatenated with the data at column 9, row 11, for 6 characters, on each

page, and the result is printed at column 9, row 18, using the specifications provided by the constant

IFONT, defined earlier in the rule set.

text 8,18,{"Your customer code is "+get(9,11,6)+"."},IFONT

text 45,12,"Ship To",IFONT,center,cols=5

cfont 51,11,80,11,DBFONT,left

text 51,12,{mcut(51,12,30,4,"","Y","Y")},DBFONT

text 51,18,{"Your ship to code is "+get(55,11,6)+"."},IFONT

UnForm Version 8.0

258

ribbon section

cbox LEFTCOL,18.5,RIGHTCOL,22.5,5,lcolor=blue,crows=20.5::ISHADE:cyan,ccols=9 18 25

65

special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19,"Order\nNumber",IFONT,center,cols=8

text 10,19,"Order\nDate",IFONT,center,cols=8

text 19,19,"Cust.\nNumber",IFONT,center,cols=6

text 26,19,"Sls\nPrs",IFONT,center,cols=3

text 30,19,"Purchase\nOrder No.",IFONT,center,cols=12

text 43,19,"\nShip Via",IFONT,center,cols=13

text 57,19,"Ship\nDate",IFONT,center,cols=8

text 66,19,"\nTerms",IFONT,center,cols=14

cfont 1,21,8,21,DBFONT,center # order #

cfont 10,21,17,21,DBFONT,center # order date

cfont 19,21,24,21,DBFONT,center # cust #

cfont 26,21,28,21,DBFONT,left # sls prs code

cfont 26,22,64,22,DBFONT,left # sls prs name

cfont 30,21,41,21,DBFONT,center # po #

cfont 43,21,55,21,DBFONT,center # ship via

cfont 57,21,64,21,DBFONT,center # ship date

cfont 66,21,80,22,DBFONT,center # terms

detail section

if copy PACK_COPY

 erase "~\.[0-9][0-9]@62,25,79,56",-6,0,11,1

endif

cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24.5::DSHADE,ccols=5 10 16 51 55 67

text 1,23,"Qty\nOrd",IFONT,right,cols=4

text 6,23,"Qty\nShip",IFONT,right,cols=4

text 11,23,"Qty\nBkord",IFONT,right,cols=4

text 17,23,"\nItem & Description",IFONT

text 52,23,"\nU/M",IFONT,center,cols=3

text 56,23,"Unit\nPrice",IFONT,right,cols=11

text 68,23,"Extended\nPrice",IFONT,right,cols=12

cfont 1,25,4,56,DBFONT,right # qty ord

cfont 6,25,9,56,DBFONT,right # qty shipped

cfont 11,25,15,56,DBFONT,right # qty b/o

cfont 17,25,50,56,DFONT,left # item # & desc

cfont 52,25,54,56,DBFONT,center # u/m

cfont 56,25,66,56,DBFONT,right # unit price

cfont 68,25,79,56,DBFONT,right # extended

memo section

font " @1,25,4,56",17,0,60,1,DFONT,left

watermark

if copy CUSTOMER_COPY,FILE_COPY

 text 1,56,"INVOICE",DFONT,120,shade=DSHADE,center,cols=MAXCOLS,fit

endif

if copy PACK_COPY

 text 1,56,"PACK SLIP",DFONT,120,shade=DSHADE,center,cols=MAXCOLS,fit

endif

footer section

cbox 57,57,RIGHTCOL,65,lcolor=red,crows=59 63,ccols=67::HSHADE

text 58,58,"Sales Amt",HFONT

UnForm Version 8.0

259

cfont 58,60,66,60,HFONT,left

text 58,61,"Sales Tax",HFONT

text 58,62,"Freight",HFONT

text 58,64.25,"TOTAL",HFONT,bold,14

cfont 68,58,79,65,DBFONT,right,14 # totals

text 2,58,"Customer code as 3 of 9 barcode",IFONT

barcode 2,58.67,{get(9,11,6)},400,14.0,4

Note the use of constants to make this section easier to read.

copy name section

if copy CUSTOMER_COPY

 text 1,65.5,"Customer Copy",HFONT,12,bold,center,cols=MAXCOLS

end if

if copy FILE_COPY

 text 1,65.5,"Accounting Copy",HFONT,12,bold,center,cols=MAXCOLS

end if

if copy PACK_COPY

 text 1,65.5,"Packing Slip",HFONT,12,bold,center,cols=MAXCOLS

end if

This text line demonstrates the use of multi-line text forced to fit within a certain number of columns.

UnForm scans each of the two lines (delimited by the \n character sequence, or it could contain data

with line-feed or carriage-return line-feed delimiters) to determine the width, beginning with the point

size 12 specified in the command. The size is reduced until both lines will fit within the 20 columns

specified with the cols option. Once the correct point size is determined, the lines are spaced normally

for that height. For example, if the size required is 8.25 points, then the lines will be spaced 8.25 points

apart. If spacing had been set to 1.5, then the lines would be spaced 12.33 points apart.

text 2,62,"This sample message text, which contains\nline breaks, is sized to fit

in 20 columns.",cols 20,cgtimes,12,fit,spacing 1

UnForm Version 8.0

260

INVOICE - invoice for pre-printed form (advanced.rul)

This sample is an invoice that is intended for a pre-printed form. The data generated by the application

doesn't include any headings or simulated line drawing like a plain-paper invoice might. In this case,

UnForm must simulate the entire pre-printed invoice form.

uf80c –i sample1.txt –f advanced.rul –p pdf -o client:invoice.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[Invoice]

Detect statements are used to distinguish this form from any other report that the application might send

to the printer through UnForm. Unlike most form packages, UnForm doesn't dedicate a printer name to

a particular form (though it can be configured to do so). Instead, it reads the first page of data, then

compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that

 a date (mm/dd/yy format) followed by 2 spaces, followed by 7 more characters will appear at

column 61, row 5

 6 characters will appear at column 9, row 11

 a date, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~../../.. " # invoice date and #

detect 9,11,"~......" # customer code

detect 10,21,"~../../.." # ord date and cust code

The following lines define several constants that are used elsewhere in the rule set. Wherever the

constant names appear in a command, the value is substituted. Constants are not variables and are not

interpreted while the job is processed. They are simply literal placeholders used while UnForm reads

rule set lines.

set up document constants

const MAXCOLS=80 # max cols to output

const MAXRCOLS=79 # MAXCOLS-1

const LEFTCOL=.5 # use 1 if empty

const RIGHTCOL=80.5 # use LEFTCOL for symmetry

const MAXROWS=66 # max rows to output

The following lines define the page size and orientation. The dpi command sets the printer to 600 dots

per inch. The rows and cols commands set the dimension for positioning and scaling. All positioning

will be based on 80 columns and 66 rows appearing within the printed margins of the page. The gs on

UnForm Version 8.0

261

command triggers the use of graphical shading, which improves the look of shade regions over the

native pcl shading of most laser printers, especially at higher dpi settings and shade percentages. In

addition, UnForm will generate two copies of the job, with each page producing two copies as

processed (collated).

portrait

dpi 600

gs on # graphical shading

cols MAXCOLS # max output columns

rows MAXROWS # max output rows

to print more copies, increase value and add copy titles in prejob

pcopies 2 # max # of copies

If this rule set is used to produce a PDF document, then the title of "Sample Invoice" will be added to

the PDF file. For laser output, the title command is ignored.

title "Invoice Sample" # view in PDF properties

The prejob code block is executed once at the beginning of the job, after the first page of data has been

read and the rule set parsed. This example is simply setting a variable form_title$ to a literal value

INVOICE. This variable is used later in the rule set.

The prepage code block is executed once per page, just after UnForm has read the text for the page, but

before any copies of that page have been printed. Within a prepage code block, you can insert any valid

Business Basic code (though you need to be careful not to insert any UnForm commands.) This code

initializes a variable shipzip$ to null, then looks for a regular expression pattern of 5 digits on line 15.

If the pattern is found, it sets shipzip$ to the zip code. After the code block is closed, a barcode

command is used to place a postnet barcode below the shipping address. The barcode command uses

the syntax "{shipzip$}", indicating the expression shipzip$ should be used to generate the data to

barcode.

Once the prepage code block creates shipzip$, it then scans a range of rows looking for special memo

format lines. It marks these lines with the characters "mL" in the first two columns. Later in the rule

set, you'll see how these markers are used to treat memo lines differently than standard invoice lines.

The order of execution is controlled by UnForm. There is actually no need to place the barcode

command below the prepage code block, as UnForm will properly execute the code block before any

form commands are executed at run-time.

prejob {

 # set up variables needed by merged routines below

 # if form title changes per page,

 # set up in prepage routine below

UnForm Version 8.0

262

 form_title$="INVOICE"

}

prepage {

 # find zip code in city,state,zip line for bar code

 shipzip$=""

 # regular expression of 5 digits on line 15

 x=mask(text$[15],"[0-9][0-9][0-9][0-9][0-9]")

 if x>0 then shipzip$=get(x,15,5)

 # mark memo lines for special handling in detail section below

 # memo start in column 28 with all spaces before

 for i=25 to 56

 if len(text$[i])>27 and trim(text$[i](1,27))="" then \

 text$[i](1,2)="mL"

 next i

}

The pdf driver supports the ability to email the PDF file created using the email command. The

commented # email line below provides an example of the command. It requires four arguments, each

of which can be a literal string value or a string expression enclosed in braces. In order for the email

command to work, the mailcall.ini file must be properly configured for your system.

When run in PDF mode, and if mailcall.ini is configured properly,

and if the system can communicate with the mail server, then the

next line would send the PDF invoice as an attachment to an email.

email "someone@somewhere.com","me@mycompany.com", \

{"A test invoice "+cvs(get(71,5,7),3)}, \

"Attached is a sample invoice\n"

The next group of commands creates a page header with box and text commands. The box commands

are given as the cbox variant, which accepts two pairs of numbers as opposite corners of the box. Some

of the commands are stored in a different rule set, called "Mrg Form Header". This rule set is also

located in the advanced.rul file. The lines in that rule set are merged in here as if they were part of this

rule set.

Note that some of the text commands, and also a barcode command, use an expression rather than a

literal. An expression is an executable value assignment enclosed in braces. For example, one text

command uses an expression {cut(61,5,8,"")},which cuts out the text at column 61, row 5, for 8 columns,

returning the result, while setting those positions to "". The result is printing at position 75,5 what was

at position 61,5.

heading section

const HFONT=univers,12 # headings

cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box

merge "Mrg Form Header" # merge std hdr rules

UnForm Version 8.0

263

right top ribbon

const HFONT=univers,11,italic # headings

const DFONT=cgtimes,11,bold # data

draw info box with internal grid and shading

horizontal lines at 6 and 8

vertical line at 74 with shading between 67 and 74

cbox 67,4,RIGHTCOL,10,5,crows=6 8,ccols=74::20

text 68,5,"Date",HFONT

text 68,7,"Invoice",HFONT

text 68,9,"Page #",HFONT

cut data from old position and place in new

text 75,5,{cut(61,5,8,"")},DFONT

text 75,7,{cut(71,5,7,"")},DFONT

text 75,9,{cut(79,5,2,"")},DFONT

sold to section

cbox LEFTCOL,10,41,18.5,5

cbox LEFTCOL,10,41,11.25,0,10

text 8,10.75,"SOLD TO",HFONT,bold

cfont 8,12,40,15,DFONT # sold to address

if copy 1

 barcode 8,16,{shipzip$},900,9.0,2

end if

text 2,18,{"Your customer code is "+cut(9,11,6,"")+"."},8,cgtimes

ship to section

cbox 41,10,RIGHTCOL,18.5,5

cbox 41,10,RIGHTCOL,11.25,0,10

text 48,10.75,"SHIP TO",HFONT,bold

cut ship to address and place in new position

text 48,12,{mcut(51,12,30,4,"","Y","Y")},DFONT

text 43,18,{"Your ship to code is "+cut(55,11,6,"")+"."},8,cgtimes

This section draws order detail boxes and headings. The first cbox command draws a grid, using the

internal crows and ccols options. In addition to the boxes and headings, the font used for the data from

the input stream is changed using a series of cfont commands, one for each section.

ribbon section

const L1=19

const L2=20

draw info box with internal grid and shading

horizontal line at 20.5 with shading between 18.5 and 20.5

vertical lines at 9, 18, 25, and 65

cbox LEFTCOL,18.5,RIGHTCOL,22.5,5,crows=20.5::20,ccols=9 18 25 65

special internal grid in ribbon box

cbox 29,18.5,65,21.5

UnForm Version 8.0

264

cbox 42,18.5,56,21.5

ribbon headings

text 1,L1,"Order",HFONT,right,cols=8

text 1,L2,"Number",HFONT,right,cols=8

text 10,L1,"Order",HFONT,center,cols=8

text 10,L2,"Date",HFONT,center,cols=8

text 19,L1,"Cust.",HFONT

text 19,L2,"Number",HFONT

text 26,L1,"Sls",HFONT

text 26,L2,"Prs",HFONT

text 30,L1,"Purchase",HFONT

text 30,L2,"Order No.",HFONT

text 43,L2,"Ship Via",HFONT

text 57,L1,"Ship",HFONT,center,cols=8

text 57,L2,"Date",HFONT,center,cols=8

text 66,L2,"Terms",HFONT

ribbon data

cfont 1,21,8,21,DFONT,right # order #

cfont 10,21,17,21,DFONT,center # order date

cfont 19,21,24,21,DFONT # cust #

cfont 26,21,28,21,DFONT # sls prs code

cfont 26,22,64,22,DFONT # sls prs name

cfont 30,21,41,21,DFONT # po #

cfont 43,21,55,21,DFONT # ship via

cfont 57,21,64,21,DFONT,center # ship date

cfont 66,21,MAXCOLS,22,DFONT # terms

This section of lines controls the formatting of the invoice detail lines. A grid is drawn around the

column headers and detail lines. The column headers are shaded. Item detail lines are fonted using a

series of font commands that look for the pattern "~\.[0-9][0-9][0-9][0-9]" which is a period followed by

4 digits. Wherever that occurs, font changes are made relative to that position. Similarly, the memo

lines identified by the prepage code block and marked with the text marker "mL" are fonted with a

different column structure. In addition to the font command, an erase command is used to remove the

text markers.

detail section

detail headings

const L1=23

const L2=24

draw info box with internal grid and shading

horizontal line at 24.5 with shading between 22.5 and 24.5

vertical lines at 5, 10, 16, 51, 55, and 67

cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24.5::10, \

 ccols=5 10 16 51 55 67

text 1,L1,"Qty",HFONT,right,cols=4

text 1,L2,"Ord",HFONT,right,cols=4

text 6,L1,"Qty",HFONT,right,cols=4

text 6,L2,"Ship",HFONT,right,cols=4

text 11,L1,"Qty",HFONT,right,cols=5

UnForm Version 8.0

265

text 11,L2,"Bkord",HFONT,right,cols=5

text 20,L2,"Item & Description",HFONT

text 52,L2,"U/M",HFONT,center,cols=3

text 56,L1,"Unit",HFONT,right,cols=11

text 56,L2,"Price",HFONT,right,cols=11

text 68,L1,"Extended",HFONT,right,cols=12

text 68,L2,"Price",HFONT,right,cols=12

detail data

Modify fonts for lines. As comments may be present in the same rows,

use a pattern to locate the .nnnn in the price column,

which indicates a part number line.

Use a prepage routine to find the comments and change their font.

font "~\.[0-9][0-9][0-9][0-9]",-61,0,4,1,DFONT,right # qty ord

font "~\.[0-9][0-9][0-9][0-9]",-56,0,4,1,DFONT,right # qty shipped

font "~\.[0-9][0-9][0-9][0-9]",-50,0,4,1,DFONT,right # qty b/o

font "~\.[0-9][0-9][0-9][0-9]",-42,0,30,2,DFONT # item # & desc

font "~\.[0-9][0-9][0-9][0-9]",-10,0,3,1,DFONT,center # u/m

font "~\.[0-9][0-9][0-9][0-9]",-6,0,11,1,DFONT,right # unit price

font "~\.[0-9][0-9][0-9][0-9]",6,0,12,1,DFONT,right # ext price

handle memo lines

inserted 'mL' in prepage above

font "mL@1,25,2,56",10,0,63,1,HFONT

erase "mL@1,25,2,56",0,0,2,1

Watermark text is placed in the middle of the detail lines. This text is centered between column 1 and

MAXCOLS, is rendered at 120 points, and is printed at 20% gray shading.

watermark - large font with light shading

text 1,52,{form_title$},cgtimes,120,shade 20,center,cols=MAXCOLS

The totals section is formatted like the other sections, with a grid, text headings, and font changes that

apply to the input stream text.

totals section

draw info box with internal grid and shading

horizontal lines at 59 and 63

vertical line at 69 with shading between 58 and 69

cbox 58,57,RIGHTCOL,65,5,ccols=69::20,crows=59 63

text 59,58,"Sales Amt",HFONT

text 59,61,"Sales Tax",HFONT

text 59,62,"Freight",HFONT

text 59,64.25,"TOTAL",HFONT,bold,14

cfont 59,60,68,60,HFONT # disc hdr

cfont 70,58,MAXRCOLS,65,DFONT,14,decimal # totals

These text lines simply demonstrate some of UnForm's paragraph features. The first text command

forces the longest line in the paragraph to fit within the number of defined columns. The maximum point

UnForm Version 8.0

266

size is 12, but that may be adjusted down to accommodate the longest line. Lines are delimited by the \n

character sequence, or by a CHR(10) within an expression. Line spacing is determined by the final

point size, and may be adjusted with the spacing option. For example, if the rendered size is 8 point,

then the spacing of 1 will result in 9 lines per inch (9 x 8=72), while spacing of 1.5 would result in 6

lines per inch (9/1.5=6).

The second example will force use the defined point size to render the text, but any lines wider than the

specified columns will be word-wrapped.

The third example shows how to use a specified ASCII value in a text command. The ASCII value 174,

when printed using the symbol set 9J, is a trademark symbol. This technique can be used to print Latin

characters and special symbols. The symbol set determines what any given character value prints as.

The 9J symbol set is the default. See the –testpr command line option for viewing printed tables of

different symbol sets.

footer section

These lines show fitting and wrapping of text

text 2,60,"This sample message text, which contains\nline breaks, \

 is sized to fit in 20 columns.",cols 20,cgtimes,12, \

 fit,spacing 1

text 28,60,"This sample message text is word wrapped to not exceed \

 20 columns, while retaining the specified 12 point size.",\

 cgtimes,cols 20,12,wrap,spacing 1

text 2,64,"This sample was generated by UnForm<174>.",7,cgtimes, \

 symset 9J,blue

This set of commands places the phrase "Customer Copy" on copy 1, and "Remittance Copy" on copy 2.

The text is placed at row 65.5, and is centered within the columns defined at column 1 and the constant

MAXCOLS, which represents the whole page width.

copy name section

const ROW=65.5

if copy 1

 text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS

end if

if copy 2

 text 1,ROW,"Accounting Copy",HFONT,bold,center,cols=MAXCOLS

end if

UnForm Version 8.0

267

STATEMENT - plain paper form, two page formats in same job (advanced.rul)

In this sample, a two-page, plain paper statement is printed. The two pages contain two slightly different

formats, with the second page containing detail lines and a customer aging, and the first page containing

some more detail lines and the phrase "CONTINUED" at the bottom. In the same statement print run,

some statements may contain a single page, others two or more pages.

The trick here is to get UnForm to produce two formats based on the content of each page. In order to

accomplish this, we define the job to produce multiple copies, and assign certain copies to certain

formats. Using a precopy{} code block, we can then control the printing of the different formats.

uf80c –i sample2.txt –f advanced.rul –p pdf –o client:statement.pdf

This statement header identifies this rule set.

[Statement]

The word STATEMENT appears at column 34, row 2, and a date appears at column 65, row 7. To

further clarify, a date format is matched at position 65, 7.

detect 34,2,"STATEMENT"

detect 65,7,"~../../.." # statement date

The page dimensions are 66 rows and 75 columns. The text input to UnForm doesn't contain any form-

feeds to indicate the end of a page, so the command "page 66" tells UnForm to consider each 66 lines to

be a page.

Pcopies 4 is used to tell UnForm to print 4 copies of each page, with copies following each other in

sequence for each page (collated). You will find later that UnForm doesn't actually print all copies of

each page, but instead simply prints selected copies, depending on the format required. As each page is

processed, if the page contains aging totals, UnForm prints 2 copies of that format, and if it does not

contain aging totals, then UnForm prints 2 copies of the second format.

set up document constants

const MAXCOLS=75 # max cols to output

const MAXRCOLS=74 # MAXCOLS-1

const LEFTCOL=1 # use 1 if empty

const RIGHTCOL=75 # MAXCOLS for symmetry

const MAXROWS=66 # max rows to output

portrait

dpi 300

UnForm Version 8.0

268

gs on # graphical shading

cols MAXCOLS # max output columns

rows MAXROWS # max output rows

page MAXROWS # no form-feeds used

to print more copies, increase value and add copy titles in prejob

Copy 1,2 Statement with aging totals

Copy 3,4 Statement w/o aging totals

pcopies 4 # max # of copies

If this rule set is used to produce a PDF document, then the title "Statement Sample" will be added to

the PDF file. For laser output, the title command is ignored.

title "Statement Sample" # view in PDF properties

The prejob command defines a string variable form_title$, assigning it the value "STATEMENT". This

variable is used later in the rule set for a page heading and also in a watermark.

prejob {

 # set up variables needed by merged routines below

 # if form title changes per page,

 # set up in prepage routine below

 form_title$="STATEMENT"

}

The prepage code block performs 2 functions. It checks the input data for the word "CONTINUED" at

position 66, 64. If that word is present, then a variable continued$ is assigned to the phrase

"Continued"; otherwise it is set to null. In addition, at three individual lines (16, 62, and 64), there may

be single ! characters used as character-mode vertical lines in the input data. Elsewhere in the rule set

is a 'vline "!!", erase' command, which erases instances of 2 or more ! characters vertically on the page.

This code takes care of the single-row instances.

prepage {

 # get continued if it exists

 continued$=get(66,64,9)

 if continued$="CONTINUED" then continued$="Continued" \

 else continued$=""

remove single ! from line draw regions

 x=pos("!"=text$[16]); \

 while x>0; text$[16](x,1)="",x=pos("!"=text$[16]);wend

 x=pos("!"=text$[62]); \

 while x>0; text$[62](x,1)="",x=pos("!"=text$[62]);wend

UnForm Version 8.0

269

 x=pos("!"=text$[64]); \

 while x>0; text$[64](x,1)="",x=pos("!"=text$[64]);wend

}

The precopy code block is executed as each of the 4 copies are about to be printed. The logic here

indicates the copies 1 and 2 are for pages that do not contain the word "CONTINUED" (remember the

prepage code block?), and copies 3 and 4 do contain that word. By setting the variable skip to a non-

zero value, the copy being processed is skipped. Only 1 of the 2 formats is printed, depending on the

content of the page.

precopy {

 if copy=1 or copy=2 then if continued$="Continued" then skip=1

 if copy=3 or copy=4 then if continued$<>"Continued" then skip=1

}

The following lines remove most of the existing character-mode line drawing elements from the input

data. The hline and vline commands scan for places where at least the indicated number of characters,

horizontally or vertically, occur on the page. The erase option removes them rather than replacing them

with graphical lines.

#remove existing lines

hline "--",erase

hline "==",erase

vline "!!",erase

cerase 1,1,1,MAXROWS # erase all 1st column

cerase MAXCOLS,1,MAXCOLS,MAXROWS # erase all last column

The following lines draw the page headings. Some of the commands are stored in another rule set,

"Mrg Form Header", which is merged as the rule set is parsed. The headings already exist, and are

moved and fonted with text commands using expressions, such as {cut(66,5,4,"")}.

heading section

const HFONT=univers,12 # headings

cerase 1,1,MAXCOLS,10

cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box

merge "Mrg Form Header" # merge std hdr rules

right top ribbon section

const HFONT=univers,11,italic # headings

const DFONT=cgtimes,11,bold # data

draw info box with internal grid and shading

horizontal line at 6

vertical line at 68 with shading between 63 and 68

cbox 63,5,MAXCOLS,9,5,crows=7,ccols=68::20

UnForm Version 8.0

270

text 64,6,{cut(66,5,4,"")},HFONT # page #

text 64,8,{cut(59,7,4,"")},HFONT # date

text 69,6,{trim(cut(71,5,3,""))},DFONT # page #

text 69,8,{trim(cut(65,7,8,""))},DFONT # date

customer section

draw info box with internal grid and shading

vertical line at 10 with shading between 1 and 10

cbox LEFTCOL,10,MAXCOLS,15,5,ccols=10::10

text 2,11,{cut(2,10,2,"")},HFONT # to

text 4,13,{trim(cut(15,10,10,""))},DFONT # cust code

cfont 12,11,MAXCOLS,14,DFONT # address

The detail section contains several columns of information. There are fewer detail lines on pages with

the aging data, so the grid drawing is made specific to particular formats with "if copy 1,2" and "if copy

3,4" sections. Then two groups of font changes are used, first for the column headings and then for the

data columns.

detail section

detail headings

draw info box with internal grid and shading

horizontal line at 6

vertical line at 68 with shading between 63 and 68

if copy 1,2

 cbox LEFTCOL,15,MAXCOLS,56,5,crows=17::20, \

 ccols=10 18 27 39 48 60 63

end if

if copy 3,4

 cbox LEFTCOL,15,MAXCOLS,61,5,crows=17::20, \

 ccols=10 18 27 39 48 60 63

end if

const ROW=16

cfont 2,ROW,9,ROW,HFONT,center # date

cfont 11,ROW,17,ROW,HFONT # inv #

cfont 19,ROW,26,ROW,HFONT,center # due date

cfont 28,ROW,38,ROW,HFONT,right # due amt

cfont 40,ROW,47,ROW,HFONT,center # pmt date

cfont 49,ROW,59,ROW,HFONT,right # pmt amt

cfont 61,ROW,62,ROW,HFONT,center # type

cfont 64,ROW,MAXRCOLS,ROW,HFONT,right # balance

detail data

const DFONT=cgtimes,11 # data

cfont 2,18,9,60,DFONT,center # date

cfont 11,18,17,60,DFONT # inv #

cfont 19,18,26,60,DFONT,center # due date

cfont 28,18,38,60,DFONT,right # due amt

cfont 40,18,47,60,DFONT,center # pmt date

cfont 49,18,59,60,DFONT,right # pmt amt

UnForm Version 8.0

271

cfont 61,18,62,60,DFONT,center # type

cfont 64,18,MAXRCOLS,60,DFONT,right,BOLD # balance

A watermark prints the form title as large, lightly shaded text. Its position depends upon the format,

hence the use of if copy blocks.

watermark - large font with light shading and rotation

if copy 1,2

 text 39,56,{form_title$},cgtimes,75,shade 20,center, \

 cols=MAXCOLS,rotate 90

end if

if copy 3,4

 text 44,61,{form_title$},cgtimes,85,shade 20,center, \

 cols=MAXCOLS,rotate 90

end if

The footer section differs considerably between the two formats. Copies 1 and 2 are associated with

pages that have aging data, so you see the fonting of the aging columns defined there. Copies 3 and 4

are printed when the word "CONTINUED" appears, and that word is printed below, though as the value

stored in continued$ ("Continued").

footer section

remarks

if copy 1,2

 cbox LEFTCOL,56,RIGHTCOL,61,5

 cfont 2,57,MAXRCOLS,60,HFONT

endif

totals

const DFONT=cgtimes,11,bold # data

if copy 1,2

 cbox LEFTCOL,61,RIGHTCOL,64.5,5,crows=63::20, \

 CCOLS=14 26 38 50 62

 const ROW=62

 cfont 1,ROW,13,ROW,HFONT,right # current

 cfont 15,ROW,25,ROW,HFONT,right # 1-15

 cfont 27,ROW,37,ROW,HFONT,right # 16-30

 cfont 39,ROW,49,ROW,HFONT,right # 31-45

 cfont 51,ROW,61,ROW,HFONT,right # over 45

 cfont 63,ROW,MAXRCOLS,ROW,HFONT,right,bold,12 # total due

 const ROW=64

 cfont 1,ROW,13,ROW,DFONT,right # current

 cfont 15,ROW,25,ROW,DFONT,right # 1-15

 cfont 27,ROW,37,ROW,DFONT,right # 16-30

 cfont 39,ROW,49,ROW,DFONT,right # 31-45

 cfont 51,ROW,61,ROW,DFONT,right # over 45

 cfont 63,ROW,MAXRCOLS,ROW,DFONT,right,bold,12 # total due

endif

UnForm Version 8.0

272

if copy 3,4

 cerase 1,62,MAXCOLS,66

 text 1,65,{Continued$},HFONT,right,cols=MAXRCOLS

endif

Finally, within the two formats are two physical copies. Each of these copies is either for the customer

to keep or for the customer to return with their payment. Copy 1, the first page of format 1, and copy 3,

the first page of format 2, get the "Customer Copy" footer. The others get the "Remittance Copy" footer.

copy name section

const ROW=65.5

if copy 1,3

 text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS

end if

if copy 2,4

 text 1,ROW,"Remittance Copy",HFONT,bold,center,cols=MAXCOLS

end if

UnForm Version 8.0

273

aging report - enhanced Aging report (advanced.rul)

In this third example, an aging report is enhanced to be more readable. This shows the use of relative

enhancements, which are those applied relative to the occurrence of text or regular expressions anywhere

on the page.

uf80c –i sample3.txt –f advanced.rul –p pdf –o client:aging.pdf

This statement header identifies this rule set.

[AgingReport]

The only detect statement required is this one, looking for the report title at column 50, row 2.

detect 50,2,"Detail Aging Report"

These constants are used throughout the rule set.

set up document constants

const MAXCOLS=131 # max cols to output

const MAXRCOLS=130 # MAXCOLS-1

const LEFTCOL=.5 # use 1 if empty

const RIGHTCOL=131.5 # LEFTCOL for symmetry

const MAXROWS=66 # max rows to output

This report should print in landscape orientation, rather than the default portrait. UnForm will scale

the columns and rows to 131 by 66.

landscape

dpi 1200

gs on # graphical shading

cols MAXCOLS # max output cols

rows MAXROWS # max output rows

pcopies 1 # max # of copies

The title "Aging Sample" will appear in PDF document properties. It is ignored for laser output.

title "Aging Sample" # view in PDF properties

UnForm Version 8.0

274

The following prejob code demonstrates the use of sdOffice to mine data from this report and export it

to Microsoft Excel. SdOffice can be running anywhere on your network on a system with Excel. The

code relies on your setting two variables correctly. First, the sdo$ variable should be set to the path to

the sdOffice client program sdofc_e.bb. In addition, the value of gbl("$sdhost") needs to be set to the

address or hostname of the system running sdOffice. An optional way of doing this is to define an

environment variable prior to running UnForm, called SDHOST. If you use that alternative, then

comment out the x$=gbl("$sdhost") line.

The code here contains enough error handling to ignore the code if sdOffice isn't present or fails to

execute.

prejob {

 # set up sdOffice export to Excel

 # set to path to your sdoffice *.pv programs

 sdo$="/u0/sdofc/sdofc_e.pv"

 # You can set the environment variable SDHOST, or use this

 # stbl function to define the sdOffice server address

 x$=gbl("$sdhost","bcj")

 # initialize excel

 call sdo$,err=prejob_done,"newbook","",errmsg$

 if errmsg$>"" then goto prejob_done

 sdofc_init=1

 call sdo$,"show","",""

 call sdo$,"setdelim |","",""

 call sdo$,"writerow ID|Name|Phone|Over 60|Total","",""

 call sdo$,"format row=1,font=Arial,size=12,bold","",""

prejob_done:

}

The prepage code block starts with code that exports data to Excel, but only if the prejob code block

successfully initializes the sdOffice connection. In addition to that code, it also sets two numeric

variables, colw and scol, based upon positions and widths of report column headers. These values are

used later in the rule set for fonting and line drawing.

prepage{

 # if prejob hasn't initialized sdoffice, skip this code

 if sdofc_init<>1 then goto sdofc_complete

 for row=1 to 66

 ln$=text$[row]

 # customer heading row contain phone numbers

 x=mask(ln$,"\(...-...-....\)")

UnForm Version 8.0

275

 while x

 custid$=mid(ln$,1,6)

 custname$=trim(mid(ln$,8,30))

 custphone$=trim(mid(ln$,38,14))

 x=0

 wend

 # totals - 50 plus spaces followed by digit-.-digit-digit

 x=mask(ln$,"^"+fill(50)+".*[0-9]\.[0-9][0-9]")

 while x

 amount60=cnum(mid(ln$,87,11))

 amount90=cnum(mid(ln$,98,11))

 amount120=cnum(mid(ln$,109,11))

 over60=amount60+amount90+amount120

 total=cnum(mid(ln$,120,11))

 export$=custid$+"|"+custname$+"|"+custphone$+"|"

 export$=export$+str(over60)+"|"+str(total)

 call sdo$,"writerow "+export$,"",""

 x=0

 wend

 next row

sdofc_complete:

 # Now for some tricky code.

 # Agings can have different headings and column widths

 # To use version 5 features allowing variable columns and rows,

 # the following code will calculate starting positions

 # and column widths. It assumes a consistency in column widths,

 # 1 char negative, and 1 blank space between each column

 hd1$=text$[7] # temp heading line with agings

 x=pos("Type"=hd1$)

 xhd1$=trim(hd1$(x+4)) # remove all except agings

 x=pos(" "=xhd1$)

 x$=xhd1$(1,x-1) # get first column header

 xhd1$=trim(xhd1$(x))

 x=pos(x$=hd1$) # find true position

 x1=x+len(x$)-1 # get end of first column

 # now find end of 2nd column

 x=pos(" "=xhd1$)

 x$=xhd1$(1,x-1) # get second column header

 x=pos(x$=hd1$)

 x2=x+len(x$)-1 # get end of second column

 # now calculate mask width less space between columns

 colw=x2-x1-1

 # now calculate start of first field

 scol=x1-colw+2

}

UnForm Version 8.0

276

The postjob code block performs some closing formatting control if the job is exporting data to Excel. If

sdOffice is not being used, based upon the attempt to initialize it in the prejob code block, then this code

is skipped.

postjob{

 # if prejob hasn't initialized sdoffice, skip this code

 if sdofc_init<>1 then goto sdofc_complete2

 call sdo$,"leaveopen","",""

 call sdo$,"format autofit","",""

 call sdo$,"format col=1,numberformat=@","",""

 call sdo$,"format col=4,numberformat=""###,##0.00""","",""

 call sdo$,"format col=5,numberformat=""###,##0.00"",bold","",""

 call sdo$,"insertrow 1","",""

 call sdo$,"mergecells range=A1:E1","",""

 call sdo$,"writecell range=A1,value="+22+ \

 "Over 60 Aging Values as of "+date(0)+22,"",""

 call sdo$,"format range=A1:E1,center,size=15,bold","",""

sdofc_complete2:

}

Here, finally, are the commands to enhance the formatting of the report. The initial commands use text

commands with cut expressions to move the report header data around and change the fonting.

heading section

const BLFONT=univers,10,bold,italic

const BSFONT=univers,9,bold,italic

cbox .5,.5,RIGHTCOL,5,5,30

line 1

text 2,1.25,{trim(cut(1,1,10,""))},BSFONT # date

text 1,1.25,{trim(cut(20,1,100,""))},BLFONT,center, \

 cols=MAXRCOLS # comp name

text 1,1.25,{trim(cut(121,1,15,""))},BSFONT,right, \

 cols=MAXRCOLS # page #

line 2

text 2,2.35,{trim(cut(1,2,10,""))},BSFONT # time

text 1,2.35,{trim(cut(20,2,100,""))},BLFONT,center, \

 cols=MAXRCOLS # rpt title

line 3

text 1,3.45,{trim(cut(20,3,100,""))},BSFONT,center, \

 cols=MAXRCOLS # sub heading

line 4

text 1,4.45,{trim(cut(20,4,100,""))},BSFONT,center, \

 cols=MAXRCOLS # sub heading

UnForm Version 8.0

277

This section formats the column headings. The left portion is drawn with text commands, while the

aging columns are fonted with font commands, which use the positions from the values calculated in the

prepage code block.

detail heading section

const HFONT=univers,10,italic

cbox LEFTCOL,5.25,RIGHTCOL,7.5,1,20

line 1

cerase 1,6,MAXCOLS,6

text 1,6,"Customer # & Name",HFONT

text 38,6,"Phone #",HFONT,center,cols=14

text 54,6,"Contact",HFONT

line 2

cerase 1,7,49,7

text 3,7,"Invoice #",HFONT

text 12,7,"Due Date",HFONT,center,cols=8

text 21,7,"P/O #",HFONT

text 32,7,"Order #",HFONT

text 39,7,"Terms",HFONT,center,cols=5

text 45,7,"Type",HFONT,center,cols=4

using variables from prepage, enhance aging headings

font {scol},7,{colw-1},1,HFONT,right

font {scol+1*(colw+1)},7,{colw-1},1,HFONT,right

font {scol+2*(colw+1)},7,{colw-1},1,HFONT,right

font {scol+3*(colw+1)},7,{colw-1},1,HFONT,right

font {scol+4*(colw+1)},7,{colw-1},1,HFONT,right

font {scol+5*(colw+1)},7,{colw-1},1,HFONT,right

font {scol+6*(colw+1)},7,{colw},1,HFONT,right,bold

The report body is enhanced using UnForm's ability to scan for patterns and anchor enhancements to

those patterns. The first series of font commands scan for two spaces in the region from column 1, row

9 through column 2, row 66 (defined as the constant MAXROWS above). At each point in that search

region, if the two spaces are found, a font command is issued relative to the location. This changes the

font of the input data at that location.

The second series of font commands looks for customer heading line types, by searching for any alpha

or digit character in the region 1,9 though 2,66. A different set of font commands is then issued for

those positions.

detail data section

const BDFONT=cgtimes,10,bold

const DFONT=cgtimes,10

invoice line

font " @1,9,2,MAXROWS",2,0,8,1,DFONT

font " @1,9,2,MAXROWS",11,0,8,1,DFONT,center

font " @1,9,2,MAXROWS",20,0,10,1,DFONT

UnForm Version 8.0

278

font " @1,9,2,MAXROWS",31,0,7,1,DFONT

font " @1,9,2,MAXROWS",38,0,5,1,DFONT,center

font " @1,9,2,MAXROWS",44,0,4,1,DFONT,center

using variables from prepage, enhance agings

font " @1,9,2,MAXROWS",{scol},0,{colw},1,DFONT,decimal

font " @1,9,2,MAXROWS",{scol+1*(colw+1)},0,{colw},1,DFONT,decimal

font " @1,9,2,MAXROWS",{scol+2*(colw+1)},0,{colw},1,DFONT,decimal

font " @1,9,2,MAXROWS",{scol+3*(colw+1)},0,{colw},1,DFONT,decimal

font " @1,9,2,MAXROWS",{scol+4*(colw+1)},0,{colw},1,DFONT,decimal

font " @1,9,2,MAXROWS",{scol+5*(colw+1)},0,{colw},1,DFONT,decimal

font " @1,9,2,MAXROWS",{scol+6*(colw+1)},0,{colw+1},1,BDFONT,decimal

cust line

font "~[A-Z0-9]@1,9,2,MAXROWS",0,0,6,1,BDFONT

font "~[A-Z0-9]@1,9,2,MAXROWS",7,0,28,1,BDFONT

font "~[A-Z0-9]@1,9,2,MAXROWS",37,0,14,1,BDFONT,center

font "~[A-Z0-9]@1,9,2,MAXROWS",53,0,36,1,BDFONT

shade "~[A-Z0-9]@1,9,2,MAXROWS",0,-.15,{RIGHTCOL-1.5},1,20

The following commands look for sequences of dashes, which indicate sub total lines. Wherever a

sequence of 50 dashes occurs, a box is drawn and input data is bolded. In addition, the original dashes

are removed with the hline command.

customer totals

hline "---",erase

example of UnForm command with continuation to next line

box "--", \

 -1,.25,{RIGHTCOL-53},1.25

bold "--",0,1,120,1

Finally, grand total lines are treated with special fonting and a box.

grand totals

const DFONT=cgtimes,11,bold

sample of box command with increased thickness and double lines

box "Grand Total:",-9.5,-1.25,MAXRCOLS,2.25,5,30,dbl 9

font "Grand Total:",0,0,12,1,BDFONT,13

font "Grand Total:",{scol-10},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+1*(colw+1)},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+2*(colw+1)},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+3*(colw+1)},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+4*(colw+1)},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+5*(colw+1)},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+6*(colw+1)},0,{colw+1},1,DFONT,decimal

UnForm Version 8.0

279

LABELS – text labels to laser labels (advanced.rul)

UnForm is capable reading rows of input, parsing those rows into logical pages, and reproducing the

output with different dimensions. A typical situation that can take advantage of this is if your

application is designed to print mailing labels on continuous label stock on dot matrix printers. The

labels can be 1-up, 2-up, or any other dimensions. As long as each label has a consistent number of rows

and columns, UnForm can parse each label and treat each label as a logical page with the across and

down commands. To use this sample, you must add "-r labels" to the command line.

uf80c –i sample4.txt –f advanced.rul –r labels –p pdf –o client:labels.pdf

This statement header identifies the rule set. The name is used in the –r command line option.

[labels]

Each label "page" is 35 columns and 6 rows of input text. If each line is 106 to 140 characters wide,

then four labels are parsed from the columns. When the output is produced, each label will be 30

columns by 6 rows. The labels will be arranged 3 rows across and 10 down the page. UnForm will

actually print 3x30=90 columns and 10x6=60 rows on each physical page.

Most laser label stock has ½ inch top and bottom margins. The margin command adds 75 dots (¼ inch)

to the standard UnForm top and bottom margins, which default to ¼ inch.

In this sample, the text of the labels is printed from lines 1 to 4. By using the vshift 1 command, UnForm

will move the text to lines 2 through 5. The shift command moves the text to the right.

page 35,6

rows 6

cols 30

across 3

down 10

font 1,1,40,6,cgtimes,12

margin 0,0,75,75

vshift 1

shift 2

manual feed tray is usually 2

tray 2

The barcode command supports both 5 and 9-digit formats of the postnet barcode. To get either to

print, the prepage code block sets one or the other variable (zip$ or zip9$), and both commands are

issued. A null value is not barcoded. The prepage code extracts the zip code from line 3 or 4 of the

label. It then determines the length and sets zip$ or zip9$ appropriately.

UnForm Version 8.0

280

barcode 2,6,{zip$},900,11.0,2

barcode 2,6,{zip9$},905,11.0,2

prepage{

get zip code from line 3 or 4

zip$="",zip9$="",zipline$=""

if trim(text$[4])>"" then zipline$=trim(text$[4])

if zipline$="" then if trim(text$[3])>"" then zipline$=trim(text$[3])

while zipline$>""

 x=mask(zipline$,"[0-9][0-9][0-9][0-9][0-9]")

 if x>0 zip$=zipline$(x)

 zipline$=""

wend

remove possible hyphen and validate length

x=pos("-"=zip$); if x=6 then zip$=zip$(1,5)+zip$(7)

if len(zip$)<>5 and len(zip$)<>9 then zip$=""

if len(zip$)=9 then zip9$=zip$,zip$=""

}

UnForm Version 8.0

281

132x4 – multi-up, scaled reporting (advanced.rul)

This sample rule set will work with any 132 column by 66 row report. To use it, you must add "-r

132x4" to the command line. The report uses the across and down commands to scale the report to print

four logical pages to a physical page.

uf80c –i sample3.txt –f advanced.rul –r 132x4 –p pdf –o client:132x4.pdf

The rule set header identifies the name.

[132x4]

The page dimensions are defined as 132 columns by 66 rows. UnForm will scale each page to fit 2

across and 2 down on a physical page (264 columns and 132 rows). The report is printed in landscape

orientation. A box is drawn around each page, and the hline command will convert all occurrences of 3

or more dashes to horizontal lines.

cols 132

rows 66

across 2

down 2

landscape

cbox .5,.5,132.5,66.5

hline "---"

UnForm Version 8.0

282

ZEBRA LABEL – Zebra label printer example (advanced.rul)

UnForm offers an optional Zebra printer driver, which produces ZPLII code. Within the limits of the

ZPL language, UnForm produces enhanced forms for Zebra printers in much the same way it does for

laser printers. Some key differences are: fonts are identified differently and are limited in scalability,

shading is either 100% (black) or 0% (white), and the barcode command is more extensive and capable

than the laser printer barcode command.

When executing a Zebra run, it is critical to tell UnForm how large the labels are. This is done with a

special syntax on the "-paper" command line option. Also, UnForm needs to know what print density is

used by the printer. This is determined by the "-p zebran" option, where n is either 6, 8, or 12 dots per

millimeter. You may need to adjust this sample command line to match your Zebra printer, as it

assumes an 8 dpmm printer and 3.25 by 5.5 inch label stock.

uf80c –i samplez.txt –f advanced.rul –p zebra8 –paper 3.25x5.5 –o zebra-device

This label is scaled to 40 columns and 35 rows.

[zebra label]

detect 0,1,"Zebra Barcode"

cols 40

rows 35

The prepage code block gets the PO number, setting it into a variable po$, and removing the PO

number from the text with a set() function.

prepage{

po$=""

po$=cvs(get(2,16,10),3)

trash$=set(2,16,10,"")

}

The From and To sections draw boxes, change fonts, and re-allocate the lines of text from row 10 to row

14 with a series of text commands followed by an erase command.

From section

box 1,1,39,8,3

text 2,2,"From:",font A

font 2,3,35,6,font 0,9

To section

box 1,9.75,39,10.5,5

#text 2,10.6,"To:",font 0

UnForm Version 8.0

283

text 3,11,{get(2,11,30)},font 0,12

text 3,12.25,{get(2,12,30)},font 0,12

text 3,13.5,{get(2,13,30)},font 0,12

text 3,14.75,{get(2,14,30)},font 0,12

text 3,16,{get(2,15,10)},font 0,12

erase 2,11,30,5

This group of commands prints three different barcodes on the label. First, a postnet code is printed

from the zip code located at column 2, row 15, for up to 10 characters. Then a UPS maxicode barcode

is printed with SDSI's address. Last, a "3 of 9" barcode is printed using the variable po$, derived in the

prepage{} code block above.

bar codes

barcode 10,18.25,{trim(get(2,15,10))},Z,33

text 2,24,"Maxicode",font 0,10

barcode 2,25,{"999840956820000" + $0a$ + "SDSI"+ $0a$ + "2195 Talon

Drive" + $0a$ + "Latrobe, CA 95682"},D

box 17,25,22,12,3

text 18,25.75,"Our PO No (in code 39):",font A,21

barcode 20,28,{po$},3,120,2,text above

UnForm Version 8.0

284

PDF Outline Sample (advanced.rul)

UnForm supports PDF outlines (or bookmarks) when using the pdf driver. Outlines can be multiple

levels, and each outline tree can be different levels deep. UnForm assumes each outline branch points to

a page. To control the text shown in the outline, you set the variable outline$ in a prepage or precopy

code block. This variable is parsed as each page is printed. Multi-level entries are created by delimiting

the text of the levels with a vertical bar (|) within the contents of the variable.

The file sample5.txt contains the contents of a 14-page report featuring two sort and subtotal levels, as

well as grand totals and a recap page. The outline tree for this report will be based on the salesperson

(outer sort) and class code (inner sort), along with specific page entries for the report total and recap

page. As there are no detect statements, you need to specify the –r option on the command line, as

shown.

uf80c –i sample5.txt –f advanced.rul –r outline –p pdf –o client:outline.pdf

[outline]

Set the page dimensions and turn on the outline feature with the outline keyword. The default outline

title for each page is simply "Page n", but a code block can override the outline text by setting the

variable outline$.

cols 132

rows 66

outline

The prepage code block looks on each page for the following cases, in order:

 A 3-digit salesperson number at the first column on line 7

 A salesperson subtotal heading on line 8

 A report total heading on line 8

 A recap page heading on line 2

For the first two types of pages, a two level outline entry is created (level 1|level 2 structure). For the

report total and recap pages, a single level outline entry is created.

prepage{

default outline setting matches prior page

outline$=lastoutline$

if line 7 starts with 3 digits, set 2-level outline slsp+class

if mask(get(1,7,3),"[0-9][0-9][0-9]") then \

 outline$="Slsp "+get(1,7,3)+"|Class "+get(13,7,2)

if line 8 contains this, it is a salesperson subtotal

if pos("SALESPERSON: "=text$[8])>0 then \

 outline$="Slsp "+get(14,8,3)+"|Totals"

UnForm Version 8.0

285

if line 8 contains this, it is a report title

if pos("*Report"=text$[8])>0 then \

 outline$="Report Total"

if line 2 contains this, it is the recap page

if pos("RECAP PAGE"=text$[2])>0 then \

 outline$="Recap Page"

lastoutline$=outline$

}

UnForm Version 8.0

286

Additional Sample Rule Files

The following table describes several other sample rule files that have been designed to demonstrate

specific techniques. There are two types of rule files provided:

 Cmd – adds to the documentation for specific commands

 Tool – helps an integrator to add new features to their own rule files

Rule file name Commands Functions Variables Comments

SampleCmdAFO.rul

gtextcount,

gtextitem,

gtextfind

How to work with

Application Formatted

Output

SampleCmdBarcode.rul barcode exec Includes relative barcode

SampleCmdBox.rul box, cbox exec

SampleCmdCircle.rul circle inchtocols

SampleCmdConst.rul

const, global,

local

SampleCmdCopy.rul

copies,

pcopies, if

copy/end if,

attach Copy

Mult-copy, multi-format,

variable number of copies

SampleCmdDetect.rul detect

Many examples with

explanations

SampleCmdDuplex.rul duplex

SampleCmdErase.rul

erase, notext,

hline, vline sub

SampleCmdFont.rul font, cfont

SampleCmdImage.rul image, attach image justification

SampleCmdImages.rul images

1 sample for archived

images

SampleCmdLine.rul

line, hline,

vline exec

nice use of multiple cmds

within 1 exec. Saves

time.

SampleCmdMicr.rul micr

SampleCmdMove.rul move, cmove Includes relative moves

SampleCmdShade.rul shade, cshade exec

Includes relative shading

and greenbar look

SampleCmdText.rul text Shaded, wrapped, fit,

UnForm Version 8.0

287

rotated, justified

SampleCmdTrayBin.rul tray, bin

Rule file name Commands Functions Variables Comments

SampleToolArchive.rul archive will do logging with

Base Logging below

SampleToolChkContinued.rul text exec, get

pagenum,

uf.maxpage look ahead with get

SampleToolDispAFOText.rul text AFO field positions

SampleToolDocTitle.rul text

SampleToolFullBox.rul cbox

SampleToolLogging.rul log Base Logging

SampleToolLogo.rul image can use justification

SampleToolMultCpy.rul copies,

pcopies

SampleToolPageSplitter.rul

getpage,

putpage,

delpage

SampleToolPageXofY.rul text exec,get

pagenum,

uf.maxpage look ahead with get

SampleToolPostnet.rul barcode exec,mid

SampleToolPrint.rul skip logging with Base

Logging above

SampleToolScanBcd.rul barcode exec barcode

SampleToolWatermark.rul text exec shaded text

UnForm Version 8.0

288

PROGRAMMING CODE BLOCKS

The prejob, predevice, prepage, and precopy subroutines (and their associated postxxx routines) open the

world of Business Basic programming to the report and form designs. With a full programming

language at your disposal, it is possible to customize and manipulate the forms, and to interact with other

applications and devices, or with the operating system.

An experienced BBx or ProvideX programmer (ProvideX is the actual dialect used, with lexical

compatibility added for most BBx syntax) typically performs the programming of these subroutines.

However, programmers experienced in other languages, particularly other dialects of Basic, can easily

learn the fundamentals of Business Basic and perform these programming tasks. Several of the sample

forms include some programming, and there is a complete reference guide available from the ProvideX

web site: www.pvxplus.com. In this manual, we have provided some basic (no pun intended)

information that will assist developers experienced in other programming environments.

It should be noted that an UnForm job is not a stand-alone pvx program. Instead, it is a combination of a

an UnForm job wrapper written in static pvx code, and user-defined code blocks, which are executed at

particular times as subroutines while the job progresses. Therefore, code blocks act as subroutines and

not full pvx programs. In addition, some pvx syntax has been overridden to ensure compatibility with

previous versions of UnForm, and many UnForm-specific functions have been added so that code blocks

can perform UnForm-specific tasks. Lastly, the user-interface features of pvx are not available, as

UnForm jobs run in background and are not connected to a user screen.

http://www.pvxplus.com/

UnForm Version 8.0

289

Basic Syntax

Statements

A statement consists of a single verb and any arguments or parameters suitable for that verb. Multiple

statements can be placed on a single line by separating them with a semicolon (;). Statements can be

preceded by a label, which consists of a label name followed by a colon. Label names must follow the

same naming conventions as numeric variables.

Variables

There are two types of variables in Business Basic: string and numeric. Variables that end in a "$"

character are treated as string variables. They can hold any amount of text data, limited only by system

memory. Numeric variables can contain any number or integer. UnForm sets precision to 10, so that up

to 10 digits to the right of the decimal are maintained accurately.

Variable names can be up to 31 letters, digits, and underscore characters, and must start with a letter.

Variables can’t start with “fn” and should not start with “uf”.

work$, account01$, and cust_name$ are valid string variables.

cust-name$ is invalid.

amount, period_12, and six are valid numeric variables.

Arrays can be defined for both string and numeric variables. Arrays must be defined to a fixed number

of elements with a DIM statement, and array elements can then be referenced as variables. Arrays can

contain up to three dimensions.

dim amount[12] defines a 13-element array, a[0] … a[12].

dim x$[1:6,1:20] defines a 2-dimensional string array. The first dimension ranges from 1 to 6, the

second from 1 to 20. x$[2,20] would be a valid element in this array.

The dim statement can also be used to initialize strings to a specified length. Dim a$(12), for example,

will set a$ to 12 spaces.

There are special string constructs available in ProvideX. These are called string templates or composite

strings. Details about these constructs can be found in the language manual for ProvideX, available

from www.pvxplus.com.

Functions

Many functions are available in Business Basic. Most will be familiar to a Basic programmer.

Functions consist of a word, an opening parenthesis, one or more arguments, and a closing parenthesis.

The function returns a string or numeric result, which is typically used as part of an expression, or in an

assignment. Wherever a string or numeric value can be used, a string or numeric function can be used.

In addition to internal Business Basic functions, UnForm also provides some functions that perform

tasks typical to print stream environment in which it runs.

http://www.pvxplus.com/

UnForm Version 8.0

290

String and numeric representation

Strings are made up of concatenated bytes. They can be represented as literals inside double quotes,

such as "Name:", or as hexadecimal strings inside "$" delimiters, such as $1B45$ for Escape-E. They

can also be made up of combinations of literals, hex strings, string variables, and functions that return

string values. These values are combined using the "+" operator to concatenate each string together. For

example, a string containing quotes could be constructed one of these ways: chr(34)+"some

text"+chr(34); or 22+"some text"+22, or quote$+"some text"+quote$. Since chr(34) and 22 both

represent a quote character, and it would be possible for the variable quote$ to contain the same, all

these expressions can represent the same string.

Substrings can be derived from a string variable with the syntax stringvar(start [,length]). For example,

if account$ is "01-567", then account$(4,3) would return the value "567". Substrings references with

positions that aren't in the string result in errors, so care must be used. To avoid the possible errors, the

mid() function can be used.

Numbers can be represented as integers or decimal numbers, or, like strings, can be represented as

expressions containing literal numbers, numeric variables, and numeric functions. With numbers, there

are more operators available to produce the expressions. A literal number is just a series of digits, with

an optional decimal point and an optional leading minus sign. 1995.99 and -100.433 are valid numbers.

Other punctuation, such as thousands separators or currency symbols, are invalid in a number though

they can be added when a number is formatted as a string for output.

Operators

Business Basic has the following standard operators:

+ concatenate strings or add numbers, depending on context

- subtraction

* multiplication

/ division

^ exponentiation

= testing for equality, or assignment, depending on context

> testing for greater than

>= testing for greater than or equal to

< testing for less than

<= testing for less than or equal to

<> testing for inequality

() controlling precedence

and combining expressions with logical "and" in conditions

or combining expressions with "or" in conditions

+= appends right-side value to a string or adds to a number

-= subtracts right-side value from a number

*= multiplies a number by right-side number

/= divides a number by right-side number

UnForm Version 8.0

291

++var, var++, --var, var++ increments or decrements a numeric variable by 1, either before or after an

operation, depending on the position of the ++ or – operators.

If Then Else

The structure of IF…THEN…ELSE statements are simple and unblocked. The IF must be followed by

an expression to test. The expression can be simple or complex, and must resolve to a single Boolean or

numeric result. For numeric results, a 0 is considered false, and anything else is considered true. Once

resolved, if true the THEN clause is executed, otherwise the ELSE clause, if present, is executed.

Both the THEN clause and the ELSE clause can contain any statements, including nested IF statements.

A closing END_IF after a THEN or ELSE clause will terminate the conditional nature of statements

following it.

Here are some examples of IF statements:

if amount < 0 then text$="Credit Balance"

if x$="A" then desc$="Acme Rental" else if x$="S" then desc$="Smith & Sons" else desc$="N/A"

if testmode then dummy$=set(1,1,10,"Test Mode") end_if; goto exitsub

UnForm’s code block parser also supports blocked if-then-else syntax, like this (optional elements

indicated in square brackets):

 If condition [then]:

 Statement1

 Statement2

 [else

 Statement1

 Statement2

 …]

 End if

The key elements are the colon (:) at the end of the “if condition” line and the closing “end if”. The

structures can be nested, with additional if statements inside the if or else sections.

While Wend Loops

One of Business Basic's looping structures is the WHILE..WEND loop. At the top of the loop is a while

condition statement, where the condition is evaluated like an IF clause. As long as the condition is true,

or returns a non-zero value, the statements up until the closing wend statement are repeated. To escape

the loop, you can use the BREAK verb, the EXITTO label verb, or set variables such that the condition

is false before executing the wend verb. To iterate the loop from within, use the CONTINUE verb.

Here is a simple WHILE…WEND syntax that substitutes (") with (') in a string:

UnForm Version 8.0

292

x=pos(22=work$)

while x > 0

work$(x,1)="'"

x=pos(22=work$)

wend

For Next Loops

Another commonly used loop structure is the FOR…NEXT loop. A FOR statement identifies a variable,

a start value, an end value, and an optional step value. The variable is set to the start value; the loop

statements are executed until a NEXT statement is encountered; the variable is incremented by the step

value; and, until the end value is exceeded, the loop statements are repeated. To exit the loop before the

end value is reached, use the BREAK verb or the EXITTO label verb. To iterate the loop from within,

use the CONTINUE verb. Here is an example that would perform the same substitution shown above

(though more slowly):

for i=1 to len(work$)

 if work$(i,1)=$22$ then work$(i,1)="'"

next i

File Handling

Business Basic has very powerful facilities for handling files. Not only are there intrinsic keyed file

types, but also text files and pipes can be used.

If the application with which UnForm is integrated is written in ProvideX, then full native access to the

data files is available. If the application is written in BBx, then the bbxread() function can be used to

obtain record data via an instance of BBx.

If UnForm is working with a non-Business Basic application (e.g. C, Cobol, Informix, Oracle, etc.),

there are additional means to obtain data, via ODBC on Windows or pipes on UNIX.

Opening Files

File access is performed through an open file channel. The OPEN statement opens the file on a numeric

channel in preparation for later file access. Open(99)"customers.dat" opens the named file on channel

99. Channel numbers can range from 1 to 32767, though the operating system will typically impose a

limit on the number of simultaneous channels that can be opened. Channel numbers must be unique.

Once opened, that channel number is no longer available until closed. To avoid conflicts with channel

numbers, it is common to use a special function that returns an available channel number, UNT. Here is

a typical syntax:

cust=unt

open(cust)"customers.dat"

UnForm Version 8.0

293

After that, file access verbs can use the cust variable to access the "customers.dat" file.

To open a pipe channel, you could do the following:

faxlist=unt

open(faxlist)"|sqlexec 'select cust,faxnum from customers'"

read(faxlist)line1$

labelprt=unt

open(labelprt)">lp –dlabels"

print(labelprt)"To: "+name$

print(labelprt)" "+address1$

Reading Files

There are two verbs used for reading channels: READ, and READ RECORD. The READ verb

understands line and field separators, whereas the READ RECORD verb reads blocks of a specified size

or whole records, in the case of intrinsic keyed file types. The READ verbs accept several options,

including "key=string", "ind=index", "err=linelabel", "end=linelabel", and others. Full details can be

found in the language reference manuals. Labels can be actual labels in code (label:), or a symbolic

label, such as *next, *break, or *continue. UnForm also recognizes err=next as a synonym for

err=*next.

To read from an intrinsic keyed file (ProvideX files only), you might use one of these:

read(cust,key=custkey$,err=next)*,name$,*,*,*,*,faxnum$

read record(cust,key=custkey$,err=next)custrec$

name$=custrec$(7,30),faxnum$=custrec$(112,10)

To read from a pipe or a text file, you may not use a key= clause, so you just read sequentially through

the file:

read(faxlist,end=done)cust$,faxnum$

Writing files

You probably would not want to write to your application files, but you may well want to write to

external devices or log files. Writing is performed with these verbs: WRITE or WRITE RECORD and

PRINT. Each uses a channel number and arguments to print. PRINT terminate its values with a line-

feed character ($0A$), unless a comma follows the last argument. WRITE RECORD will write a single

string variable without any termination so it is suitable for binary or blocked output. WRITE terminates

values with an internal field separator, normally $8A$, which is not useful when writing files that will be

used by other applications, but which is recognized by READ.

UnForm Version 8.0

294

print (logfile)"Customer: "+custname$+" printed on "+date(0,tim:"%D-%M-%Y:%Hz:%mz")

dim block$(128); block$(1)=custname$,block$(31)=str(amount:"000000.00"); write record(log)block$

UnForm Version 8.0

295

Object Oriented Programming
UnForm supports programming with objects, which are self-contained programming units (called

objects) that have data elements (known as properties) and functions (known as methods). Object

oriented programming (commonly referred to as OOPS) is a modern technique that has become popular

with the rise of languages such as Java, C#, C++, and VB.NET. The definition of an object, that is, its

properties and methods, is encapsulated within a program unit called a "class". The terms "class" and

"object" are sometimes used interchangeably, but there is a distinction: a class is a description or

definition, and an object is a physical, programmable representation of a class.

There are many built-in objects supplied with UnForm, which can be created (or instantiated) and used

within code blocks as needed. Additional custom objects can be created as a professional service.

Object Instantiation

Code blocks can create new objects based on a class with the new() function. Each object is a simple

numeric variable. The new() function returns an object ID number, and all action on that object is

processed through the numeric variable.

There can be any number of objects in memory at a given time. Each object that is created is unique,

with its own data.

The syntax of the new() function is:

objvar=new("classname"[,arg1[$],…][,err=label|*next)

When this function is executed in a code block, a new object is created and assigned to objvar. Some

objects accept arguments during this initialization step, and the arguments are provided in a comma-

separated list after the class name.

If an error occurs during the object creation, the object is not created, and the err=label is executed.

Object Access

Once the object is created, objvar can be used to reference that object's properties and functions, using

the apostrophe (') operator (-> is a synonym for '):

objvar'property[$]=var[$] | number | "string" | expression

var[$]=objvar->property[$]

objvar->function(arg1[$][,…])

var[$]=objvar->function(arg1[$][,…])

Functions can be accessed as functions, which return a value, or as subroutines, which simply execute

the function code.

UnForm Version 8.0

296

Object Destruction

To destroy an object, use the 'drop object' statement. Since the object variable no longer references an

object, it can be set to 0, reused, or ignored. Once an object is no longer needed, it is good practice to

destroy it. For example, beware of objects created repeatedly in loops and not destroyed.

drop object objvar

UnForm Version 8.0

297

Built In Objects

The following objects are provided with UnForm and can be instantiated with the new() function.

Property and method references follow.

 addrbook - address book management

 binfile - binary file access

 collection - collections of values by index and name

 date - date management

 doclist - library document lists

 http - http/https client for interacting with web servers

 json – conversion of data to JSON format for ease of Javascript processing

 inifile - ini file access

 keyfile - keyed file access

 libraries - library lists

 library - library management

 marked – marked record management

 rac - remote access codes for documents

 search - library search execution

 system - operating system and file system access

 textfile - text file access

 webapi – creation of web-oriented URL strings for web form and DTC processing

 xmlreader - xml document parsing

Examples of using many of these objects can be found in the rule file samples/objects.rul.

UnForm Version 8.0

298

addrbook

book=new("addrbook",name$[,create])

Address book object stores delivery records, identified by an entity ID and document type. Each record

is maintained as a string template with the following fields:

 entityid$, doctype$, entityname$, contactname$, sendto$, combine.

All address books are stored in the addrbks subdirectory under the UnForm server. The files are named

as name$+".dat", so the name must be a valid file name for the operating system. If the address book

exists, it is opened for use. If not, and the create flag is true (1), it is created. An error occurs if the

address book is not found and the create flag is missing or false (0).

Properties

filename$ is a read-only property that contains the actual disk file used to store the address book

records.

template$ is a read-only property that can be used to dimension an address entry template. i.e. dim

rec$:book'template$.

Methods

count() returns the number of entries in the addressbook.

deladdress(entityid$,doctype$) removes the address book entry. Returns 1 or 0.

getaddress(entityid$,doctype$,address$) fills address$ template with the requested entry, returns 1 if

successful, or 0 for failure. For example, if there is no record found, a 0 is returned, and address$ will be

an empty, but dimensioned, template string.

newaddress(address$) creates an empty address$ template that can be filled by a code block before

writing. Always returns 0.

putaddress(entityid$,doctype$,address$) updates address book using entityid$ and doctype$

identification, writing the data in the template address$. Returns 1 if successful, or 0 if not. Note that

address.entityid$ and address.doctype$ are set to entityid$ and doctype$.

range$(start,count[,order[,descending]]) returns a LF-delimited list of TAB-delimited records. Each

record contains the same fields as the template above, separated by a TAB character. If start or end are

0, they are the first and last records, respectively. The optional order value can control the sequence of

the records: 0 for entity ID/DocType, 1 for entity name, 2 for contact name, or 3 for send to address.

The optional descending value can be 0 for ascending sequence, 1 for descending sequence.

UnForm Version 8.0

299

binfile

fl=new("binfile"[,filename$])

The binfile object provides read/write access to the file in binary fashion, where there is no concept of a

record. All access is to specific byte positions in the file, or the file as a whole. The filename$ argument

specifies what file to open or create. If no file name is supplied, then a temporary file will be created.

This temporary file will be erased when the UnForm job is complete.

Properties

filename$ is a read-only property that contains the full path to the file name opened or created.

size contains the file size in bytes. If size is assigned, the file is expanded or truncated to the specified

size.

Methods

append(block$) appends block$ to the end of the file, and returns the size of the file.

delblock(index,length) removes the specific bytes from the file, and returns the size of the file.

getblock$(index,length) returns file content at the specified position and length. The position is 1-

based, so the first byte is 1.

getfile$() returns the entire contents of the file.

insblock(index,block$) inserts block$ in the file at the 1-based index position. Returns the size of the

file.

purge() sets the file length to 0, just like setting the size property to 0.

putblock(index,block$) writes block$ to the file at the 1-based index position, replacing data at that

position. Returns the size of the file.

putfile(block$) updates the file contents to block$, truncating or expanding as necessary. Returns the

size of the file.

UnForm Version 8.0

300

collection

obj=new("collection"[,noclose])

The collection object provides access to a collection of items stored by a key or index. Keys can be up

to 127 characters long. Methods are provided to add, update, and remove elements from the collection,

to find items in the collection, and to list items in the collection. Collection storage is mapped to disk,

so there can be a virtually unlimited number of elements. If you wish to have the disk file remain open

for the lifetime of the object, supply the noclose argument as true (non-zero). Note however, that if

many collections are maintained during a job, only a limited number can have the noclose option set to

true, since operating systems impose a limit on how many files can be open at one time by a process.

Properties

count is a read-only property that holds the number of items in the collection.

Methods

add(ky$,value$|value) adds a string or numeric value to the collection, identified by unique key. An

error occurs if the collection already contains the specified key.

add(value$|value) adds the specified string or numeric value at a sequential index position. No key is

associated with the item.

addlist(values$[,dlm$]) adds several string values identified by sequential index. The list of values is

delimited by a linefeed character ($0A$), or by the delimiter if supplied.

clear() removes all items from the collection.

copyto(colobject) copies all elements from the this collection to the specified collection object.

exists(ky$) returns true (1) if ky$ exists in the collection, false (0) if not.

getitems$([dlm$]) returns a delimited list of values from the collection, using the specified delimiter. If

no delimiter is specified, a linefeed ($0A$) is used.

getkeys$([dlm$][,order]) returns a delimited list of keys from the collection, using the specified

delimiter. If no delimiter is supplied, then a linefeed ($0A$) is used. If order is 0, or not supplied, the

keys are returned in the order added to the collection. The keys are returned in ascending sequence if

order=1, or descending sequence if order=2.

item$(ky$|index) returns the string value identified by the key or sequential index.

item(ky$|index) returns the numeric value identified by the key or sequential index.

key$(index) returns the key of the item at the specified sequential index position.

keycur$() returns the current key, based on the last key operation.

keyfirst$() returns the first key in the collection (in ascending key sequence order).

keylast$() returns the last key in the collection.

keynext$() returns the next key in the collection, relative to the key of the last key operation.

keyprev$() returns the previous key in the collection, relative to the key of the last key operation.

remove(ky$|index) removes the item identified by its key or sequential index from the collection.

update(ky$,value$|value) updates the item identified by ky$ with value$ or value. Adds the key if it

doesn't exist.

UnForm Version 8.0

301

date

obj=new("date")

The date object provides date-oriented functionality, including date parsing and formatting. When the

date object is created, the datetime property is set to the current date and time. A datetime value is a

numeric Julian number, indicating the number of days since January 1, 4713 BC, plus time expressed as

a fraction of a day. Methods are provided for parsing a text date into a datetime value, to format a

datetime value into a human-readable value, and to calculate elapse time between two datetime values in

different increments.

Properties

d is a read-only property that provides the day.

datetime is the date and time value upon which all methods work. The datetime value is initially set to

the date and time at the moment the object is created. It can be updated to the current date and time with

the update() method, or set to a value via the parsedate() function or setdate() function.

hr is a read-only property that provides the hour (using a 24 hour clock).

m is a read-only property that provides the month.

mn is a read-only property that provides the minute.

se is a read-only property that provides the second.

utcoffset provides the offset from Universal Time for the local time zone. The value is provided as a

fraction of a day, so it can be added or subtracted from datetime without any conversion.

y is a read-only property that provides the year.

Methods

days([enddatetime]) returns the number of hours between the current date and time and datetime, or the

supplied date and time (such as the datetime value of another date object).

format$([fmt$]) returns the formatted date and time. If no format is supplied, or it is null or "utc", the

date is returned in UTC format in adjusted by the utcoffset property. For example: Fri, 7 Aug 2009

23:17:04 +0000. If fmt$ is "local", then the format is the same, but reported for the local time zone. For

example: Fri, 7 Aug 2009 16:17:04 -0700. If fmt$ is "ymd", then a 14-byte string is returned in the

format yyyymmddhhmmss.

Additional formats are custom, using mapping characters that are replaced with appropriate date/time

components. The characters are:

 am or pm

 AM or PM

 YYYY or YY (4- or 2-digit year)

 MMMM, MMM or MM (month name, abbreviation, or number)

 DDDD, DDD, or DD (day name, abbreviation, or number)

 HH (24 hour clock)

 hh (12 hour clock)

UnForm Version 8.0

302

 mm

 ss

Other characters represent themselves. "MM/DD/YYYY" would return a typical US date.

DD/MM/YYYY would return a typical Canadian date.

hours([enddatetime]) returns the number of hours between the current date and time and datetime, or

the supplied date and time.

minutes([enddatetime]) returns the number of minutes between the current date and time and datetime

or the supplied date and time.

parsedate(datestr$[,fmt$]) parses a human readable date using fmt$ for parsing rules, sets datetime,

and returns datetime. If not supplied, the default format is "utc". The parsing rules are "utc" for UTC

format, "ymd" for yyyymmddhhmmss format, or "mdy" or "dmy" for delimited dates, such as

12/31/2009 or 31/12/2009.

seconds([enddatetime]) returns the number of seconds between the current date and time and datetime,

or the supplied date and time.

setdate(year, month, day [,hours [,minutes [,seconds]]]) sets the date and time according to the

arguments provided, and returns datetime. Only year, month, and day arguments are required.

update() updates datetime to the current date and time, and returns datetime.

UnForm Version 8.0

303

doclist

obj=new("doclist"[,filename$[,initfile]])

A doclist is a list of documents from one or more libraries. Each document is identified by a library,

document type, and document ID, called a document record. Doclist objects can be manipulated and

listed. A doclist object is also created by the search object, providing a set of methods for processing the

search results.

If filename$ is supplied, then that file is opened and used for the document lists. If not, a new temporary

file is created, which is automatically erased when the object is destroyed. If initfile is provided and true

(1), the document list is initialized so no document records are present.

Properties

listfile$ is a read-only property that provides the name of the document list data file.

Methods

clear() clears the list of all documents.

count() returns the number of records in the list.

count(library$) returns the number of records in the list for the given library.

count(library,doctype$) returns the number of records in the list for the given library and document

type.

deldoc(library$,doctype$,docid$) removes the specified document from the list. Note this does not

affect the document stored in the library.

getdoc(library$,doctype$,docid$[,prop$]) returns 1 if the document exists in the list. If prop$ is

provided, it creates it as a template and fills it if the document exists. The prop$ template contains

document properties of the document itself, from the archive storage system, using a library object. The

following properties are provided:

 prop.date$

 prop.time$

 prop.title$

 prop.entityid$

 prop.notes$

 prop.keywords$

 prop.categories$

 prop.links$

getdocs$(library$,doctype$,first$|first,count [,descending]) returns a list of document library, doc

type, and doc ID's. The three fields are delimited by tabs (09) and the records are delimited by

linefeeds. Within the range of library and document type, up to count records are returned, from starting

with the document ID indicated by first$, or index indicated by first. If descending is true (1), the list is

returned in reverse order.

getlibs$() returns a linefeed ($0A$) delimited list of libraries in the list.

UnForm Version 8.0

304

gettypes$(library$) returns a linefeed delimited list of document types, within a library name, in the list.

movefirst(library$,doctype$,docid$[,docprop$]) moves to the first record and returns the library,

document type, document ID, and optional document properties template with the following fields:

date$, time$, title$, entityid$, notes$, keywords$, categories$, and links$, referenced as docprop.name.

Returns 1 if successful, 0 if not.

movelast(library$,doctype$,docid$[,docprop$]) moves to the last record. Returns 1 if successful, 0 if

not.

movenext(library$,doctype$,docid$[,docprop$]) moves to the next record. Returns 1 if successful, 0

if not.

moveprev(library$,doctype$,docid$[,docprop$]) moves to the previous record. Returns 1 if

successful, 0 if not.

moveto(library$,doctype$,docid$) navigates a specific point in the document list. Use this as a seed

for subsequent moveprev() or movenext() methods.

putdoc(library$,doctype$,docid$) adds the specified document to the list. Note this does not affect the

document stored in the library.

UnForm Version 8.0

305

http

obj=new("http"[,url$])

The http object provides access to HTTP servers, more commonly known as web servers. HTTP is the

protocol used by web browsers to communicate with web servers. The http object performs the client-

side activity of the HTTP protocol, connecting to and requesting actions of a web server. To use the

object, set the url or any of its component element properties, optionally add cookies or files to be

uploaded, and optionally set the user and password if authentication is required. Then issue a

getrequest() method to submit the request and obtain a response.

Properties

header$ contains the last set of headers from the server.

host$ is the hostname, or IP address, of the HTTP server.

method$ sets the server communication method. It must be "get" or "post". To simulate a form or file

upload, use the post method. To simulate a link click in a browser, use the get method. Generally, if

you expect to send a large amount of data, use post.

password$ can be specified if the server requires authentication.

path$ is the portion of the url after the hostname:port and before the ?query string in. This normally

represents a name-mapped file or script on the server.

port is the port on which the server is listening. The default ports are 80 for http protocol, and 443 for

https protocol, but these values can be configured on the server and may vary.

protocol$ should be http or https (for a secure server connection).

query$ is the trailing portion of the url which scripts interpret for variable data. The data follows the

path and a "?" delimiter, and is often in name=value pairs. The query string must be URL-encoded. The

query string can be generated using the addfield() method, or you can manipulate the string directly

using the urlencode() function.

reason$ contains the last reason text from the server.

response$ contains the last response body from the server.

status contains the last status code from the server.

timeout establishes the timeout for server communication, in seconds. By default, there is no timeout,

and the object will wait forever for a server response.

url$ is the full address of the currently requested web page. It is represented with a protocol (http/https),

a host name, a port, path, and query string, such as "http://unform.com/sdsi.cgi?p=unform8".

userid$ can be specified if the server requires authentication.

Methods

addcookie(name$,value$) adds a set-cookie header to the http request headers. Some server

applications require receipt of a cookie value.

addfield(name$,value$) adds a name=value pair to the query string, with proper url-encoding.

addfile(name$,filename$) adds a file to the submission

getfields() returns a count of the number of query string fields.

getheader$(name$) returns the value of the named header.

getname$(n) returns the name of the nth query string value.

UnForm Version 8.0

306

getresponse([response$][,headers$][,status]) submits the request and fills response$, headers$, and

status with the server's response. The response$ value contains the actual content, often an HTML page

or XML document. The headers$ field contains linefeed ($0A$) delimited rows of 'name: value' pairs.

The status code is the HTTP status of the response, a number whose meaning is defined in the HTTP

protocol specification. For example, a status of 200 means OK, and a status of 404 means the requested

file wasn't found.

getvalue$(n) returns the value of the nth query string value.

UnForm Version 8.0

307

inifile

obj=new("inifile"[,filename$])

This class manages sections and items in a text file in "ini" format, where sections in the file have a

[name] header, and items are stored in name=value lines. The ini file format is common in many

applications, including UnForm. Both the uf80d.ini and ufparam.txt file use this format.

If filename$ is not provided, a temporary file is created that is erased when the object is destroyed.

Properties

content$ is the read-only content of the entire file.

filename$ is the read-only name of the file being managed.

Methods

getitem$(section$,name$) returns the value of the named line in the named section.

getsection$(section$) returns all lines in the section, delimited by linefeeds ($0A$).

putitem(section$,name$,value$) replaces or adds a line in the section, in name=value format.

putsection(section$,lines$) replaces or adds an entire section with the contents of lines$, which should

be a series of name=value lines separated by linefeeds ($0A$).

removeitem(section$,name$) removes the line identified by name$ from section$

removesection(section$) removes the entire section.

UnForm Version 8.0

308

json

obj=new("json")

The json object provides functionality to convert data from different file structures often found in

UnForm server operations into JSON format used often in Javascript code. The common use for this

function is for custom web form development, where data from a server-run rule set can be obtained in

Javascript at runtime using the runRuleSet function found in common.js and available in the browser

interface to document management archives.

All text is assumed to be encoded as ISO-8859-1.

Methods

fromdlm$(fileorstring$ [,delim$ [,quotes [,header$]]]) returns a JSON representation of a delimited

file, such as a CSV file or tab-delimited file. If no delim$ character is provided, a tab (09) character is

assumed. Quotes can be 0 or 1; 1 indicates that data that might contain the delimiter will be quoted.

The first line of the file is assumed to contain column header names, and these names are used as the

JSON object names (after replacing invalid name characters with underscores). Some delimited files do

not contain a header row, in which case you can supply a delimited list of column names in header$.

The response is an array of objects, where each file row is an array element, and each row is represented

as an object with name:value pairs.

If the file doesn't exist, the value of the argument is used as if it was file content.

fromcsv$(fileorstring$[,header$]) is equivalent to fromdlm$(fileorstring$,",",1,header$)

fromini$(fileorstring$) parses a file or string in INI format, with section headers in square brackets (i.e.

[main]) and section data made up of lines of name=value pairs. Each section becomes an object whose

value is another object.

fromtpl$(template$) returns a JSON object representing fields and data in a string template. For

example, a library object can obtain properties of a document in a template:

obj'getdoc(doctype$,docid$,tpl$), and the returned tpl$ value can be converted to JSON format using

this method. Numeric and string types are maintained during this conversion.

A CSV to JSON example:

"First Name","Last Name",Age

"Joe","Smith",40

"Sue","Smothers",45

[{First_Name:"Joe", Last_Name:"Smith", age:40} ,

 {First_Name:"Sue", Last_Name:"Smothers", age:45

]

An INI to JSON example:

UnForm Version 8.0

309

[Section 1]

Name1=Value 1

Name2=Value 2

[Section 2]

Name1=Value 1

Name2=Value 2

{

 Section_1: {Name1="Value 1", Name2="Value 2" },

 Section_2: {Name1="Value 1", Name2="Value 2"}

}

UnForm Version 8.0

310

keyfile

obj=new("keyfile"[,filename$])

A keyfile object provides access to a disk file that stores records based on a unique string key. Keys can

be up to 127 characters long. Records can be of any size and format. If filename$ is not supplied, a

temporary file is created that is erased when the object is destroyed.

Properties

chan is a read-only property that stores the underlying channel number that the file is open on.

count is a read-only property that contains the number of records in the keyfile.

filename$ is a read-only property that contains the name of the file being managed.

found is a read-only collection object handle that is filled by methods that find records or return ranges

of records from the file.

Methods

delete(ky$) removes the record identify by ky$. If the key doesn't exist, an error occurs.

exists(ky$) returns true (1) if ky$ exists in the file, false(0) otherwise.

find(search$[,nocase[,invert]]) initializes the found collection object, then fills it with keys and records

whose records contain the text search$. If nocase is true (1), then the search is case-insensitive. If invert

is true (1), then records that do not contain search$ are added, rather than those that do. The function

returns the number of records found.

findreg(regex$[,nocase[,invert]]) initializes the found collection object, then fills it with keys and

records whose records match the regular expression regex$. If nocase is true (1), then the search is case-

insensitive. If invert is true (1), then records that do not match regex$ are added, rather than those that

do. The function returns the number of records found.

findwhere(whereexpr$,dlm$,quotes) initializes the found collection, then searches records that match

the where expression. For this search, records are assumed to be in delimited format, with the supplied

dlm$ value as the delimiter. If quotes is true (1), then fields are parsed assuming they may be quoted to

protect delimiter values in field values.

The structure of the where expression is of a Boolean expression using fields, values, comparison

operators, parentheses, and AND or OR, using #number syntax to represent field numbers. All fields are

assumed to be string data, but you can use num() to convert strings to numbers, so long as the string is an

unpunctuated numeric value. Here are some examples:

#2<>"" - field 2 not null

#2="100" and (num(#3)>=0 and num(#3)<10000) - field 2 is "100" and field 3 is between 0 and 10000

keycur$() returns the key of the last accessed key accessed.

keyfirst$() returns the first key in the file in key sequence.

keylast$() returns the last key in the file in key sequence.

keynext$() returns the next key relative to the last key accessed.

keyprev$() returns the previous key relative to the last key accessed.

UnForm Version 8.0

311

keyval$(recno) returns the key of the record number specified. The record number is a sequential value

in key order.

range(first$,count[,descending]) initializes the found collection, then fills it with keys and records

starting from the key first$, and adding up to count records. If descending is true (1), then records are

returned in reverse key sequence. The number of records found is returned.

range(first,count[,descending]) initializes the found collection, then fills it with keys and records

starting from the record number first, and adding up to count records. If descending is true (1), then

records are returned in reverse key sequence. The number of records found is returned.

range(key1$,key2$) initializes the found collection, then fills it with keys and records from the key

range provided. For example, to get all records with keys starting with "100", you might use

range("100","100Z"). The two keys do not have to exist in the file. The number of records found is

returned.

read$([ky$]|[recno]) returns a record. If a key or record number are supplied, the specified record is

returned. Otherwise, the next record in ascending key sequence is returned, relative to the last record

accessed. If the key or record number does not exist, an error is generated.

readlock$(ky$[,timeout]) reads and locks the record. If timeout is provided, then if the record is not

available (locked by another task), the system will wait for up to timeout seconds before returning an

error. If the key doesn't exist, or the record is locked, an error is generated.

write(ky$,rec$) writes the record identified by ky$. If the key already exists, the record is replaced. If

not, it is added. If the key is locked by another task, an error occurs.

UnForm Version 8.0

312

libraries

obj=new("libraries")

The libraries object provides access to the list of libraries that are known on a system. Lists are returned

in linefeed-delimited ($0A$) format, and each list row can be in one of two formats: just library path

names, or all library details. A template can be obtained that describes the library information that is

returned, so it is possible to develop routines that parse a list and obtain specific library information. A

name-only template contains one field: pathname$. A detail template contains the following fields,

delimited by a tab (09) or other character, if specified:

 basename$ - the base filename of the library path.

 dirname$ - the directory portion of the library path.

 path$ - the full library path.

 category$ - the category, if any, of the library.

 description$ - the library description

 created$ - the library creation date, in yyyymmdd format

 defperms$ - default permissions (r, w, and/or d) in semicolon-delimited format

 forceseq - true (1) to force sequencers on sub IDs

 inactive - true (1) if the library is inactive an no longer can be updated

 count - the number of document records in the library

Methods

getall$([detail[,delim$]) returns the names of all libraries, including inactive ones. If detail is true (1),

then lines of detail are returned; if not, only path names are returned. If delim$ is not null, that is used as

a template delimiter character; if it is null, a tab (09) delimiter is used.

getdelete$(userid$,[detail[,delim$]) returns the names of all libraries the specified user can delete from.

If detail is true (1), then lines of detail are returned; if not, only path names are returned. If delim$ is not

null, that is used as a template delimiter character; if it is null, a tab (09) delimeter is used.

getnames$([detail[,delim$]) returns the names of all active libraries. If detail is true (1), then lines of

detail are returned; if not, only path names are returned. If delim$ is not null, that is used as a template

delimiter character; if it is null, a tab (09) delimeter is used.

getread$(userid$,[detail[,delim$]) returns the names of all libraries the specified user can read from. If

detail is true (1), then lines of detail are returned; if not, only path names are returned. If delim$ is not

null, that is used as a template delimiter character; if it is null, a tab (09) delimeter is used.

gettemplate$(detail[,delim$]) returns a string template definition for detail or non-detail return lines,

optionally with the specified delimiter. If no delimiter is specified, a tab delimiter (09) is assumed.

getwrite$(userid$,[detail[,delim$]) returns the names of all libraries the specified user can write to. If

detail is true (1), then lines of detail are returned; if not, only path names are returned. If delim$ is not

null, that is used as a template delimiter character; if it is null, a tab (09) delimeter is used.

The following code fragment illustrates how one could parse a library list.

obj=new("libraries")

UnForm Version 8.0

313

dim row$:obj'gettemplate$(1)

rows$=obj'getnames$(1)

x=pos($0a$=rows$)

while x>0

 row$=rows$(1,x-1)

 rows$=rows$(x+1)

 libname$=row.basename$

 libpath$=row.dirname$

 libcount=row.count

 x=pos($0a$=rows$)

wend

drop object obj

UnForm Version 8.0

314

library

obj=new("library",libname$[,create])

The library object provides extensive access to the documents in a specific library, specified in

libname$, including document listings and manipulation of individual document and sub-image

properties, as well as general library information. If the libname$ provided is not found, a new library is

created if the create field is true (1).

The library object enforces library security, and will generate appropriate errors if the active user login

(specified with the setlogin() code block function) does not have rights to perform requested operations.

Note that secure passwords can be configured in the browser interface and referenced in the setlogin()

function.

Properties

All properties are read-only.

datecreated$ is the date the library was created, in yyyymmdd format.

forceseq is true (1) if sub IDs are auto-sequenced to prevent overwriting.

inactive is true (1) if the library is locked from further updates.

lasterrmsg$ contains the last known error message related to methods.

libname$ is the name supplied to the object.

pathname$ is the full system path to the library.

permission$ is the default permission setting for users that do not have specific permissions allocated.

It is a semicolon-delimited list of "r", "w", or "d".

title$ is the library title, or description.

Methods

candelete(userid$) returns true (1) if the specified user can delete images or documents from the library.

canread(userid$) returns true (1) if the specified user can read the library.

canwrite(userid$) returns true (1) if the specified user can write to the library.

catcount() returns the number of category indexes in the library.

copydoc(doctype$,docid$,todoctype$,todocid$[,library$]) copies a document, indentified by doctype$

and docid$, including all its subdocuments, to the specified todoctype$ and todocid$. If library$ is

specified, the document is copied to a different library. Returns 1 if successful. Returns 0, and fills

lasterrmsg$, if not.

copysubdoc(doctype$,docid$,subid$,todoctype$,todocid$,tosubid$[,library$]) copies a

subdocument, indentified by doctype$, docid$, and subid$, including its image data, to the specified

todoctype$, todocid$, and tosubid$. If library$ is specified, the subdocument is copied to a different

library. Returns 1 if successful. Returns 0, and fills lasterrmsg$, if not.

countcats([seed$]) returns the number of category indexes within the given seed. If no seed$ is

provided, a count of initial segments is returned. If seed$ is provided, the count is the number of

segments at the next level. Seed$ is pipe-delimited. For example, countcats("Customers|ByName")

UnForm Version 8.0

315

would return the number of third-level segments within Customers|ByName.

countdocs(doctype$) returns the number of documents in the specified document type.

countdocsbycat(seed$) returns the number of documents for the specified category index, which is in a

pipe-delimited segment series format.

countdocsbydate(date$) returns the number of documents for the specified date. Date$ should be in

yyyymmdd format.

deldoc(doctype$,docid$) removes the specified document, and any of the document's sub IDs , from the

library.

delsubdoc(doctype$,docid$,subid$) removes the specified subdocument from the library.

doccount() returns the number of documents in the library.

docexists(doctype$,docid$) returns true (1) if the document type and ID exist in the library, false (0)

otherwise.

getcats$([seed$[,first|first$[,count[,descending]]]]) returns a linefeed delimited list of category indexes

found in the library. Each index has pipe (|) segment delimiters. If seed$ is provided, the list is returned

within the prefix found in seed$, which is a pipe-delimited list of segments. In this way, it is possible to

get a list of indexes, sub-indexes, sub-sub-indexes, and so forth. The list starts at the record number

specified by first, or the sub-segment value specified in first$. Up to count records are returned. If

descending is true (1), the list produced in descending order.

getcats$() returns a list of initial category segments.

getcats$("Customers") returns a list of second segments within the "Customers" initial segment.

getcats$("Customers|ByName","B",1000) returns a list of up to 1000 category indexes within the

Customers, ByName seed, listing values of the third segment, starting with "B".

getdates$([year[,month]]) returns a linefeed delimited list of document dates found in the library.

Dates are returned in yyyymmdd format. If the year, or year and month, are provided, only dates for that

period are returned.

getdoc(doctype$,docid$,doc$) fills the doc$ property template with document properties, and returns 1

if successful. The template contains the following fields:

 date$ (yyyymmdd)

 time$ (hhmmss)

 dateupdated$

 timeupdated$

 title$

 entityid$

 notes$

 keywords$

 categories$

 links$

getimage(doctype$,docid$,subid$,filename$) extracts the image data to the specified filename$. If

filename$ is null, then a temporary file is generated with an appropriate extension and returned in

UnForm Version 8.0

316

filename$. The temporary file is automatically deleted with the job is complete. A user-supplied file

name is not deleted. Returns 1 if successful. If not successful, lasterrmsg$ will contain an error

message.

getrange$(doctype$,first|first$,count[,descending[,delim$]]) returns a linefeed delimited list of

document types and IDs within the specified document type. The list starts at the record number

specified by first, or the document ID specified by first$. Up to count records are returned. If

descending is true (1), then the list is returned in descending order. If delim$ is specified, the type and

ID are delimited by that character. If no delim$ is specified, then they are delimited by a tab (09).

getrange$(first,count[,order[,descending[,delim$]]]) returns a linefeed ($0A$) delimited list of

document types and IDs. The list range is in sequence based on the value of order: 0=type/ID,

1=date/time created, 2=title. The range is specified with first and count, indicating the starting

document, and the maximum number to return. If descending is true (1), then the list is returned in

descending order. If delim$ is specified, the type and ID are delimited by that character. If no delim$ is

specified, then they are delimited by a tab (09).

getrangebycat$(seed$,first,count[,descending[,delim$]]) returns a linefeed delimited list of document

types, IDs, and category indexes, in category index order, within the specified seed, which is provided as

pipe-delimited segments. The list starts at the record number specified by first. Up to count records are

returned. If descending is true (1), then the list is returned in descending order. If delim$ is specified,

the type, ID, and category index are delimited by that character. If no delim$ is specified, then they are

delimited by a tab (09).

getrangebydate$(date$,first|first$,count[,descending[,delim$]]) returns a linefeed delimited list of

document types, IDs, and date/times, in date/time sequence, within the specified date, which is provided

in yyyymmdd format. The list starts at the record number specified by first, or the time specified by

first$ (in hhmmss format, 24 hour clock). Up to count records are returned. If descending is true (1),

then the list is returned in descending order. If delim$ is specified, the type, ID, and date/time are

delimited by that character. If no delim$ is specified, then they are delimited by a tab (09).

getrecentdates$(count) returns a linefeed delimited list of the most recent dates in the library. The count

value specifieds the number of dates to return. Dates are returned in yyyymmdd format.

getsubdoc(doctype$,docid$,subid$,subdoc$) fills the subdoc$ property template with subdocument

properties, and returns a 1 if successful. You can reference properties as subdoc.title$, subdoc.date$,

subdoc.time$, subdoc.type$, and subdoc.size.

getsubids$(doctype$,docid$) returns a linefeed ($0A$) delimited list of sub IDs on file for the given

document.

gettypes$() returns a linefeed delimited list of document types found in the library.

getyears$() returns a linefeed delimited list of years found in the library.

imgcount() returns the number of images (sub IDs) in the library.

movenext(doctype$,docid$[,docprop$]) returns information about the next document in sequence.

Doctype$, docid$, and if supplied, the docprop$ document properties template, are filled. See the

getdoc() method for information about fields in docprop$. The method returns 1 if successful, or 0

otherwise (such as an end of file error). The starting position of a series of move commands can be set

with the moveto() method.

movenextcat(categories$,doctype$,docid$[,docprop$]) returns information about the next category

and its associated document in sequence. Categories$, doctype$, docid$, and if supplied, the docprop$

document properties template, are filled. Categories$ is filled with a pipe-delimited list of category

segments (note this is case-sensitive, returning segments as stored). See the getdoc() method for

UnForm Version 8.0

317

information about fields in docprop$. The method returns 1 if successful, or 0 otherwise (such as an end

of file error). The starting position of a series of category move commands can be set with the

movetocat() method.

moveprev(doctype$,docid$[,docprop$]) returns information about the previous document in sequence.

Doctype$, docid$, and if supplied, the docprop$ document properties template, are filled. See the

getdoc() method for information about fields in docprop$. The method returns 1 if successful, or 0

otherwise (such as an end of file error). The starting position of a series of move commands can be set

with the moveto() method.

moveprevcat(categories$,doctype$,docid$[,docprop$]) returns information about the previous

category and its associated document in sequence. Categories$, doctype$, docid$, and if supplied, the

docprop$ document properties template, are filled. Categories$ is filled with a pipe-delimited list of

category segments (note this is case-sensitive, returning segments as stored). See the getdoc() method

for information about fields in docprop$. The method returns 1 if successful, or 0 otherwise (such as an

end of file error). The starting position of a series of category move commands can be set with the

movetocat() method.

moveto(doctype$[,docid$) seeds the next movenext or moveprev methods to the position specified by

doctype$ and docid$. To seed to the start of the library, provide a doctype$ of null. To seed to the end,

provide a high doctype$, such as ff. Likewise, to seed to the end of a given document type, seed the

docid$ with a high value like ff.

movetodate(ymd$[,hms$]) seeds the next movenext or moveprev to navigate the library in date/time

order, beginning at the supplied date and optional time. The date must be in yyyymmdd format, such as

"20091231". If the time is supplied, it must be in hhmmss format using a 24-hour clock, such as

"150000" for 3:00 PM.

movetocat(seed$) seeds the next movenextcat or moveprevcat methods to an index position. Seed$

must be provided as a series of pipe-delimited category segments, such as

"Vendors|000999|PurchaseOrders".

newdoc(doc$) fills an empty document property template as doc$. The property template contains the

following fields:

 date$ (yyyymmdd format)

 time$ (hhmms format, 24-hour clock)

 entityid$

 notes$

 keywords$ (semicolon-delimited keyword list

 categories$ (semicolon-delimited list of pipe-delimited indexes)

 links$ (semicolon-delimited list of links)

UnForm Version 8.0

318

newsubdoc(subdoc$) fills an empty subdoc property template as subdoc$. The property template

contains the following fields:

 title$

 date$ (yyyymmdd format)

 time$ (hhmmss format, 24-hour clock)

 type$ (extension of uploaded file)

 size

putdoc(doctype$,docid$,doc$) updates the specified document properties. If the document does not

exist, it will be added. Note that this method does not add any image files to the library. The doc$

template contains properties described in the getdoc method.

putsubdoc(doctype$,docid$,subid$,subdoc$[,filename$]) updates subdocument properties, and

updates the image file as well, if filename$ is supplied. If the specified subdocument does not exist, it is

added. The subdoc$ template contains properties as described in the getsubdoc method. The title, date,

and time can be updated; other properties are ignored. Note that if you set the date and time values to

null (""), they will be updated with the current date and time.

subdocexists(doctype$,docid$,subid$) returns true (1) if the document type, ID, and sub ID exist in the

library, false (0) otherwise.

UnForm Version 8.0

319

marked

a=new("marked"[,sessionid$])

The marked records object provides interaction with a browser sessions' marked records. A list of

marked records is typically selected manually by the user while browsing document, and is maintained

during the life of the user's browser session. The marked object allows adding to, deleting from, and

navigating through the list of marked records.

A "marked" object is typically used in custom browser forms, when a user has marked one or more

records and a related form rule set is designed to process that list. In addition, such a rule set can add or

remove items from the marked record list. For example, it would be possible for a user to mark one

record, then execute a form that would locate related documents and mark them as well.

Properties

sesid$ is a read-only value that returns the current session ID for the browser interface user.

Methods

add(library$,doctype$,docid$,subid$) adds a record to the marked records list. Returns 1 if

successful, 0 if not (for example, if the record already exists in the list).

count() returns the number of records in the session's marked records list.

delete(library$,doctype$,docid$,subid$) removes the record from the session's marked records.

Returns 1 if successful, 0 if not.

getmarked$() returns a list of all marked records as a string. The string is structured with linefeed

($0A$) delimited records, and tab (09) delimited fields. Each record consists of the library, doctype,

doc ID, and sub ID fields.

movefirst(library$,doctype$,docid$,subid$) fills the four arguments with values from the first marked

record. The list is sorted in library, doc type, doc ID, and sub ID order.

movelast(library$,doctype$,docid$,subid$) fills the four arguments with values from the last marked

record.

movenext(library$,doctype$,docid$,subid$) fills the four arguments from the next marked record in

sequence. Returns 1 if successful, 0 if not (such as at the end of the list).

moveprev(library$,doctype$,docid$,subid$) fills the four arguments from the previous marked record

in sequence. Returns 1 if successful, 0 if not.

moveto(library$[,doctype$[,docid$[,subid$]]]) moves the record position based on the values

provided. Subsequent movenext and moveprev methods will be relative to this location.

UnForm Version 8.0

320

rac

a=new("rac")

Remote Access Control object for simplified document access from public users. The rac object allows

creation and management of RAC codes, which are random codes linked to specific document images.

RAC codes are very secure in that there are an extremely large number of possible codes (about

1.15e+77 combinations), so the potential for guessing a valid code and gaining access to a document is

extremely small.

A remote access URL is in the form http://server/script?rac=code, where the code is a 44-byte encoded

string previously generated for a specific document image. These URL's can be emailed to users, who

can open the link and view the single file associated with that document image. Such a link does not

require a login or password, so it useful in cases where a site doesn't wish to manage external user logins

to provide full archive library access. A code expires after a certain number of days (default defined

with racdays in uf80d.ini), as specified in the rac object's create$() method.

If the uf80d.ini [archive] external= value is set to a path to a public access cgi script (or direct to the

internal web server, though that is not typically done), then the browser interface document email screen

can generate or delete an RAC url. Note if this is not configured, rule sets can still generate a code and a

url, by providing a script prefix to the geturl$() method.

Methods

count() returns the number of documents in the RAC table.

create$(lib$,doctype$,docid$,subid$[,validdays][,force]) generates code for the given document

image, valid for the number of days (default - uf80d.ini). If a code has been previously generated, that

code is returned and a new expiration date is calculated. To force the generation of a new code, use a

force argument of 1.

deldoc(lib$,doctype$,docid$,subid$) removes the RAC code, if any, associated with the given

document. This allows a rule set to explicitly revoke remote access for a given document.

getcode$(lib$,doctype$,docid$,subid$) returns the 44-byte code associated with the document image

specified, or null if no code has been created.

getdoc(code$,lib$,doctype$,docid$,subid$) given a 44-byte RAC code, this fills the associated lib$,

doctype$, docid$, and subid$ values. It returns a 1 if the document is found, or a 0 if not.

getexpire$(lib$,doctype$,docid$,subid$) returns the expiration of the RAC code associated with the

given document. The format is yyyymmdd. If the document has no RAC code available, a null string is

returned.

geturl$(lib$,doctype$,docid$,subid$[,scriptpath$]) returns full URL for a given document, which can

be used to retrieve the document. If scriptpath$ is not supplied, then the 'external=' path is used from the

uf80d.ini [archive] section. This script is the http: path used by a public user (not generally the internal

http server) to access the archive server. Note this generally requires configuring a public-facing web

server to use one of the CGI scripts supplied with UnForm. A script path example might be

"http://mywebserver.com/cgi-bin/uf80a.cgi".

UnForm Version 8.0

321

search

obj=new("search"[,searchid$])

The search object provides programmable control over the library search function offered by the browser

interface and the command line -arcsearch option. By setting selected properties to values that follow

the search syntax requirements, and running the search, a document list object is created that provides

access to the results of the search. In addition, the results can be placed on a user's search results page,

so a rule set can execute a search on behalf of a user, and the results can be displayed in the browser

interface.

If a searchid$ is supplied, then the search object opens an existing search result, and the doclist object is

attached to those results. This feature is useful when using custom browser forms driven from a search

screen, as the search ID is provided and the search results the user generated can be accessed in a rule

set. The search ID is the “sid” field value found in the URL of a search result screen, and is always a

10-digit value.

Each of the properties can be set to a wildcard (i.e. "*value*" or "value*"), an exact value (i.e. "12345"),

a range (i.e. "12/1/2007-12/31/2007"), or a regular expression with a tilde prefix (i.e. "~[0-9][A-Z]").

You can use "not" or "!" to look for archives that do not match a criteria, and "and"(or a semicolon) or

"or" (or a comma), to search for multiple values or alternate values. All properties that are set must

evaluate to true for a document to be added to the document list.

Searches are optimized when possible. The best optimizations are document IDs, entity IDs, small date

ranges, and multi-level categories.

Note that document types and document IDs are case-sensitive when optimized.

Properties

docid$ specifies document ID(s) to search for. Note that document IDs are case-sensitive.

doclist is a document list object that is filled with search results when the run method is executed.

doctype$ specifies document type(s) to search. Note that document types are case-sensitive.

filter$ is compared to all document properties.

library$ contains one or more library names to search. Multiple libraries can be separated by

semicolons.

recsread is a read-only property that stores the number of records read when the search was last run.

selected is a read-only property that stores the number of records selected and added to the document list

object when the search was last run.

subids$ searches for documents that contain the subid(s) specified.

text$ searches the contents of the @text subdocument, if found, for the text$ search criteria.

title$, date$, dateupdated$, entityid$, keywords$, notes$, categories$, and links$ specify criteria for

a given document property. Dates can be specified in yyyymmdd[hhmmss] format, or in local delimited

date format, such as "12/31/2009", where the mdy order is configured with datefmt=xxx in uf80d.ini.

UnForm Version 8.0

322

Methods

makesearch(userid$[,description$[,errmsg$]) saves the search results in the user's search results table,

so the browser interface will have access to the results. Optionally specify the description, or an error

message, which will appear in the table.

run([append]) runs the search and fills the doclist object. If append is true (1), then the doclist object is

not cleared before running. This allows multiple searches to produce a combined document list.

UnForm Version 8.0

323

system

obj=new("system")

The system object provides access to operating system information and services. Note that the system

object is a static object, meaning there is only one object instantiated for any and all new() functions

executed.

Properties

All properties are read-only.

home$ is the path of the UnForm server's home directory.

networkid$ is the server's hostname or IP address.

osname$ is the specific operating system name, such as "MS-WINDOWS", or " UNIX-Linux-RedHat".

ostype$ is "win" on Windows, and "*nix" on Unix or Linux-like systems.

user$ is the user account running the UnForm server.

Methods

copyfile(from$,to$[,errmsg$]) copies the from$ file to the to$ file. If an error occurs, such as a

permission violation or if the to$ file already exists, errmsg$ is filled with a message. The function

returns true (1) on success, false (0) otherwise.

deletefile(filename$[,errmsg$]) erases the specified file. It returns true (1) if successful, or false (0)

and fills errmsg$ if not.

getcmd$(cmd$[,output$]) executes the specified command, captures its standard output, and returns the

contents of the standard output. If output$ is provided, it must be a file name that will also contain the

standard output result.

renamefile(from$,to$[,errmsg$]) renames the from$ file to the name specified in to$. It returns true

(1) if successful, or false (0) and fills errmsg$ if not.

runcmd(cmd$) executes the specified command and returns its exit code.

tempfile$([extension$]) creates a temporary work file that is erased at the end of the current job. The

file name is returned. If extension$ is provided, the file will have that extension. Otherwise, a .tmp

extension is used. The file must be opened to work with it. This function can be used to generate an

empty file to use with other operating system commands.

tempfile([extension$]) creates and opens a temporary work file that is erased at the end of the current

job. The channel number of the opened file is returned. If extension$ is provided, the file will have that

extension. Otherwise, a .tmp extension is used. Use PTH(chan) to obtain the file name.

winprtprinters$() returns a linefeed ($0A$) delimited list of printer names available for *winprt* or

windev printing on a Windows UnForm installation.

winprttrays$(printer$) returns a list of tray numbers and descriptions for the specified Windows

printer. Windows print driver vendors often use user-defined tray numbers above 256, rather than tray

numbers that match traditional PCL values. The list contains linefeed ($0A$) delimited tray lines, where

each tray line contains a tab (09) delimited tray number and description.

UnForm Version 8.0

324

textfile

obj=new("textfile"[,filename$])

The textfile class provides line-oriented text file processing capabilities. Each line in the file is

considered a record, and lines are separated by linefeeds ($0A$) on Unix-like systems, and carriage

return-linefeed ($0D0A$) sequences on Windows systems.

If filename$ is provided, the file's existing content is loaded, or it is created if necessary. If no filename$

is provided, a temporary file is created that is erased when the object is destroyed.

Properties

All properties are read-only.

filename$ contains the file name of the text file being managed.

lines contains the number of lines in the file.

found is an unkeyed collection object that holds the results of find operations. Each element of the

collection is a matching line from the file.

Methods

append(row$) appends the line row$ to the end of the file.

delline(line) removes the line specified from the file, shifting remaining rows up.

find(search$[,nocase[,invert]]) initializes the found collection object, then fills it with text lines whose

data contain the text search$. If nocase is true (1), then the search is case-insensitive. If invert is true

(1), then records that do not contain search$ are added, rather than those that do. The function returns

the number of records found.

findreg(regex$[,nocase[,invert]]) initializes the found collection object, then fills it with text lines

whose data match the regular expression regex$. If nocase is true (1), then the search is case-insensitive.

If invert is true (1), then records that do not match regex$ are added, rather than those that do. The

function returns the number of records found.

findwhere(whereexpr$,dlm$,quotes) initializes the found collection, then searches records that match

the where expression. For this search, records are assumed to be in delimited format, with the supplied

dlm$ value as the delimiter. If quotes is true (1), then fields are parsed assuming they may be quoted to

protect delimiter values in field values.

The structure of the where expression is of a Boolean expression using fields, values, comparison

operators, parentheses, and AND or OR, using #number syntax to represent field numbers. All fields are

assumed to be string data, but you can use num() to convert strings to numbers, so long as the string is an

unpunctuated numeric value. Here are some examples:

#2<>"" - field 2 not null

#2="100" and (num(#3)>=0 and num(#3)<10000) - field 2 is "100" and field 3 is between 0 and 10000

UnForm Version 8.0

325

getline$(line) returns the line number specified.

insline(line,row$) inserts the line row$ into the file at the line specified. Lines are 1-based, so

insline(1,"text line") inserts "text line" at the beginning of the file. If line is more than the number of

lines in the file, new lines are added to ensure the file has at least that many lines.

purge() removes all lines from the file.

putline(line,row$) replaces the line specified with the contents in row$. If the line exceeds the number

of lines in the file, lines are added as necessary.

UnForm Version 8.0

326

webapi

obj=new("webapi")

The webapi object is used to generate URL strings appropriate for browser interaction with UnForm's

document management web interface. These strings can be used when constructing responses to the

UnForm Desktop Client.

Note: scriptpfx$ is only needed if server access differs from http access in use, for example if an external

web server is used for document access even though the internal server is used for DTC, or a print-time

rule set is executing the code.

Methods:

documenturl$(lib$,doctype$,docid$[,subid$,[nowrapper[,scriptpfx$]]]) returns a document URL.

No subid will result in a document level view. A "@" subid will result in a conditional view, document

if multiple sub ids are available, or @unform if just that is available. Otherwise, use a valid sub id. If

nowrapper is 1, an image is shown without the standard UnForm document wrapper menus.

webform$(formname$,lib$[,doctype$[,docid$[,scriptofx$]]]) displays the indicated web form, with

the library and optional document type and doc id populated on the web form.

catlist$(lib$,segments$[,scriptpfx$]) presents a category browse page, as if the user had clicked

through category segments until a list of documents is displayed. Segments are pipe-delimited.

searchtpl(tpl$) returns search template tpl$ with the following fields:

 library$
 doctype$
 docid$
 date$
 title$
 keywords$
 notes$
 categories$
 subids$
 text$
 links$
 dateupdated$
 entityid$
 filter$

Populate these fields as you would in a browser search, and pass this template to the searchurl$ method.

searchurl$(tpl$[,scriptpfx$]) returns search url with tpl$ based criteria. Note lots of criteria could

exceed http GET size limits, which are typically a few hundred characters.

UnForm Version 8.0

327

xmlreader

obj=new("xmlreader"[,filename$|content$])

The xmlreader class provides XML parsing capabilities to rule set code blocks. XML is a common file

format for transmitting data between applications. It is a tag-based data format, where tags are used to

identify data elements, as well as data attributes. Data is arranged in hierarchical fashion, where content

contains other content, such as a report, which contains customers, which contain invoices, which

contain shipping and order details, and so on.

The xmlreader navigates through this hierarchy using slash delimiters, similar to a file system directory,

return data for a particular tag sequence. The data may be atomic data, a complete element, an element

attribute, or it may be addition XML fragments that can be further parsed. For example, if the root

element is "documents", and it contains a number of "document" elements, each of which contains an

"invno" tag, you can navigate to an invoice number as "/documents/document/invno". If there are

multiple occurrences of a particular element, you can get a count, and retrieve a particular element using

a sequence number.

Elements with sequences can be referenced using a sequence number in many methods (referring to the

last element tag), or can be referenced with [n] suffixes anywhere in the path chain. For example,

"/documents/document[2]/invno" refers to the second document element's invno tag.

Element references can also be designed to match attributes or values, using one of two syntaxes:

 [attribute=value]

 [<tag>=value]

For example, "/documents/document[OrderID=12345]/Address[<Type>=ShipTo]/City" would locate the

document with an attribute "OrderID" of "12345", then find the Address element of that document with a

tag <Type> whose value was "ShipTo", then locate the Address element's City tag.

If a valid filename$ value is supplied, the file is loaded when the object is first instantiated.

Alternatively, the argument can be an XML document string (if the value doesn't exist as a file, it is

assumed to be XML content). At any time, a new file can be loaded or the XML content provided

directly as a string.

Properties

body$ contains the non-header portion of the file, with any comments removed.

content$ is the string representation of the XML data. When a file is loaded, content$ is filled with its

data.

encoding$ contains the character encoding of the file. The default encoding is utf-8, which is a

compressed version of unicode, but files may be encoded using other character sets, such as unicode or

iso8859-1. Since UnForm's normal character set is iso8859-1 (or the 9J symbol set), it is often necessary

to specify a target encoding when retrieving values for UnForm printing.

filename$ is the name of the most recently loaded file.

header$ contains the header portion of the file, similar to "<?xml version="1.0"?>".

UnForm Version 8.0

328

root$ contains the name of the root element. All XML documents have a root element that is the parent

of all other elements.

version$ contains the XML version number from the header.

Methods

getattr$(element$[,sequence],attrname$) returns the attribute value of the specified element. If a

sequence is provided, the specified occurrence of the element is used.

getattrs$(element$[,sequence]) returns a list of element attributes, which are name-value pairs. Each

pair is delimited by a linefeed ($0A$), and the name and value are delimited by a tab (09). If a

sequence is provided, the specified occurrence of the element is used.

getchild$(element$[,sequence],child) returns a specified child element (which may itself contain nested

child elements). If the sequence is provided, then it applies to the selection of the parent element, not the

child element. The child argument is used to determine which child element to return.

getchild$("/documents/document",5,1) returns the 1
st
 child element of the 5

th
 documents/document

element.

getchildren$(element$[,sequence]) returns a linefeed ($0A$) delimited list of element names that are

children of the element provided. If there are no children, then null is returned, and the value of the

element is an atomic data value. If a sequence is provided, the specified occurrence of the element is

used.

getchildren(element$[,sequence]) returns the number of child elements that are found under the

element. If a sequence is provided, the specified occurrence of the element is used. The sequence

applies to the element, not the children. getchildren("/documents/document",5) returns the number of

child elements found under the 5
th

 document element under the documents root element.

getcount(element$) returns the number of times a given element occurs. This can be used to determine

how many sequences of a particular element are available.

getelement$(element$[,sequence]) returns element and enclosed content specified by element$. If a

sequence is provided, the specified occurrence of the element is used.

getns$(element$[,sequence],uri$) scans the attributes of an element for an XML namespace declaration

that matches the uri$ provided. It returns the namespace name, which can then be used to access

elements that require a namespace prefix that associates a name with a URI.

getvalue$(element$[,sequence[,toencoding$]]) returns the inner value of the specified element. If the

element holds atomic data, the result is a string data value. Note that an element may contain sub-

elements. If a sequence is provided, the specified occurrence of the element is used. If toencoding$ is

provided, then the value is translated from the XML document's encoding to the specified encoding. A

common toencoding$ value might be "iso8859-1" or "9j" to translate UnForm's default 8-bit text

encoding.

loadfile(filename$) sets the XML content by reading filename$

setcontent(content$) sets the XML content to content$.

UnForm Version 8.0

329

Internal Variables

In addition to your own variables, UnForm provides a list of variables that you can use, or in many cases,

set to a desired value.

across$
Can be set to values described in the across command. Available only in prepage

and precopy.

bin$
Can be set to values described in the bin command. Available only in prepage and

precopy.

cols$
Can be set to values described in the cols command. Available only in prepage and

precopy.

copies

pcopies

Can be set to the number of copies to generate for a page. You can change this value

to dynamically adjust the number of copies. If the number you specify is higher than

the number specified by the rule set, then that highest defined copy's text and

enhancements will be repeated until your specified copies are complete. This value

is reset after each page to the rule set default, so you can't set it in the prejob routine.

If you set pcopies, that is also honored like the pcopies command.

copy
Contains the current copy number in precopy. Generally you shouldn't modify this

value. If you need to skip printing of a copy, use the skip variable instead.

coverset$,

coverfile$,

coverargs$

If coverset$ is set to a rule set name$, a cover page is generated for the current

document, using the rule set specified. Additionally, coverfile$ can specify a rule

file, if the rule set is not in the current rule file, and coverargs$ can be set to

command line arguments to use when running the subjob that generates the cover

page. The cover page values must be set before the first page of the document is

generated, so typically these values will be assigned in a prejob code block.

However, if different cover page details are needed as the output device changes, you

can set them in prepage or precopy code blocks.

crosshair$
Can be set to "Y" or "y" to enable crosshair grid printing over the output (laser and

PDF output only).

down$
Can be set to values described in the down command. Available only in prepage and

precopy.

driver$
Stores the current driver as "laser", "ps", "pdf", or "zebra". The win and winpvw

drivers are considered variants of PDF, and driver$ is set to "pdf" when used. This

variable should not be changed.

duplex$
Can be set to values described in the duplex command. Available only in prepage

and precopy.

gs$
Can be set to the values described in the gs command. Available only in prepage

and precopy.

UnForm Version 8.0

330

lcopies$,

ldarkness$,

lspeed$

Set any of these values in a prepage code block to mimic the zcopies, zdarkness, or

zspeed commands that can be used to control specific aspects of ZPL label printing.

margin$
Can be set to values described in the margin command. Available only in prepage

and precopy.

noarchive
Set to 1 in prejob to turn off all archiving for the job, or in prepage to turn off

archiving of just the current page.

nocover
Set to 1 to turn off cover page generation, before the first page of a document.

noemail
Set to 1 to turn off the execution of the email command. Note: this does not affect

the email() code block function or direct calls to mailcall.

nohpgl
Set to 1 in prejob to turn off HP/GL formatting, as if the -nohpgl command line

argument had been used. This variable is ignored in code blocks other than prejob.

nooverlay
Set to 1 to suppress an AFO overlay on a page, in either prepage or precopy.

orientation$
Can be set to "landscape", "portrait", "rlandscape", or "rportrait". It can also be set to

a literal digit: "0"=portrait, "1"=landscape, "2"=reverse portrait, or "3"=reverse

landscape.

outline$
Can be set to an outline string used when the PDF outline feature is turned on, by use

of the outline command. Multiple levels of outlines can be defined by delimiting

levels with vertical bars, such as outline$="Customer type "+get(1,6,4)+"|Page

"+str(pagenum). This example would produce a 2-level outline structure with a

customer type code being the top level, and page numbers as child levels.

output$
In laser output, this can be changed in prejob, prepage, or precopy, and is tracked by

copy. Set it to the device or file name desired for output on the server. If it changes

for a given copy in the middle of a laser job, UnForm will close the prior output

channel and reopen the new one. This can be used to send a copy to a different

printer, or to a fax device. You can set the value to any printer alias known to

UnForm (in the unform.cnf file), any file, or a pipe or redirect, such as ">vfx -n

"+faxnum$. When using a UNIX redirect or pipe, be sure to add quote characters

(CHR(34)) around any data that might contain ampersands (&) or other shell-aware

characters.

For PDF output, you can set this value in the prejob code block to override any –o

command line setting. Setting this value in any other code block is ignored.

pagenum
Can be referenced as the current page number. The value should not be changed.

paper$
Can be set to values described in the paper command. Available only in prepage and

precopy.

UnForm Version 8.0

331

rows$
Can be set to values described in the rows command. Available only in prepage and

precopy.

showimages
Can be set to a non-zero value to execute an images command even if the skip

variable is true. This is only honored in the precopy code block.

skip
Can be set to a non-zero value in prepage or precopy, to skip printing of that page or

copy, respectively.

text$[all]

textpage$[all]

textjob$[all]

Stores the text for the page as a one-dimensional array. For example, text$[2] is the

second line of text on the page. In prejob, it contains the content of the first page. In

prepage and precopy, it contains the content of each page in sequence. You can use

the array directly in code, or you can use the built in get(), mget(), set(), cut(), and

mcut() functions to retrieve or manipulate its contents.

Textpage$[all] contains the text of the current page before any manipulations by

code blocks.

Textjob$[all] contains the text of all pages in the job. Each line of each page, up

through the last non-blank line of each page, is appended to the array when the input

stream is initially parsed for the job. This array can be used in a prejob code block to

analyze the full report content.

PostScript input not supported.

tray$
Can be set to values described in the tray command. Available only in prepage and

precopy.

uf.xxx$
A string template or composite string that can provide access to many attributes of

the UnForm environment and command line.

uf.arcjob Set to true (1) if the current job is a subjob for an archive

command. This will be 0 otherwise.

uf.arcenabled Set to true (1) if archiving is licensed.

uf.clientip$ The IP address of the connecting uf80c client.

In the case of the Unix perl-based client, an attempt is made to

identify the connecting terminal’s IP address, whether by

telnet or ssh. The who command is used, which may provide

a name from /etc/hosts rather than an IP address, but it will

still be locally resolvable.

In the case of jobs submitted via direct TCP/IP ports, the IP

address of the computer that connected to the server’s

listening raw port. Note that if this is a server-based printer

share, the IP address returned will be of the server and not the

originating computer.

uf.cols Columns for the current page.

uf.copies Copies defined for the job.

UnForm Version 8.0

332

uf.deljob Set to true (1) if the current job is a subjob for a delivery

command. This will be 0 otherwise.

uf.dfrule$ Default rule file from the environment.

uf.driver$ Driver for the current job.

uf.emattach$ Command-line –emattach value.

uf.embcc$ Command-line –embcc value.

uf.emcc$ Command-line –emcc value.

uf.emfrom$ Command line –emfrom value.

uf.emlogin$ Command line –emlogin value.

uf.emmsgtxt$ Command line –emmsgtxt value.

uf.emoh$ Command line –emoh value.

uf.empswd$ Command line –empswd value.

uf.emsubject$ Command line –emsubject value.

uf.emto$ Command line –emto value.

uf.errfile$ Command line –e file value (dynamically determined by the

server).

uf.home$ Home directory of the UnForm server.

uf.inputfile$ Command line –i file value (dynamically determined by the

server).

uf.job Current job number.

uf.jobexecerr$ If an error occurs while running a subjob with the jobexec()

command, the error message will be in this variable.

uf.login$ Contains the login name from a -arclogin command option.

uf.maxdatacols Maximum column with data on any page in the job.

uf.maxdatarows Maximum row with data on any page in the job.

uf.maxpagecols Maximum column with data in the current page.

uf.maxpagerows Maximum row with data in the current page.

uf.maxpage The maximum page number for the job. This value is

calculated at the start of the job, and may be adjusted if pages

are inserted or removed.

uf.model$ Command line –m model value.

uf.outputfile$ Command line –o file value. For server-based output, this is

the –o option sent by the client. For client-based output, this

UnForm Version 8.0

333

is dynamically determined by the server.

uf.page Number of input lines per page. Do not confuse this with the

pagenum variable, which holds the current page number.

uf.paper$ Paper size name.

uf.parent The job ID of the parent job when a subjob is running.

uf.pcopies Pcopies defined for the job.

uf.pdfauthor$ Command line –pdfauthor value.

uf.pdfkeywords$ Command line –pdfkeywords value.

uf.pdfprotect$ Command line –pdfprotect value.

uf.pdfsubject$ Command line –pdfsubject value.

uf.pdftitle$ Command line –pdftitle value.

uf.prm$ Command line –prm value.

uf.rows Rows for the current page.

uf.rulefile$ Command line –f rule file value.

uf.ruleset$ Selected rule set for the current job.

uf.shift Horizontal shift value.

uf.subjob Set to 1 (can be treated as a Boolean) if this is a sub-job

executed by the jobexec() function.

uf.subst_file$ Command line –s file value.

uf.version$ The version of the UnForm server.

uf.vshift Vertical shift value.

uf.warn$ Job warning messages, delimited by line-feeds. For example,

to add your own message: uf.warn$=uf.warn$+"My

message"+chr(10).

zcopies$,

zdarkness$,

zspeed$

Set any of these values in a prepage code block to mimic the zcopies, zdarkness, or

zspeed commands that can be used to control specific aspects of ZPL printing.

UnForm Version 8.0

334

Internal Functions

In addition to the intrinsic functions available in the run-time Business Basic engine, the most common

of which are documented later in this chapter, UnForm provides a set of functions specific to its

operating environment. Some functions are macros that perform an action, rather than return a value.

arrtostr(arr$[all],str$,dlm$)
Converts array arr$[all] to delimited string str$,

using dlm$ as delimiter.

arrset(arr$[all],col,row,cols,val$)
Sets val$ into the one-dimensional array at the

position specified. If val$ contains linefeeds, it is

treated as a multi-row value, and the row

increments for each additional row in val$. The

array is redimensioned as necessary to

accommodate the row and position.

basename(file$)
Returns the base name, without path information,

from the file name specified. See also dirname().

bbxread(file$,key$,rec$,errcode)
Executes an instance of BBx, configured with the

bbpath=path line in uf80d.ini, and obtains the

record specified by key$ in file$. If an error occurs

in the BBx instance, it is returned in errcode. An

errcode value of –1 indicates no error occurred.

The variable rec$ can be DIMed as a string

template, but be sure to use '=10' to define field

separators, as the default separator in the ProvideX

engine is a hex 8A rather than the BBx default hex

0A. If it is not defined as a template, the raw record

data is returned and may be parsed.

Here is an example:

prepage{

ky$=get(65,5,6)

dim rec$:"id:c(5*=10), *:c(1*=10),

…, fax:c(9*=10)"

bbxread("/u/data/CUSTOMER",ky$,rec

$,ec)

if ec=-1 then faxnum$=rec.fax$

}

cdate(datestr$ [,fmt$])
Converts a text date to a date (Julian) number,

suitable for date compares, calculations, and use in

the dte() function. The datestr$ can be a string in

UnForm Version 8.0

335

delimited format, based on the fmt$ string, or can

be a simple string if digits in yyyymmdd[hhmmss]

format. The format can be mdy, dmy, or ymd and a

delimited date is parsed according to that order.

The default date format is defined in uf80d.ini

(datefmt=mdy).

If a time is included, the value returned will include

a fraction. Note that the dte() function requires an

integer for the day portion, and the time portion, if

provided, is an hours value:

 x=cdate("12/31/2009 3:00 pm","mdy")

 x$=dte(int(x),fpt(x)*24:"%Mz/%Dz/%Yz

%Hz:%Mz")

clientenv(name$)
Returns a client-side environment variable value.

cmtocols(centimeters)

cmtorows(centimeters)

Returns columns or rows, given a centimeter

measure.

cnum(expression)
Returns a number from a text string, after stripping

formatting characters such as commas and dollar

signs. Parentheses and minus signs indicate

negative numbers. Use this function, rather than

the intrinsic num() function, to convert text to

numbers if the text can contain punctuation.

count(str$,dlm$)
Counts elements of a string, parsed by a delimiter.

countq(str$,dlm$)
Counts elements of a string, parsed by a delimiter,

honoring quoted strings.

cstrans(text$,fromcs$,tocs$)
Returns text$ after translating it from one character

set to another. Character set names include "uc",

"utf16", or "utf-16" for unicode, or "utf8" or "utf-8"

for UTF-8 encoding, or any of the character sets or

symbol sets available in the UnForm unicode

directory, such as 9j or 8859-1. The default

character set is 9j, a pcl symbol set similar to ISO

8859-1.

cut(col,row,cols,value$)
Returns the value text at position col, row, for cols

columns, after setting the specified position to

value$. If value$ is null ("") or spaces, cut()

UnForm Version 8.0

336

effectively erases the text. This is useful for

moving data in text commands, such as text

10,60,{cut(10,59,10,"")}, which would cut text

from 10,59 and move it to 10,60.

PostScript input not supported.

dbconnect(name$[,timeout[,errmsg$]])

Connects to the database source identified by

name$. The support server configuration is used to

define the names and associate them with data

source connection strings. Typically done in a

prejob code block. Requires the Windows Support

Server. If executed as a function, returns 1 on

success, or 0 on failure.

dbexecute(name$, command$, timeout,

fdelim$, rdelim$, response$[,errmsg$])

Executes the SQL command cmd$ and sets zero or

more result rows in response$. Columns are

delimited by fdelim$ (tab - chr(9) - by default).

Rows are delimited by rdelim$ (CR-LF -

chr(13)+chr(10) - by default). Requires the

Windows Support Server, and a previously

successful dbconnect() function execution in the

current job. If executed as a function, returns 1 on

success, or 0 on failure.

deliver(filename$,to$,tags$

[,response$[,errmsg$]])

This function delivers the filename to a destination

by fax or email, depending on the to$ value. The

rule is simple: if to$ contains an "@" character, it

is emailed. Otherwise, it is faxed.

Tags are in the format name=value[,name=value

...]. Delimit each name=value pair with either

commas or semicolons. The value can be quoted if

it contains commas or semicolons. Tags are

substituted with values in the fax/email

configuration lines found in deliver.ini.

The deliver.ini file contains configuration

information for delivery methods. This file is

documented in the Deliver Configuration chapter.

See also the Deliver command, which simplifies

subjob management for delivery while printing

batches of documents.

delpage(n)
Command removes page n, pages n+1 to end are

shifted down.

PostScript input not supported.

dirname(file$)
Returns the directory portion of the file name

provided. The value returned uses forward slashes

UnForm Version 8.0

337

on all platforms, and does not include a trailing

slash. See also basename().

docidexists(lib$,doctype$,docid$)
Returns 1 if the document type and ID exists in the

library, or 0 if not.

dtdel(filename$, title$, userid$, ip$ [,style

[,errmsg$]])

Deliver filename$ to the userid$ and/or IP address

specified (the ip address can include a session

suffix). The title$ will be presented to the user. A

style of 0 indicates deliver for optional viewing, and

1 indicates immediate popup. If an error occurs, a

message will be returned in errmsg$. See the

Desktop Delivery and Forms chapter for details.

If the filename$ parameter is a message starting

with “msg:”, it is treated as a popup message rather

than a file. For example: “msg:Check the printer

for invoices” would display a message window with

the indicated text as the content.

dtform(formname$, title$, userid$, ip$,

datastr$, response [,timeout [,errmsg$]])

Deliver the HTML form formname$ to the userid$

and/or IP address specified. The ip address can

include a session suffix. The title$ value is

presented to the user for approval. The datastr$ is a

URL-encoded string that can be filled before the

function is executed to provide default values for

the form, and will contain URL-encoded data

returned when the user submits the form. The

response code will be 0 if the form was submitted,

1 if the user cancelled the form, 2 if the form timed

out, or 3 if the user refused the form. The timeout

can be specified to limit the amount of time the user

has to accept the form (the default is 30 seconds).

If an unexpected error occurs, a message is returned

in errmsg$. See the Desktop Delivery and Forms

chapter for details.

If timeout is set to -1, then the user will not be

prompted to accept the form. Instead, the form will

be displayed immediately. However, if the user is

not present or the monitor is not running, the form

will not be responded to and no timeout notification

will occur. Instead, the job will wait until

terminated. This option should only be used if the

user is guaranteed to be present, such as a follow up

form to one that was previously accepted and

submitted immediately before.

UnForm Version 8.0

338

The urlsetval and urlgetval functions can be used to

create and parse the datastr$ values.

email(to$, from$, subject$, body$,
attach$, cc$, bcc$, otherheaders$,

login$, password$,logfile$)

Sends an email, assuming emailing is properly

configured in the mailcall.ini file, using the

information supplied. The arguments are positional

but need not all be supplied. For example,

email(trim(get(81,1,40)), info@acme.com,

"Please review", messagebody$) will send a plain

message to the address stored at column 81, row 1,

for 40 characters in the current page. No

attachment, carbon copy, etc. information will be

used.

As the arguments are positional, if you need to

supply a login and password for the mail server to

perform authentication, then all the arguments must

be supplied, even if simply null (""). Note that this

email function is different from the email

command, in that the job itself is not sent, and

multiple emails can be sent during the job stream

within code blocks. This is useful, particularly in

combination with the jobstore and jobexec

functions, to develop batch email jobs.

entityencode(str$), entitydecode(str$)
Two functions that return str$ with HTML or XML

entities encoded or decoded. For example, in

HTML, the "<" and ">" characters are meaningful

for character markup, so to reference those

characters literally, rather than as markup, they are

encoded to "<" and ">", respectively. When

reading or writing data from a HTML page or XML

document, it may be necessary to use these

functions.

env(name$)
Returns the value of the operating system

environment variable in name$, or in a literal

quoted string. Returns null ("") if the variable does

not exist.

err=next
May be used for any err=label option in any

function or statement. Forces UnForm's error

trapping to ignore an error. You may, of course,

name your own err=label if desired.

exec(expression)
Executes a barcode, bold, box, erase, font, image,

italic, light, micr, move, shade, text, or underline

command from within the code block. Expression

must be a single string value that contains the text

mailto:info@acme.com

UnForm Version 8.0

339

of such a command, such as exec("box

"+str(col)+","+str(row)+",30,2.5"). You can use

the exec() function to add enhancements to a print

job within the code block. The function can be

used in either prepage{} or precopy{} blocks.

Remember that some commands need quoted

parameters to work properly. For example, if you

exec() a text command, be sure to add quote

characters around the text to be printed, using one

of three methods: double any internal quotes, use an

expression that uses 22 for quotes, or use an

expression that uses CHR(34) for quotes. For

example, exec("text 10,10," + chr(34) + message$

+ chr(34) + ",cgtimes,10"), or exec("text " +

str(col) + "," + str(row) + ",""Quoted

Text"",univers,12").

exists(file$)
Returns 1 (true) if the file path specified exists, 0

(false) otherwise.

fileext(file$)
Returns the extension of file name provided,

without the leading ".". The extension is the

segment of the name after the last ".".

finddata(text$[all], search$, coloffset,

rowoffset, columns, result$[all])

Searches the text array for a search string, and

returns each item found in the result$ array. The

data returned is based on the locations found, offset

by the coloffset and rowoffset values, and the

length specified. Each result is trimmed of leading

and trailing spaces.

The function returns the number of positions found,

and the result$ array is indexed from 0 to the

number of positions minus 1. Result$[0] is the first

item found, result$[1] is the second, and so on.

This function is useful for report mining, where

specific types of rows contain the data desired.

See the findpos() function for a description of how

the search$ string is interpreted.

findpos(text$[all],search$,result[all])
Searches the text array for a search string, and

returns the number of locations found. Each

location found is returned in the response[all] array.

The result array is structured as follows:

result[0,0]=first column

result[0,1]=first row

UnForm Version 8.0

340

result[1,0]=second column

result[1,1]=second row

The first dimension contains each position found,

from 0 through the number of positions minus 1.

The second dimension contains column numbers in

element 0, and row numbers in element 1.

The search string can be a simple string, or a tilde

(~) followed by a regular expression. If the string

contains a “@” character, then two, three, or four

comma-separated digits should follow, indicating

the starting column,row, and ending column,row to

search in the text array. If the ending row is not

supplied, search ends at the last row in the array. If

the ending column is not supplied, all columns from

the first column are searched.

“Total@50,45,54,66” will search for the word

“Total” in columns 50 through 54, rows 45 through

66 in the array.

fromuc(text$,charset$)
Converts unicode text to single-byte text in the

character set specified. Characters that are not

present in the character set are replaced with a "?".

Returns the single-byte text. Known character set

tables are specified in the UnForm unicode

directory. Also, "utf8" or "utf-8" can be used to

convert UTF-16 (Unicode) format to UTF-8, a

common encoding for XML or HTML data.

get(col,row,cols)
Returns text from the text$[all] array, without

substring or array out-of-bounds errors.

get(col,row,cols,trim$)
Same as get(), but with a trim “Y” or “N” option.

get(col,row,cols,trim$,page)
Same as get(), but with a trim “Y” or “N” option,

and a page number option to retrieve information

from any page of the job.

get(col,row,cols,trim)
Same as get(), but with a Boolean trim (0 or non-0)

option.

get(col,row,cols,trim,page)
Same as get(), but with a Boolean trim (0 or non-0)

option and a page number option.

getaddress(book$,entityid$,doctype$,add

ress$)

Opens the address book specified, and fills the

address$ template with data from the address book

entry for entityid$ and doctype$. The address book

template can be referenced as address.entityid$,

address.doctype$, address.entityname$,

UnForm Version 8.0

341

address.contactname$, address.sendto$, and

address.combine.

The function returns 1 if successful, or 0 if not.

getarc(lib$,doctype$,docid$,subid$,

filename$ [,errmsg$])

Retrieve an archive image to a user-specified or

temporary file.

getcolumn(rows$,column[,first[,count[,fd

elim$[,rdelim$]]]])

Slices a column from a block of delimited rows,

returns fields delimited by $0A$. fdelim$ defaults

to 09, rdelim$ to $0A$. If first and count are

supplied, slice begins at row "first" and continues

for "count" rows. This provides easy pagination

capabilities.

If count=0, slice continues to last row.

getdocidprop(lib$, doctype$,docid$,

prop$)

Sets prop$ to a composite string containing

properties about the document specified. These

properties include:

Prop.date$ - date in yyyymmdd format

Prop.time$ - time in hhmmss format (24-hour

clock)

Prop.title$ - title string

Prop.entityid$ - entity id string

Prop.notes$ - notes, which can have CRLF line

breaks

Prop.keywords$ - semi-colon delimited keywords

Prop.categories$ - semi-colon delimited categories

with pipe-delimited segments

Prop.links$ - semi-colon delimited list of links

If the document type and ID does not exist in the

library, each of the fields in the composite string

will be empty. Use the docidexists() function to

determine if a document exists.

getfile(filename$)
Returns contents of filename$ as a string. Can be

used to load a file into a string.

getfilefield(filename$,key$,field)

getfilefield(filename$,key$,field, dlm$,

quoted)

getfilerec(filename$,key$)

Returns a record or field from a text file, given a

key that matches the first field in each record. The

dlm$ field is a field delimiter, such as "," or chr(9)

for comma or tab delimiters, and the quoted field is

a Boolean (0=false, non-0=true) that indicates fields

may be quoted, as would be the case in a classic csv

file. If no matching key is provided, the functions

return an empty string. If no dlm$ and quoted

UnForm Version 8.0

342

getfilerec(filename$,key$, dlm$, quoted)

parameter is supplied, then a classic comma-

separated-value format is presumed (dlm$=”,”,

quoted=1).

These functions provide an efficient way of

providing data to UnForm from applications. For

example, an application could export customer IDs

and email addresses, and UnForm could lookup

addresses by customer ID.

Files are parsed once and cached until they change,

so subsequent retrievals are very fast. Caching is

permanent (across jobs).

Keys are limited to 127 bytes, so the first column

must be limited accordingly.

In a quoted file, fields that contain a quote character

must escape that character with a backslash, like

"Board - 1' 2\" length".

getinival(filename$,section$[,name$])
Returns the section or, if name$ is supplied, the

value of the name in the section specified, of the

.ini formatted file specified. .ini files are organized

in to sections via [name] headers, and lines within

the section contain name=value pairs. When a full

section is returned, each line is delimited by a

linefeed character (chr(10) or $0a$). This can be

useful in cases where data is stored in .ini file

format and UnForm needs to access it. If filename$

doesn't exist, it is treated as ini file content.

getpage(n,arr$[all])
Fills text array arr$[all] with page n data lines.

PostScript input not supported.

getpaircount(values$ [,delim$])
Returns the number of delimited pairs in value$.

For the string "id=00100,name=Acme Corp", the

count would be two. The default delimiter is a

comma.

getpairvalue(values$,number[,delim$])
Returns the value of the specific name=value pair in

the values$ string. Pairs are delimited by commas

unless delim$ is specified. The first pair is number

1, the second is number 2.

getpairvalue("id=00100,name=Acme Corp",2)

returns Acme Corp.

UnForm Version 8.0

343

getpairvalue(values$,name$ [,delim$]

[,casesensitive])

Returns the value associated with the name from

the delimited list of pairs in values$. The default

delimiter is a comma. If casesensitive is true (1),

then the name must match exactly. If the name is

not found in values$, then null is returned.

getpairvalue("id=00100,name=Acme

Corp","name") returns Acme Corp.

getpatternvalue(pattern1$,pattern2$,

array$[] [,erasepat,[includepat]])

Searches each element of the one-dimensional array

for text that starts with pattern1$ and ends with

pattern2$. If either is null, returns from the

beginning or end of the line. If either starts with ~,

balance is a regular expression (use \~ to enable ~

as a search character).

The text data found is returned, each element

separated by a linefeed ($0A$), optionally with the

pattern(s) included if includepat is true (non-zero).

If erasepat is true (non-zero) then the pattern and

text found is removed from the line on which it is

found.

Only the first match in each array element is

returned.

getpatternvalue(pattern1$,pattern2$,

searchtext$ [,erasepat,[includepat]])

Searches searchtext$ for text that starts with

pattern1$ and ends with pattern2$. If either is null,

returns from the beginning or end of the line. If

either starts with ~, balance is a regular expression

(use \~ to enable ~ as a search character).

The text data found is returned, optionally with the

pattern(s) included if includepat is true (non-zero).

If erasepat is true (non-zero) then the pattern and

text found is removed from the line on which it is

found. Note searchtext$ must be passed as a

variable, rather than a literal or expression, for this

to work.

Only the first match in searchtext$ is returned.

getppdval(name$,option$)
Returns a value from the PPD file associated with

the job, either a default file selected by the –p driver

command line option, or one explicitly named with

a –m command line option. PPD files are generally

UnForm Version 8.0

344

used by PostScript printers to define command

sequences for settings like duplex, bin, and tray

selection. The laser driver can also use a custom

PPD file for defining PCL sequences for various

printer options. This function can be used to

retrieve control sequences for use in boj, eoj, bop,

or eop values.

getsubids(lib$,doctype$,docid$[,dlm$])
Returns a list of document archive sub ID’s,

delimited by linefeeds or by the specified delimiter.

gettrans()
Returns the active translation file.

getuserprop(userid$,prop$)
This function fills the template variable prop$ with

attributes for the specified user. It returns 1 on

success, or 0 if there is an error. If there is an error,

the template contains empty fields. The template

fields can be referenced as:

Prop.username$

Prop.email$

Prop.entityid$

Prop.companyname$

Prop.telephone$

Prop.groups$ (semicolon-delimited groups the user

is a member of)

gproperty(name$)
Returns the DSC structured comment value of the

given name from a AFO print stream. The most

common use for this is to obtain a document title

from the PostScript data, such as

title$=gproperty("Title"). Comments can be found

in the header and trailer of the PostScript data.

gtextcount(page)
Returns the number of text elements found on the

specified page.

This function is valid only for AFO jobs.

gtextitem(page,item,text$[,col [,row [,cols

[,rows]]]]

Fills text$ with the specified text element identified

by page and item, where item can range from 1 to

the number of text elements on the page. If

supplied, will fill col, row, cols, and rows variables

with the position and size of the text item.

This function is valid only for AFO jobs.

gtextfind(page, pattern$, txt$[all],

rects[all])

Scans the specified page for text elements matching

the specified pattern. For each element selected,

the text is added to txt$[n], and the position and

size of the text is added to rects[n,0-3], where 0 is

UnForm Version 8.0

345

the column, 1 is the row, 2 is the columns, and 3 is

the rows.

Pattern$ can be a simple text phrase, which must be

contained in a text element to be selected, or it may

be in the format "~regexp" to search for a regular

expression. In addition, it may have a

@col1,row1,col2,row2 suffix to limit the search to

text elements enclosed by the specified rectangle.

To search for a value that includes a literal "@", use

"\@".

The function returns the number of elements

selected, which can be used to as the range of valid

elements placed in txt$[all] and rects[all]. If the

function returns 2, then txt$[1] and txt$[2] contain

the first and second text elements selected.

This function is valid only for AFO jobs.

imgx(imagefile$,units)

imgy(imagefile$,units)

These functions to return image x and y

dimensions, helpful when trying to scale an image

to actual size. Units indicate what is returned:

0=pixels, 1=inches, 2=cols/rows.

The function supports jpg, bmp, tif, and png

formats. If the file can't be opened or parsed, 0 is

returned.

inchtocols(inches)

inchtorows(inches)

Return columns or rows, given a measurement in

inches.

inspage(n,arr$[all])
Inserts text array arr$[all] as page n, shifting

existing pages as necessary. If n is any number

greater than the highest page number, or -1, a page

is appended (i.e. inspage(999,x$[all]) will add page

3 to a 2-page job.

PostScript input not supported.

jobclose(id$…)
Closes and erases the temporary storage file

associated with id$. Open jobs are all

automatically closed at the end of the primary job.

jobids(dlm$)
Returns a list of job ID values that are active,

separated by the delimiter character specified. Any

ID supplied in a previous jobstore() command and

not closed with a jobclose() command will be

UnForm Version 8.0

346

returned.

jobexec(id$,output$,driver$,argstring$

[,async])

Executes a sub-UnForm job using the parameters

given. The id$ identifies a job with one or more

pages previously stored with the jobstore() function.

The output$ value defines where the sub-job's

output should go. This can be a file name, like

"/archive/"+invoice$+".pdf", a device name, like

"//printsrv/hp4000", or a pipe/redirect, like ">lp –

dhp4000 –oraw". The driver$ argument can be set

to one of the –p drivers supported by UnForm, such

as laser or PDF. The argstring$ contains any

additional command line parameters you wish to

add to the sub-job command line. You can use any

parameter supported by the uf80c client, though the

-i, -o, and -p options are specified using the other

three function arguments.

A rule set can check uf.subjob, as "if uf.subjob" or

"if uf.subjob=1", to test if an instance is running

from a jobexec() function.

The optional async flag can be set to a non-zero

value to force the job to be executed

asynchronously, so the jobexec() command returns

as soon as the subjob is queued. This operates via

the rpq directory, which means the subjob will

execute within a few seconds, as long as there is a

job license available. If not, the job will remain

queued until a license is free. Note that if you use

this flag, the main job must be able to operate

without the subjob output. For example, if the

main job is designed to email or fax a result of a

subjob, it will fail. Such processing should be

moved into the subjob’s execution context.

jobfile(id$)
Returns the temporary text file associated with id$.

jobstore(id$ [,array$[all]])
Stores the content of the current page in a

temporary file, identified by id$. The value in id$

is user-defined, and each unique value stores

content in a different temporary file. The other job-

related functions use the id$ value to select which

file to use. For example, you could store a whole

job with an id$ of "job", and individual documents

in jobs identified by their document number. Each

would be stored separately and could be jobexec'd

UnForm Version 8.0

347

separately.

If the optional array is supplied, then it, rather than

the current page content, is written to the work file.

If supplied, the array must be a one-dimensional

string array (i.e. dim myText$[66]).

lbound(arr$[all][,dimension])
Returns the lower-bound of the array arr$[all]. If

arr$ contains multiple dimensions, you can specify

which dimension. For example, if arr$ is dimmed

as x$[100,1:2], lbound(x$[all])=0,

lbound(x$[all],2)=1.

left(str$,length)
Returns the leftmost length characters from str$,

padding with spaces on the right to enforce length.

Note also the mid() and right() functions.

libexists(lib$)
Returns 0 if library lib$ doesn't exist, or 1 if it does.

log(msg$)
Writes a log entry to the server log file, usually

uf80d.log.

log(msg$,logfile$[,format$])
Logs a message (time stamped) to the specified file.

The file is created if necessary. If logfile$ is null,

the server log is used. If format$ is supplied, it is

used as the mask for the time stamp. The following

character sequences are substituted in the format:

 %Yl – 4 digit year

 %Yz – 2-digit year

 %Mz – 2 digit month

 %Ms – short month name

 %Dz – 2-digit day

 %Ds – short day name

 %Hz – 2-digit hour (24 hour clock)

 %hz – 2-digit hour (12 hour clock)

 %mz – 2-digit minute

 %sz – 2-digit minute

If no format is supplied, this format “%Yl-%Mz-

%Dz %Hz:%mz:%sz”. If the format is supplied but

is null (“”), then no time stamp is written.

logwarn(msg$)
Adds a message to the job's .err file, which is also

presented when the design tool runs a preview that

results in warning errors.

lower(expression)
Returns text in lowercase.

UnForm Version 8.0

348

ltrim(str$)
Returns the value of str$, trimmed of leading

spaces.

mcut(col,row,cols,rows,value$,lf$,trim$)
Returns multiple lines of text, optionally with line-

feed delimiters and/or trimmed of spaces. The lf$

argument can be set to "Y" or "y" to add a line-feed

character between each line; likewise, the trim$

argument can be set to "Y" or "y" to cause each line

to be trimmed before returned. In addition, mcut()

assigns each line in the cut region to value$. Use

null ("") or spaces to erase the source text.

PostScript input not supported.

mget(col,row,cols,rows,lf$,trim$)
Returns multiple lines of text into a single string,

optionally with a line-feed delimiter and/or trimmed

of spaces. This function is useful in conjunction

with multi-line functionality of the text command.

The lf$ argument can be set to "Y" or "y" to add a

line-feed character between each line; likewise, the

trim$ argument can be set to "Y" or "y" to cause

each line to be trimmed before returned.

mid(arg1$,arg2,arg3)
Safely returns a substring without generating an

error 47 if the value in arg1$ isn't long enough to

accommodate position arg2 and length arg3. Note

also the left() and right() functions.

mset(col,row,cols,rows,value$)
Multi-line set function. Will work with multi-line

value$, delimited with mnemonic \n character

sequences or chr(10) values.

PostScript input not supported.

msfax(filename$, faxnum$, tags$ [,

errmsg$])

Faxes filename$, normally an UnForm-generated

PDF file, to the fax number specified in faxnum$.

Numerous supported tags can be specified in tags$,

in the format tag1=value,tag2=value,... Requires

the Windows Support Server. For more details, see

the Windows Support Server chapter.

parse(str$,n,delimiter$)
Returns the nth element of the string str$, when

parsed by the delimiter specified. For example,

parse("one,two",2,",") would return "two". If the

delimiter is null, then any white space delimiter is

used.

parseq(str$,n,delimiter$)
This is the same as parse(), except that honors

quoted values in the string str$, ignoring delimiters

contained in them.

UnForm Version 8.0

349

pdfpages(pdffile$)
Returns the number of pages in a PDF file. The file

must be in non-optimized format.

pdftoimage(fromfile$,tofile$,format$[,res

olution[,errmsg$]])

Uses Ghostscript, local to the server or via the

Windows Support Server, to convert from PDF file

fromfile$ to an image file tofile$, using the format

format$. Valid formats match those of the

Ghostscript drivers defined in uf80d.ini.

prm(“name”)
The prm() function has been added as a synonym to

the gbl() and stbl() functions, which return global

string table values typically associated with the –

prm command line option.

proper(expression)
Returns text in Proper Case.

putaddress(book$,entityid$,doctype$,ad

dress$)

Opens the address book specified, and adds or

updates the address entry identified by entityid$ and

doctype$. The address$ template can be created by

execution of a getaddress() function, even from an

invalid entityid$, then filled with appropriate

values. The entityid$ and doctype$ arguments are

automatically copied to the address$ template.

The address book template fields can be referenced

as address.entityid$, address.doctype$,

address.entityname$, address.contactname$,

address.to$, and address.combine.

putdocidprop(lib$, doctype$, docid$,

prop$)

Updates the document properties of the document

type and ID in the library specified. The document

properties are replaced with the values found in the

composite string prop$. These string properties are:

Prop.date$ - date in yyyymmdd format

Prop.time$ - time in hhmmss format (24-hour

clock)

Prop.title$ - title string

Prop.entityid$ - entity id string

Prop.notes$ - notes, which can have CRLF line

breaks

Prop.keywords$ - semi-colon delimited keywords

Prop.categories$ - semi-colon delimited categories

with pipe-delimited segments

Prop.links$ - semi-colon delimited list of links

All properties found in the string are updated, so

you must first read existing properties using the

getdocidprop() function, then modify those

UnForm Version 8.0

350

properties desired, then update them with this

function.

This function will not add new documents to a

library. It only updates existing ones.

putpage(n,arr$[all])
Replaces page n with text array arr$[all].

PostScript input not supported.

right(str$,length)
Returns the rightmost length characters from str$,

padding with spaces on the left to enforce length.

Note also the left() and mid() functions.

rtrim(str$)
Returns the value of str$, trimmed of trailing

spaces.

sdocmd(object$, cmd$, response$,

errmsg$)

sdOffice® is a product from the publisher of

UnForm that provides Microsoft Office®

automation capabilities to network computers.

When used in conjunction with UnForm, sdOffice

can become part of a report mining platform and

can be used to augment UnForm jobs with

Microsoft Office functionality.

This function sends a command to the sdOffice

object specified. If the command returns data (all

get* commands return data), the response will be

returned in response$. If an error occurs, a message

will be returned in errmsg$, and the function will

return False (0). If no error occurs, the function

returns True (1).

If the sdOffice communication settings have not

been initialized before the first execution of this

function, a default environment is created. This

environment uses uf.clientip$ as the target sdOffice

office client, localhost port 6114 as the default

sdOffice server, and 30 seconds as the default

timeout.

sdoinit(target$, timeout, server$, port)
Sets the sdOffice communication environment.

The target$ value is the machine running the

sdOffice Office client, which interprets commands

sent via the sdocmd() function, and defaults to

uf.clientip$. It is not uncommon, however, for

sdOffice Office Clients to be configured to service

multiple users, so this value might need to be

specified.

The timeout value defaults to 30 seconds, and is

UnForm Version 8.0

351

used to limit the amount of time that the sdocmd()

functions will wait for a response to a command.

The server$ and port arguments specify the

machine where the sdOffice server runs, and the

port it listens on for application connections. These

default to localhost and 6114, respectively.

set(col,row,cols,value$)
Returns value$, after it places value$ in the

text$[all] array at the position indicated.

PostScript input not supported.

setlogin(userid$,password$)
Sets the login and password to enable the library

object to access a library.

An administrator can define secure passwords in

the browser interface, and a password ID can be

used in place of a plain text password. The syntax

is simply the ID with a "store:" prefix in the

password$ field, such as "store:SQLUser1".

settrans(filename$)
Sets the translation file dynamically as the job runs.

This overrides what might be set via a -trans

command line option.

sqlconnect(datasource$[,user$,pswd$

[,otheroptions$ [,errmsg$]]])

Connects to the data source specified, using the

specified user, password and optional parameters.

Returns a channel on success, or 0 on failure, in

which case the errmsg$ argument contains an error

message.

An administrator can define secure passwords in

the browser interface, and a password ID can be

used in place of a plain text password. The syntax

is simply the ID with a "store:" prefix in the pswd$

field, such as "store:SQLUser1".

The channel returned is used for subsequent access

to the database using sqlexecute() and sqlfetch()

functions.

See the Database Access chapter for more

information about database support.

sqlexecute(chan,command$[,errmsg$

[,result$ [,fdelim$ [,rdelim$]]]])

Executes the SQL command specified, typically a

SELECT statement, on the channel specified. The

channel must have been previously returned by a

sqlconnect() function. If result$ is supplied as an

UnForm Version 8.0

352

argument, then a sqlfetch() method is executed to

fill result$ with all rows, and the number of rows

fetched is returned.

sqlfetch(chan,result$[,count [,errmsg$

[,fdelim$ [,rdelim$]]]])

Fills result$ with some number of rows from the

most recent SQL command executed on the channel

with the sqlexecute() function. Returns the number

of rows filled.

The number of rows returned is determined by the

count argument. If not supplied, 1 row is returned,

allowing a loop to be processed one row at a time.

If count is -1, then all available rows are returned.

The default field delimiter is a tab (09), but this

can be specified with the fdelim$ argument. The

default row delimiter is a linefeed ($0A$), but this

can be specified with the rdelim$ argument.

If an error occurs, errmsg$ will hold a message.

If no more rows are available, the function returns 0

and result$ is empty.

sshost(server$,port)

Sets the Windows Support Server hostname and

port. Default values are defined in the uf80d.ini file

in the sshost and ssport settings. This command

allows for dynamic changing to a different server.

striplines(text$)
Returns text$, stripped blank lines from multi-line

text, such as addresses. As a byproduct, all CR

characters are also removed, leaving simple LF line

delimiters.

strtoarr(str$,arr$[all],dlm$)
Converts string str$ to an array arr$[all], by

splitting str$ on delimiter dlm$

sub(str$,old$,new$)
Returns a string where all occurrences of old$ in

str$ are replaced with new$.

subidexists(lib$,doctype$,docid$,subid$)
Returns 1 if the document type, document ID, and

sub ID exists in the library, or 0 if not.

tempfile([ext$])
Creates and returns the name of a temporary file

that is removed automatically at the end of the job.

The file will have a ".tmp" extension, unless an

extension argument is provided.

textimage(text$, font$, size, cols, rows,

color$, charset$, errmsg$)

Creates a bmp image using Image Magick based on

the TrueType font, point size, and image size. For

limited Unicode output, you can use this function

instead of font embedding to avoid large output

UnForm Version 8.0

353

caused by embedding a full ttf font. If a server-

based version of Magick is unavailable, a Windows

Support Server can be configured to support this

function.

The font$ value is either a name found in the

[fonts] section of the ufparam.txt file, or an actual

TrueType font file name. The size specifies the

point size for the text. The cols and rows define the

image size. If cols is 0, then the image will be sized

to exactly fit the text. Otherwise, the text is

centered within the image.

The color setting can be "rgb rrggbb" (rr, gg, and bb

are hexadecimal values 00-FF), or any color that

Image Magick recognizes.

The charset defaults to Windows ANSI (9J or

iso8859-1). Text is converted to utf-8 for Magick.

The function returns the name of the temporary

.bmp file, which can be used in an image command

expression.

Direct unicode can be supplied in text$ if charset$

is "uc". To ensure the image isn't re-scaled

incorrectly, use imgx/imgy functions to obtain

actual cols/rows sizes for use in the image

command.

textfile(path$)
This function creates a file and returns a path name

to that file. The value of path$ is interpreted in

three ways. If null (""), a new temporary file is

created, and will be erased automatically when the

job is complete. Optionally, the value may start

with a period to force the extension of the

temporary file to match the value, such as “.pdf”.

Otherwise, the value should be a full path, and that

file will be created and returned. Such custom

paths are not erased automatically at the end of the

job.

textheight(text$, fontnum|fontname$,

size, attr, cols [,linespacing])

Returns the text height, in rows, of text$, given the

font number or name, size in points (or pitch if the

font is mono-spaced),style attribute (0=normal,

1=bold, 2=italic, 3=bold italic), columns (for

wrapping calculations), and optional line spacing.

This will be the equivalent height that would be

UnForm Version 8.0

354

used by the text command given the same

attributes. If linespacing is not supplied, the default

is based on the current lpi.

textwidth(text$, fontnum|fontname$, size,

attr)

Returns the text width in columns of text$ given the

font number or name, size in points, and style

attribute (0=normal, 1=bold, 2=italic, 3=bold

italic). The function honors the same font mapping

as is used in regular UnForm processing for pdf,

and understands the same fonts that are understood

for internal calculations for justification, where

laser fonts are loaded from the standard fonts.txt

file, pdf fonts are mapped from these, and postscript

fonts are loaded from .afm files in the psfonts

directory. For Postscript, the width is based on the

Windows ANSI symbol set.

If the font is a TrueType font, and the text value

doesn't appear to be unicode text, UnForm will

implicitly convert it to unicode. If the text is

preencoded to unicode but does not contain any null

(00) characters, add 0000 to the string to

prevent this implicit conversion.

touc(text$,charset$)
Converts single-byte text in the character set

specified to unicode text. Returns the unicode text.

Known character set tables are specified in the

UnForm unicode directory. Charset$ can also be

"utf8" or "utf-8" to convert from UTF-8 to UTF-16

(or Unicode).

translate(name$ [,context$],

forcecontext)

Returns the value associated with the specified

name, based on the translation file and current rule

set. The context value can be "text", "barcode", or

"anchor", and if forcecontext is true (non-zero),

only context-based names are searched.

trim(expression)
Returns expression after trimming spaces from the

left and right side.

ttfchars(fontnum)
Returns a string made up of Unicode characters,

two bytes per character, found in the True Type font

mapped from the font number provided.

ubound(arr$[all][,dimension])
Returns the upper-bound of the array arr$[all]. If

x$ contains multiple dimensions, you can specify

which dimension. For example, if arr$ is dimmed

as x$[100,1:2], ubound(x$[all])=100,

ubound(x$[all],2)=2.

UnForm Version 8.0

355

upper(expression)
Returns text in UPPERCASE.

urlgetfld(datastr$,name$)
Returns the value of the name$ field. The value is

returned without URL encoding.

mailto$=urlgetfld(datastring$,”to”)

urlsetfld(datastr$,name$,value$)
Returns a URL-encoded string with the field name$

set to value$. The field is added if necessary.

datastring$=urlsetfld(datastring$,”to”,someone@so

mewhere.com)

urldelflds(datastr$,names$)
Returns the a URL-encoded string after removing

the fields specified in name$ from the URL-

encoded string datastr$. Multiple fields can be

separated by commas.

datastring$=urldelflds(datastring$,”to,from,subject,

body”)

urlgetnames$(datastr$)
Returns a list of field names in the data string.

fldlist$=urlgetnames$(datastring$)

count=parsec(fldlist$,”,’)

When using variables and line labels, you should avoid using any values that begin with "UF". UnForm

reserves all such variables and labels for its use. You may use a backslash (\) at the end of a line to

continue the statement on the next line. Lines prefixed with "#" are not added to the code.

Two data elements from the command line can be referenced in code blocks using the stbl() function

(use gbl() in ProvideX environments). The –s sub-file option will generate stbl values as "@name". For

example, if the substitution file contains the line 'company=Smith Produce', then stbl("@company") will

return "Smith Produce". Further, the –prm command line option will directly create stbl values.

UnForm Version 8.0

356

Runtime verbs and functions

The following list is a summary of verbs and functions present in the UnForm runtime engine and are

commonly used in UnForm applications. Note that all functions accept an ",err=linelabel" or "err=next"

argument, and all verbs accept the same after any parameters, to branch if an error occurs. Optional

arguments are shown inside braces {}.

ASC(string)
Returns the ASCII numeric value (0-255) of the first

character of string.

ATH(string)
Returns a binary equivalent of a human readable hex string.

ATH("1B") returns an escape character.

BIN(integer,length)
Returns a binary integer representation of the specified

length. The inverse function of this is the DEC() function.

BREAK
Breaks out of a loop structure. Equivalent to EXITTO

linelabel if linelabel is the line after the closing WEND or

NEXT.

CHR(integer)
Returns a character string whose ASCII value is integer,

between 0 and 255. CHR(27) returns an escape character.

CONTINUE
Executes the next iteration of a loop structure. Equivalent to

GOTO linelabel, if linelabel is the closing WEND or

NEXT.

CVS(string,arg)
Returns a converted string according to the cumulative value

of the integer arg. Values: 1=strip leading spaces, 2=strip

trailing spaces, 4=uppercase, 8=lowercase, 16=non-printable

characters to spaces, 32=multiple spaces to single spaces.

CVS(a$,3) trims both leading and trailing spaces.

DATE(julian {,time} {:mask})

DTE(julian {,time} {:mask})

Returns a human readable date and/or time, based on the

Julian date (see the JUL() function), a decimal time (hour

and fraction of hour – 12.5=12:30PM), and a format mask.

The mask can contain combinations of placeholder

characters and modifiers. The placeholders are %M=month,

%D=day, %Y=year, %H=hour (24 hour clock), %h=hour

(12 hour clock), %m=minute, %s=second, %p=AM/PM.

Modifiers include z=zero fill, s=short text, l=long text.

Examples on June 30, 1999 at 1:30 in the afternoon: date(0)

returns "06/30/99", date(0:"%Ml %D, %Yl") returns "June

30, 1999", date(0,tim:"%hz:mz %p") returns "01:30 PM".

DEC(string)
Returns the decimal conversion of the binary integer in

string. The counterpart to the BIN() function. To treat

string as an unsigned integer, you should use the form

DEC(00+string).

UnForm Version 8.0

357

DIM string(length {,char})
Returns a string of length size, of spaces or the specified

char character.

DIM name[dim1{,dim2{,dim3}}]
Creates a numeric or string array variable. Dimensions can

be simple integers, indicating an index range of 0..dim, or

two integers separated by a colon, like 1:12.

DIR("")
Returns the current disk directory. On Windows,

DIR(driveletter) will return the current directory for the

specified disk drive.

EPT(number)
Returns the 10's exponent value of number. EPT(100)=3,

EPT(12)=2.

ERASE filename
Erases a file. Obviously, care should be taken to only erase

temporary work files.

EXITTO linelabel
Exits a loop structure (current level only, in nested

structures) and jumps to the specified linelabel.

FBIN(number)

I3E(number)

Returns a 64-bit IEEE number in natural left to right

ordering.

FDEC(string)

I3E(string)

Returns the decimal value of a 64-bit IEEE number.

FID(channel)
Returns a file identification string for the file opened on

channel. For devices, just the device name is returned. For

files, the first byte indicates the file type (00=indexed,

01=serial, 02=keyed, 03=text, 04=program,

05=directory, 06=mkeyed, etc.) You can verify a file is

a plain text file like this: test$=fid(filechan); if

test$(1,1)=$03$ then x$="text file".

FILL(integer{,string})

DIM(integer{,string})

Returns a string if integer length, made up of successive

iterations of string, or spaces if no string is provided.

FILL(7,"abc") will return "abcabca".

FIN(channel)
Returns additional file information not found in the FID()

function. A common use of this function is to determine file

size, which is stored as a binary integer in the first four

bytes. To get the length of a file: x$=fid(filechannel);

length=dec(00+x$(1,4)). Additional potentially useful

information can be found as well. See the language

reference manual for more details.

FOR numvar=start TO end {STEP

increment}

Initiates a loop, using a numeric variable initialized to start

the first pass through the loop, incrementing by 1 or the

specified increment, which can be negative, until the

variable exceeds (or goes below in the case of a negative

increment) end. The statements following this command,

UnForm Version 8.0

358

until a NEXT numvar statement, are executed. The loop can

be broken from with the BREAK or EXITTO verbs.

FPT(number)
Returns the fractional portion of a number. FPT(100.66)

returns .66.

GOSUB linelabel
Jumps to the specified linelabel. Statements will be

executed until a RETURN verb is encountered, and

execution will return to the statement after the GOSUB.

GOTO linelabel
Jumps to the specified linelabel.

HTA(hexstring)
Returns a human readable hex string of hexstring.

HTA(CHR(2)) returns "02". HTA("0") returns "30".

IF test THEN statement(s) {ELSE

statement(s)} {END_IF or FI}

Conditionally executes statements. test must be a simple

expression that produces a Boolean or numeric result

(0=false, non-0=true). Multiple statements can follow the

THEN or ELSE clause by separating them with semi-colons.

Statements following a END_IF are executed without regard

to the condition of the last IF test. Nested IF statements are

accepted without practical limit.

INT(number)
Returns the integer portion of a number. INT(99.645)=99.

JUL(year,month,day)
Returns the Julian integer of the specified date elements.

The year should be specified, if possible, as a 4-digit year.

Otherwise the function will assume a century of 1900. The

complement of this function is the DATE() function.

LEN(string)
Returns the length of the string.

LET var=value{,var=value…}
Assigns variables to values. The variables can be numeric,

string, or array variables. The values can be any compatible

numeric or string expression. LET is implied when an

assignment is performed in context. "LET a=1" and "a=1"

are equivalent.

MASK(string{,regexpr})

MSK(string{,regexpr})

Returns the position where a regular expression pattern was

found in the string, or 0 If not found. If regexpr is not

specified, then the last regexpr used is re-used. This

provides a performance benefit for repeated uses of the same

regexpr. The length of the string matched is returned by the

TCB(16) function.

MAX(num{,num…})
Returns the largest number found in the list of nums.

MIN(num{,num…})
Returns the smallest number found in the list of nums.

MOD(num1,num2)
Returns the remainder of dividing num1 by num2.

MOD(4,3)=1, MOD(6,3)=0.

UnForm Version 8.0

359

NUM(string)
Returns the decimal value of a string, assuming the string is

a well-formatted value containing digits, a single optional

period (decimal point), and a single optional leading hyphen

(minus sign). Other punctuation or characters will return an

error. NUM("-12.5") returns 12.5. NUM("1,456") results in

an error.

ON integer GOTO|GOSUB

linelabel{,linelabel…}

Branches to one of the indicated line labels based on the

value of integer. If integer is 0 or less, branch to the first

label, 1 to the second, 2 to the third, and so on. The last

label is used for integer values greater than that of the last

label.

OPEN(integer{,err=linelabel|next}{,i

sz=integer}) string

Opens the file named in string on channel integer. To open

a file in binary mode regardless of the file type, specify a

block size with the ",isz=integer" option.

POS(string1 relation string2

{,increment {,occurrence}})

Scans string2 for a substring having the specified relation to

string1. POS("B"="ABC") returns 2. POS("B"<"ABC")

returns 3. The string can be searched in even character

increments: POS("02"="002002",2) will return 5, since the

second and third characters, though matching the search

string, are not located at an increment boundary. If the

string is not found, or the requested relation, increment, and

occurrence cause the string to not be found, the function

returns 0.

PRINT(channel) value {,value…}{,}
Prints a series of values, numeric and/or string, to the file

channel specified. A line-feed character is added to the

channel unless the last character of the statement is a

comma.

READ{ RECORD}(channel

{,options}) variable {,variable…}

Reads data from the specified channel into the specified

variables, looking for field terminator characters to delimit

variables. Field terminators include line-feeds, carriage

returns, and nulls. Valid options include "err=linelabel",

"end=linelabel", "siz=blocksize". "key=keystring",

"ind=index", and "dom=linelabel". For intrinsic keyed files,

use the key= or ind= options to read specific records. For

text files, use READ to process line-feed delimited files, but

be aware that carriage return characters act as field

separators. To read text files as binary files, use READ

RECORD with a "siz=" option.

REM
Places a non-executing remark line in the code. In UnForm,

you can also use a # character.

RETRY
Retries the statement that caused the last error branch to be

taken.

RETURN
Returns from a GOSUB branch.

UnForm Version 8.0

360

RND(integer)
Returns a pseudo-random number. The random number

sequence can be re-seeded by providing a negative integer,

so it is common at startup (like in a prejob code block) to

seed the RND function with a variable number, such as

MOD(JUL(0,0,0)+INT(TIM*10000),32000). The integer

can be a number from –32767 to +32767. Positive numbers

return a random integer from 0 to integer-1. If integer is 0,

a random number between 0 and 1 is returned.

ROUND(number,precision)
Returns number, rounded to precision.

ROUND(1.566,2)=1.57. ROUND(100.83,0) returns 101.

SCALL(string)

SYS(string)

Executes the operating system command in string. Returns

the result code provided by the operating system. Use this

function to interface with the operating system or external

commands. This is an alternative to opening a pipe to a

command.

SETERR linelabel
Provides a generic error handler to catch errors not trapped

by err=linelabel branches in functions and verbs. UnForm

also adds error handling code to code blocks, and reports

errors in a job error file (temp/jobno.err in the server

directory).

SGN(number)
Returns a 1, 0, or –1, depending on the sign of number.

STBL(string1{,string2})

GBL(string1{,string2})

Returns and/or sets the global string table value named

string1. If string2 is present, then the string table is set to

string2. In both cases, the value is returned. If string1 has

not been set, STBL(string1) will result in an error (trappable

with err=linelabel, of course).

STR(number{:mask})

STR(string{:mask})

Converts a number to a string, optionally formatted with a

mask. The mask can contain any text, plus the following

placeholder characters: 0=zero filled digit, #=space filled

digit, "."=decimal point, ","=thousands separator, -, (,), and

CR for negative numbers. STR(99.91:"0000.00") returns

"0099.91". STR(19093.255:"###,##0.00") returns

"19,093.26".

STRING filename{,err=label}

SERIAL filename{,err=label}

Creates a text file of the name specified. Use either a string

variable or expression, or a quoted literal string.

Examples: STRING "/tmp/test.txt" or STRING

"/tmp/"+str(dec(info(3,0)))+".txt",err=next.

TCB(integer)
Returns task control information. Commonly used integer

values include: 10=last operating system error code,

16=length of MSK() function match, 20 for number of

arguments passed to an ENTER command.

TIM
Numeric variable that returns the decimal time of day, from

0.0 to 23.99.

UnForm Version 8.0

361

UNT
Numeric variable that returns the next available file channel

number.

WHILE condition…WEND
Looping construct that performs statements between

WHILE and WEND statements as long as condition is true

or non-zero.

WRITE {RECORD}

(chan,options)data

Writes data to a file. Numerous options are available, some

depending on the type of file. See the full programming

documentation available on www.pvxplus.com for more

details.

Lexical Substitutions

With the change in Version 6 to the ProvideX run-time engine, it is possible that some BBx syntax in

code blocks will be incompatible. For the most part, the lexical substitutions automatically performed

by UnForm will handle any differences, with the exception of direct I/O to BBx data files, which can be

handled with the bbxread() function. However, if any additional substitutions are required, they can be

entered into a user-defined text file called uflexsub.usr.

The format for the lines in this file is simply bbxsyntax=pvxsyntax. An example is provided in

uflexsub.txt, which is a file that provides some standard syntax substitutions that the internal lex

capabilities do not support. You can add your own by simply creating uflexsub.usr and adding lines.

http://www.pvxplus.com/

UnForm Version 8.0

362

Error Codes
When code is executed, any errors that are not handled by err=label branches are reported as warnings

on a job trailer page. High error code numbers are used to report errors in client-server communication.

Common error codes are shown in the following table.

Error Number Description

1 End of record error, which may occur on a buffered disk write operation if the data

is too long for the record buffer. This error is rare in UnForm jobs, but could occur

if output is being printed to a printer alias defined in the config.unf file.

2 End of file, which may indicate a disk full message, or a file that is too large for the

operating system to handle.

10 An invalid file name was given.

11 A missing key on a keyed read operation, or a duplicate key on a keyed write

operation with a DOM= option.

12 A missing file error on a file open operation, or a duplicate file error on a file

creation operation.

13 Normally a file permission error.

14 A file channel conflict or locking conflict error.

16 Out of resources, such as file handles. If this error occurs, it is often due to opening

too many files. This can easily occur if files are opened but not closed in a loop or

call construct.

18 Normally a file or directory permission error.

20 Syntax error. Common causes include mismatched parentheses, incorrect spelling

of verbs or functions, or missing or incorrect function arguments.

21 or 25 Missing statement, as referenced in an ERR=label, or a goto or gosub branch.

23 Missing GBL/STBL variable name, or missing string template variable.

26 String/Number mismatch, where a string variable or literal is used where a number

is expected, or visa versa.

27 Stack error, such as a return without a gosub, or a wend without a while.

28 For/Next error, such as executing a next without an associated for.

29 Mnemonic error. Mnemonics are pre-defined codes inside single quotes, such as

'FF' or 'LF'. Therefore, single quotes are not valid as string literal indicators; only

double quotes are.

30 Corrupt program, which indicates that UnForm itself is probably corrupted, unless

this error occurs on a call statement referencing an external program.

31 Out of memory.

33 Out of memory.

36 Mismatched arguments on a call statement.

40 Numeric overflow, normally caused by a divide by zero.

41 An integer overflow or range error. Some functions require integer arguments, so a

floating point number will cause this error. Also, some functions require integer

arguments to fall in a certain range, and this error will occur if the function is given

a value outside of the valid range.

UnForm Version 8.0

363

Error Number Description

42 Array subscript error.

43 Masking error.

46 String length error.

47 Substring error, such as a starting position of 0 or a length greater than the length of

the string.

997 The client's IP address is not in the server's list of valid addresses. To correct this

problem, the allow= line in the server's uf80d.ini file must be modified to match the

network addresses in use, and the uf80d server restarted.

998 The maximum number of concurrent jobs licensed was exceeded.

999 The server was unable to start the secondary process to handle the job within the

allotted time of 30 seconds. Possible causes include a sluggish server and network

problems, such as a DNS server timeout.

1024 The Windows uf80c.exe client can report this error if the network connection to the

server is too slow.

1057 The Windows uf80c.exe client can report this error if the server is not running or a

firewall is blocking the primary listening port.

UnForm Version 8.0

364

EMAIL INTEGRATION

UnForm includes a copy of the MailCall utility that enables emailing of attachments from within

UnForm. This is most often used to send PDF files. It can be used to email laser printer (PCL5) files, as

long as you know the email recipient has a compatible printer that supports any of the fonts used in your

documents. If you use CGTimes, Courier, and Univers fonts, then any PCL5 laser print device should be

able to properly print documents, as long as the user can copy the file directly to the printer.

The MailCall utility is used internally by the deliver command, the email command, which emails a

complete PDF-formatted job, and the email() function, which can send email(s) in mid-job, possibly

with attachments resulting from sub-jobs managed by the jobxxx series of code block functions. These

two features are capable of handling most email requirements. However, within a code block, you can

use the MailCall program directly, for any degree of control required. For example, the MailCall utility

provides logging facilities that are helpful in debugging connection or communication problems. To

implement logging, direct calls to the MailCall program are required.

Generally, the only requirement to get email working is to configure the server= line in the mailcall.ini

file. This line needs to name the machine or IP address of the SMTP server that MailCall connects to.

Other configuration options serve as default values.

The remainder of this chapter discusses the utility in depth.

Configuration

To configure MailCall, you need to edit the mailcall.ini file, using any text editor. If you don't have a

mailcall.ini file, then you can rename mailcall.sds to be mailcall.ini. The following notes provide details

about each option.

The most important element of the configuration is to ensure the system that executes MailCall has

connectivity to your SMTP mail server. This may be an in-house system, or it may be hosted by your

Internet Service Provider. A fairly foolproof way to test this is to telnet to port 25 on the mail server

from your system (telnet hostname 25 from either UNIX or an MS-DOS Command Window). If you get

a non-error response, MailCall should work.

server=smtp-server

This contains a reference to the IP address or domain name of the SMTP email server. This is used by

the native socket interface, the mailcall.exe program, and the mailcall.pl program. If your mailer=

setting uses sendmail or mmdf, this value is not used.

port=port-number

When native sockets are used, the default SMTP port of 25 can be overridden by setting a port-number.

Normally, this should not be required.

UnForm Version 8.0

365

from=email-address

Defines a default 'from' address if none is supplied when sending email.

hostname=hostname

If the environment does not provide a system name that is valid for the SMTP server, you can specify a

value here. If no value is specified, then MailCall will determine the system hostname with the UNIX

"hostname" command, or on Windows with the INFO() function in Visual PRO/5 or the NID variable in

ProvideX. This element is only used by the native socket support.

login=username

password=password

If the SMTP server requires authentication, then you can define a default username and password with

these elements. It is also possible to specify a username and password within the CALL interface.

These values, if required, are supplied by the mail administrator, and must be supplied exactly as

specified or you will probably get an authentication error and be unable to send mail.

mailer=commandline

NOTE: When running MailCall under UnForm, there is no need to configure a mailer= line.

If MailCall will not use internal sockets, then this line configures how MailCall actually sends the mail.

If you are running under ProvideX or PRO/5 or Visual PRO/5 revision 2.2 or higher with a proper alias

line defined, MailCall will use internal sockets and this line does not need to be configured. When

required, BBx executes this command line via the SCALL() function. There must be a % character in

the command line, which MailCall substitutes with the email submission file at run-time.

If no mailer value is set (all lines are commented) and a mailer is required, then a default mailer line is

constructed, using "perl mailcall.pl % >mailcall.pl.log 2>mailcall.pl.err" on UNIX or "mailcall.exe %"

on Windows. The proper path to the mailer is automatically generated. In other words, if you have Perl

or are on Windows, there is generally no need to configure a mailer= line.

On Windows, commandline should be set to the full path for mailcall.exe plus the % argument, such as

'c:\mailcall\mailcall.exe %'. Be sure to use DOS-style backslashes rather than forward slashes.

On UNIX, you will probably want to use mailcall.pl. mailcall.pl should be in the same directory as the

MailCall program, and mailer should be set to the full path to mailcall.pl. The commandline should be

'perl /usr/mailcall/mailcall.pl % >/dev/null' (adjust the directory path as necessary). Perl, of course,

must be installed on your system for this to work. To enable logging, change the ">/dev/null" to

">pathname", and the conversation that mailcall.pl has with the SMTP server will be logged to that file.

If you use sendmail, the commandline '/usr/lib/sendmail –t <%' should work.

If you use mmdf, then the commandline 'echo $LOGNAME >%2; cat % >>%2; /usr/mmdf/bin/submit -

uxto,cc* <%2; rm %2' is used to submit email messages. The command line argument "-uxto,cc*"

instructs submit to scan for To: and Cc: headers for addresses.

UnForm Version 8.0

366

Note that mmdf doesn't support Bcc: headers, while the other three methods do.

timezone=zone

Internet mail must include a date and time header; a properly formatted time will include your time zone.

On Windows, the zone is added to the date and time header in the submission file. On UNIX, the time

zone is determined from the date command.

charset=charsetname

The default character set in Internet email is "us-ascii". With this setting, it is possible to override this

default for text elements of an email that includes attachments, including the body text itself.

Most configuration options have equivalent variables in the CALL string template. If you define values

in the template, they override the equivalent values in the configuration file.

Implementation
Implementing MailCall requires the use of code blocks to establish temporary output files and then the

execution of MailCall itself.

Here is a sample PDF rule file that can be used to email a PDF document. Since the pdf driver can only

be used to produce one PDF file at a time, there is only one file to worry about.

[mailpdf]

cols 80

rows 66

prejob{

set output file to a unique name using process ID

note the pdf driver only allows output changes in prejob

output$="/tmp/email"+str(dec(info(3,0)))+".pdf"

}

postdevice{

call uf.home$+"mailcall.pv",1,x$,""

x.to$="someone@somwhere.com"

x.subject$="PDF Report attached"

x.msgtxt$="Here is a sample PDF file.\n"

x.attach$=output$

x.from$="sdsi@synergetic-data.com"

call uf.home$+"mailcall.pv",0,x$,""

erase output$

}

UnForm Version 8.0

367

Here is a slightly more complex example, designed to email the second copy of a PCL document. PCL

allows output to be split in the middle of the job, so this technique would work in a batch run where a

document reference number is used to define the output name. This sample assumes the report will

contain the email address at column 1, row 1 of each document.

[mailpcl]

cols 80

rows 66

copies 2

prejob{

initialize mailer$ template

call uf.home$+"mailcall.pv",1,mailer$,""

}

precopy{

set copy 2 output to document number plus extension

if copy=2 then output$=get(70,6,6)+".pcl"

}

postdevice{

whenever the document number changes, this routine is executed

if copy<>2 then goto skip_mail

mailer.to$=trim(get(1,1,40))

mailer.subject$="Report attached"

mailer.msgtxt$="Here is the report you asked for. Copy it to your laser printer.\n"

mailer.attach$=output$

mailer.from$="sdsi@synergetic-data.com"

call uf.home$+"mailcall.pv",0,x$,""

erase output$

}

MailCall Reference

CALL uf.home$+"mailcall.pv", mode, dat$, errmsg$

You may call either mailcall.pv or mailcall.bb; both are identical files for use within UnForm.

Arguments:

mode is an integer value that controls how MailCall interprets or returns data in the dat$ argument. The

following are valid mode values:

UnForm Version 8.0

368

 0 Send mail based on data in string template dat$

 1 Return a string template suitable for mode=0 in dat$

 2 Return version information in dat$

For modes 0 and 1, dat$ is a string template in the format:

from:c(1*=0),to:c(1*=0),cc:c(1*=0),subject:c(1*=0),otherhead:c(1*,msgtxt:c(1*=0),attach:c(1*=0),statu

s:n(1*=0),forcebase64:n(1*=0),forcenotify:n(1*=0),bcc:c(1*=0),bodymime:c(1*=0),charset:c(1*=0),tim

eout:n(1*=0),statuspause:n(1*=0),dialog:n(1*=0),login:c(1*=0),password:c(1*=0),logfile:c(1*=0),timez

one:c(1*=0),charinterface:n(1*=0),logdata:n(1*=0)"

To provide for additions to this base template, you should always use a single CALL using mode=1,

which will return a usable template in dat$.

For mode 2, dat$ returns a printable string that describes the version and license status.

Here is a description of each template field:

dat.from$ contains the sender's email address. This value defaults to what is specified in the

"from=address" line in mailcall.ini

dat.to$ contains one or more email addresses delimited by commas. Note that if multiple addresses are

desired, it is more common to place additional addresses in the cc$ field. Each address should be

structured in one of two ways: name@domain or "text name" <name@domain>. It is important that if

any data is present other than the plain internet email address, that the Internet address be enclosed in

angled brackets <>.

dat.cc$ contains zero or more carbon copy addresses. Multiple addresses must be delimited with

commas. Address formats are the same as for dat.to$, above.

dat.bcc$ contains zero or more blind carbon copy addresses. Multiple addresses must be delimited with

commas. A blind carbon copy address receives a copy of the email, but the Bcc: header is removed from

the submission, so no other recipients know of the Bcc: recipients.

dat.subject$ contains a single line of subject text, describing the message content.

dat.otherhead$ contains additional mail headers, should they be necessary. The rfc822 specification

allows for user defined headers starting with the characters "X-", in the format of "X-name: value".

Each header line should be suffixed with a CRLF (or LF) delimiter ($0D0A$). There must be no blank

lines in this value, and all lines should have a proper header structure of 'name <colon (:)> <space>

value'.

UnForm Version 8.0

369

dat.msgtxt$ is plain text for the message body. It may contain line breaks delimited with CRLF (or LF)

sequences. Lines should not exceed 900 characters without line breaks. You may also use UNIX-style

line break escapes (\n sequences) instead of binary CRLF characters.

dat.bodymime$ can be used to define an alternate body text (dat.msgtxt$) MIME type. The default is

"text/plain", but it is common to prepare message body text as HTML, in which case you can specify

dat.bodymime$="text/html". This must be a well-known standard value (see the mime.typ file included

with MailCall), and should be of the text/* family.

dat.attach$ contains one or more file names to attach to the message, delimited with commas. If this

contains names, then MailCall will produce a MIME-encoded message, with the message body as plain

text, text-style files (MIME types such as text/plain or text/html) as quoted-printable attachments, and

other files as base64-encoded attachments.

dat.status, if set to 1 (or any positive value), will cause a status window to display as the email is

processed. This flag is honored when MailCall uses native sockets or the external mailcall.exe program.

When native sockets are used, the status window operates for both generation and SMTP server

submission. When the external Windows mailer is used, it only operates for submission. External

UNIX mailers do not support this flag.

For logging on UNIX installations, if you are using mailcall.pl, do this:

 Verify the setting of $log=1 in mailcall.pl near the top of the program

 Direct stdout to a file or the screen by modifying the mailer= line: something like "perl

/usr/mailcall/mailcall.pl % >/tmp/mailcall.log". or just "perl /usr/mailcall/mailcall.pl %".

dat.statuspause can be set to the number of seconds to pause before closing the status window after the

SMTP conversation is complete. This can help the user see the process completion without a quickly

flashing window. This flag is only honored when MailCall uses native sockets and the dat.status flag is

set.

dat.forcebase64, if set to 1 (or any non-zero value), will cause MailCall to always encode files with

base64-encoding. By default, files whose MIME type is text are encoded using quoted-printable

encoding.

dat.bodymime$, if set, will override the default text/plain MIME type used for the message body.

dat.charset$, if set, will override the charset default defined in the mailcall.ini configuration file, or the

default of "us-ascii", when no setting is defined. Character sets are associated with any text body or

attachment.

dat.login$, dat.password$, if set, and if the SMTP server requires authentication, are used for the

AUTH LOGIN authentication process. These values would be provided by the ISP or mail server

administrator, and must be provided exactly as specified. These values are honored when MailCall uses

native sockets or the mailcall.exe or mailcall.pl mailers.

UnForm Version 8.0

370

dat.logfile$, if set to a pathname, will trigger detail logging of the SMTP conversation when MailCall is

using native sockets. The file will be erased and created each time MailCall is CALLed. Be careful not

to use pathnames that should not be erased.

dat.timezone$, if set, will override the normal time zone value that is applied to the Date: header. The

default time zone comes from either the timezone= value in mailcall.ini (for Windows) or the UNIX

'date +%Z' command. Use this to set a relative GMT value, like "-0800" for PST.

dat.charinterface, if set to a non-zero value, will force character-mode for the dialog and status window

displays, even in a GUI environment. The status window display affected is only the internal version

used when native sockets are utilized, not the status window displayed by the mailcall.exe mailer.

dat.logdata, if set to a non-zero value, and if the dat.logfile$ is defined, and if a native socket is in use,

will cause the mail submission file data to be logged to the log file specified in dat.logfile$. The default

behavior is to only log SMTP conversation information and suppress the message data.

errmsg$ will contain the text of an error message, if one occurs.

UnForm Notes: When UnForm is running on a UNIX system, there is no usable terminal device

associated with it, even if run from the command line. Therefore, the user interface options (such as

dat.dialog=1) of MailCall are not available. This is not the case on a Windows installation, so long as

the server is running as an application rather than a service. Note however, that any user interface

presented occurs where the UnForm server is running, not necessarily where the client runs.

UnForm Version 8.0

371

HTML OUTPUT

UnForm provides an optional capability to produce HTML files from reports, using a processing engine

that is similar to that used for laser printer output. Using this capability, users can convert their standard

text-based reports into HTML documents, which are suitable for viewing with Web browsers such as

Netscape Navigator and Communicator, and Microsoft Internet Explorer.

Reports can be converted in real-time, as part of a CGI or ASP procedure that responds to a browser

request to generate a report, then format it as HTML. Alternatively, reports can be converted with a

periodic batch process, such as a nightly procedure that produces various reports, then converts them all

to HTML for viewing the next day.

Even without a rule set, UnForm can streamline text reports by producing plain text pages with

horizontal rules at the end of each page. These are constructed using HTML templates, so standard

company headers and footers can be applied even to reports that are not enhanced via a rule set.

UnForm Version 8.0

372

Creating HTML

UnForm will create HTML output if you specify "-p html" on the command line. Given this parameter,

and with no "-f rulefile" parameter, UnForm will look for the "html.rul" file rather than the default

"unform.rul" file used for printer output.

By default, the HTML output is generated to standard output (on UNIX only), but it is normally

preferable to specify an output file, such as "-o /usr/internet/docs/reports/aging". UnForm can then build

the reports with varying styles in stages, and a browser can view interim results as soon as the first page

is generated. UnForm will add a ".htm" extension automatically to the output file. UnForm will also

create additional files depending on the style of the report. For example, if a table of contents is

generated as a separate document, then the base file (aging.htm in the above example) will be the table

of contents, and additional files will be generated for the pages of the report (aging.page.htm).

A sample command, therefore, might look like this:

unform -i aging.txt -o /usr/internet/docs/reports/aging -p html -f ourhtml.rul

As HTML structure is very different from that of laser printers PCL, HTML rule sets are very different

from printer rule sets. UnForm uses HTML table structures to format pages. These structures have a

defined hierarchy of rows, cells, and data, with attributes applied to either cells or data. HTML rule sets

follow this structure in that you define rows, then within rows you define cells, and then within cells you

define the attributes of the cell and text.

The HTML output that UnForm produces can be in one of several styles. The rule set options used to

trigger the style are shown in parentheses:

 The simplest form is that of one document with all the pages sequentially created as tables. If no

output file is specified (-o filename), this is what UnForm will produce regardless of any style

options you specify.

 The output can be produced in one file, with a table of contents at the top of the file (toc=y or toc=l,

multipage=n). As each page is generated and appended to the file, the table of contents is updated

and inserted at the top. The table of contents consists of descriptions linked to the individual pages.

The descriptions default to "Page number n", but can be created in page code blocks. Additionally,

the table of contents can be created as a vertical column (toc=y), or as a bullet list (toc=l).

 The output can be produced in multiple files (multipage=y), with the table of contents being the

primary one, with links to each page as a separate HTML document.

 The output can be produced as frames (frame=y), with the table of contents in one frame, and pages

in the other. The target pages can be stored in a single file, multi-page document, or with each page

in an individual file.

Note that all these options but the first require that a table of contents be maintained as each page is

generated. In order to construct an updated document as each page is generated, UnForm must generate

temporary files with which to build the HTML required. The filename specified by the "-o" option is re-

UnForm Version 8.0

373

created as each page is completed. Therefore, if standard output is generated rather than output files,

only the first style can be produced.

This interim generation of files means that the HTML output can be viewed as soon as the first page is

generated. This can be very helpful when large reports are being formatted in real-time.

UnForm Version 8.0

374

HTML Configuration

When generating HTML documents, UnForm uses several configuration elements to structure the

output. Most of these are created in UnForm's parameter file, which is named "ufparam.txt". Note that

you can create a custom parameter file for your site that will not be overwritten during an update of

UnForm by copying "ufparam.txt" to "ufparam.txc". Then make any changes to the custom version.

A section in the configuration file headed by "[html]" controls HTML configuration. It will look like

this:

[html]

page=page.htm

toc=toc.htm

both=both.htm

frame=frame.htm

pagenum=Page number

imagelib=

imageurl=

complete=Report Complete

incomplete=Report not complete (reload page to view again)

The following table describes each parameter:

Element Description

page=filename

toc=filename

both=filename

frame=filename

These elements point to HTML template files in

UnForm's home directory. These files are used by

UnForm based on the style of output being generated.

To create custom templates for your site, you should

copy each file to some other name, modify the file

names identified in these four elements, and edit the

templates for your needs.

See "HTML OUTPUT TEMPLATES", below, for more

information.

colwidth=text The default column cell width is text. This can be a

pixel value, such as "colwidth=9", or any other value

accepted by a <td width=value> tag in HTML. If no

value is specified, UnForm uses "2em", which indicates

2 half-characters, based on the average width of a

character in the default font. This value can also be

specified for individual reports using the colwidth

keyword in a rule set.

pagenum=text This text is used to generate the default table of contents'

values. A space and the page number follow the text.

UnForm Version 8.0

375

Element Description

imagelib=directory This points to a directory where image files are

physically stored on disk. If any column definition has

an option indicating it contains image file names, then

the files in the column are searched for first as named,

and then in this directory. If the image can be found,

then the image tag can be generated with width and

height parameters, which normally speeds up the page

rendering speed by the browser.

imageurl=url-prefix When image tags are generated in a column, the url-

prefix is placed in front of the file name. This allows the

Web server to map the name to a physical location on

the server.

complete=text

incomplete=text

One of these values is placed in the "$status" global

string at the end of each page, depending on whether the

job is complete or not. You can then place the value in

the HTML template files by embedding the tag

"[$status]" in the template.

UnForm Version 8.0

376

HTML Output Templates

As companies develop Internet and Intranet strategies, they should employ standard formatting

conventions to their HTML documents. HTML-formatted reports should likewise follow these

conventions, so UnForm supports the use of HTML template files.

UnForm looks for these files in the UnForm directory, each named in the parameter file "ufparam.txc" or

"ufparam.txt". UnForm is distributed with a standard parameter file and standard HTML template files.

To customize these for your site, copy "ufparam.txt" to "ufparam.txc", then copy the template files to

new names and reference those names in the new "ufparam.txc" file.

The names to use are specified in the "[html]" section of the parameter file, and are coded as

"toc=tocfilename", "page=pagefilename", "both=bothfilename", and "frame=framefilename". In each of

these files, place the text "[$toc]" where the table of contents should be placed, and "[$page]" where the

page table(s) need to be placed. In the case of a frame template, the two markers are used for placement

of URL links to the table of contents document and the page document(s), respectively.

UnForm determines which template files are used based on the style being used for the output. If there

are separate table of contents and page documents, then the tocfilename and pagefilename are both used.

If the table of contents and the pages are in the same document, then the bothfilename is used. This file

should contain both [$toc] and [$page] tags. If frame output is used, then the framefilename is used for

the primary document, and the tocfilename and pagefilename files are used for the target documents.

In addition to the required [$toc] and [$page] tags, you can also reference other pre-defined tags: [$title],

[$date], [$time], and [$status], as well as any global strings that you define in prepage{} or prejob{}

code blocks. These global strings, generated by the STBL() or GBL() functions, are embedded in the

document by placing the name in square brackets anywhere in the template.

One special note: If you wish to customize the date and time masks used by UnForm, set DATEMASK$

and/or TIMEMASK$ in the prejob{} code block to the desired format based on the BBx DATE()

function.

The default HTML template for a page (page=filename) looks like this:

<html>

<head>

<title>[$title]</title>

</head>

<body bgcolor=#e0e0e0>

<h3><center>[$title]</center></h3>

<hr>

[$page]

<hr>

<center><small>

©1997 by Synergetic Data Systems Inc.

UnForm Version 8.0

377

All rights reserved.

</small></center>

</body>

</html>

The default template for an independent table of contents (toc=filename) looks like this:

<html>

<head>

<title>[$title]</title>

</head>

<body bgcolor=#e0e0e0>

<center>

<h3>Table of Contents</h3>

[$title]

</center>

<hr>

[$toc]

<p>[$status]

<hr>

<center><small>

©1997 by Synergetic Data Systems Inc.

All rights reserved.

</small></center>

</body>

</html>

The default template for a combined style (both=filename) looks like this:

<html>

<head>

<title>[$title]</title>

</head>

<body bgcolor=#e0e0e0>

<h3><center>[$title]</center></h3>

<center>[$toc]</center>

<hr>

[$page]

<hr>

<center><small>

Run on [$date] [$time]<p>

©1997 by Synergetic Data Systems Inc.

All rights reserved.

</small></center>

</body>

</html>

The default template for a frame style (frame=filename) looks like this:

UnForm Version 8.0

378

<html>

<head><title>[$title]</title></head>

<frameset cols="25%,*">

 <frame name="toc" src="[$toc]">

 <frame name="page" src="[$page]">

</frameset>

</html>

UnForm Version 8.0

379

HTML Rule Sets

Like PCL rule sets, HTML rule sets are stored in a text file. Each set is headed by a unique name in

square brackets:

[AgingReport]

keywords…

UnForm selects a rule set to use based on either the "-r ruleset" command line option, or detect

keywords in each rule set. Detect keywords cause UnForm to scan the first page of input, then search

for a match where all detect keyword(s) for a given rule set match the contents of the page.

Once a rule set is selected, UnForm begins processing each page of text using the rules specified. Each

page is first stripped of any PCL escape sequences so that just text remains, then the array of text rows is

converted to HTML based on the rules. This HTML is then placed in the output according to the style of

output defined by the rule set.

If no rule set is selected, then UnForm will process each page as plain text, using HTML <pre> and

</pre> tags, with horizontal rules between pages (where form-feeds occur in the input).

The following keywords are identical in use and function with printer rule sets:

 cols

 const

 detect

 page

 rows

The hline and vline keywords are identical, except that they always perform an erase of the horizontal

and vertical lines found.

Keywords unique to HTML generation are defined on the following pages.

UnForm Version 8.0

380

BORDER

Syntax

border=value

Description

The tables generated by UnForm for each page will normally have borders, and will therefore set the

table border option to 1: <table border=1 ...>. If you would prefer a different border setting, define it

with this keyword.

See also the otheropt and width keywords.

UnForm Version 8.0

381

COLDEF

Syntax

1. [coldef | ccoldef] col, cols, options

{ code block }

2. coldef "text | ~regexpr", coloffset, cols, options

{ code block }

3. coldef "text | ~regexpr", coloffset, "to-text | ~to-regexpr", to-coloffset options

{ code block }

Syntax 1 defines an absolute column region. coldef 30,21 for example, would define a column region

from column 30 for 21 columns (30-50). If the "ccoldef" syntax is used, then col is the starting column,

and cols is the ending column. ccoldef 30,50 would define the same region as above.

Syntax 2 defines a region based on a search for a starting point. For each text value or regexpr (regular

expression) found, the region will begin at the column coloffset from the point found, and extend for cols

columns. For example, coldef "Customer total",-1,52 will create the region from 1 column before the

occurrence of "Customer total", and extend the region for 52 columns.

Syntax 3 defines the region based on two searches, one to find the starting column, one to find the

ending column to the right of the starting point. In both cases, the column position is adjusted for the

offset. coldef "Current",-1,"30-Days",-1 would define a region starting one column before the word

"Current", extending to one column before the word "30-Days". If just the first string is found, then all

columns from there to the last are specified. If just the last string is found, then all columns from the

first through there are specified. For this reason, be sure that any absolute column regions are specified

first.

Description

Column definitions are used to define columns within a row definition. Each column definition

becomes a table cell (<td>…</td>), with each row in the column being separated by a line break (
).

There can be up to 255 column definitions within any given row definition. Any given column will be

formatted based on the first coldef keyword that applies to it. Columns not so defined will be displayed

as mono-spaced text, using the HTML <pre> and </pre> tags.

Each column definition can define attributes that will apply to the text and cell formatting, and

optionally can have a code block associated with it to add custom Business Basic coding to the data in

the column.

UnForm Version 8.0

382

Options are comma-separated lists of words and parameters. The options available in the column

definition include:

Option How it gets applied

bgcolor=#rgb,

bgcolor=color

Cell gets a bgcolor=value attribute to control the

background color. The color can be expressed as an

#rrggbb hexadecimal value or as a color name supported by

the target browser, such as red, blue, white, etc..

blink Text gets <blink> attribute.

bold Text gets attribute.

bottom, top, middle Cell gets "valign=value" attribute to control vertical

justification. The default is "top".

center, left, right Cell gets "align=value" attribute to control horizontal

justification. The default is "left".

color=#rgb,

color=color

Text gets attribute. The color can be

expressed as a #rrggbb hexadecimal value or as a color

name supported by the target browser, such as red, blue,

white, etc..

font=font Text gets attribute. Several modern

browsers support this, though the font typeface selected

may not be available on all clients.

hdr=html text The top of the column gets the html text, followed by a line

break
 tag. Use this option to replace top of page

column headers with "in cell" column headers.

hdron=hdron text

hdroff=hdroff text

hdrtd=hdrtd text

The column header, if defined with hdr, gets these values in

its <td hdrtd>hdron hdr value hdroff</td> structure. Be

sure to turn off any hdron text HTML tags in hdroff text.

italic Text gets <i> attribute.

image Text is assumed to be file names that are image files, and

gets treated as an tag. The ufparam.txc|t file values

for imagelib and imageurl are used for image processing.

The imagelib value is used to locate files on the web

server's file system in order to calculate width and height

values (.gif and .jpg files only.) The imageurl value is

prefixed to the report data when constructing the <img

src="image URL">.

ltrim, rtrim, trim These three mutually exclusive options will cause UnForm

to left, right, or left and right trim the text of the column

when generating the HTML cell text. By default, any

spaces in the data for the cell remain in the output. Use of

this option may save some disk storage space and

document transmission time.

noencode If this option is present, then the text is not encoded for

HTML markup entities. This should only be used if you

know that the text contains valid HTML coding.

UnForm Version 8.0

383

Option How it gets applied

otheropt=options The table cell gets additional attributes not otherwise

specified by the other options.

size=n Text gets attribute. Size ranges from 1 to 7,

with 3 being considered a "normal" size.

suppress If this word is present, then column data gets set to null.

underline Text gets <u> attribute.

Code blocks are optional definitions associated with any given column definition. With a code block, it

is possible to manipulate the text of each row in the column. A typical use of this capability might be to

convert the plain text to hyperlinks, so that a column of part numbers could be linked to pages in a

catalog, for example. Code blocks begin just after the opening brace "{", can extend as many lines as

required, and end with a closing brace "}".

The code block is executed for each row of the column. As the code starts, the following variables can

be used:

Variable Description

attr.align$

attr.bgcolor$

attr.blink

attr.bold

attr.color$

attr.font$

attr.italic

attr.otheropt$

attr.size$

attr.underline

attr.valign$

The attr$ variable is a string template that defines the

attributes to apply to the text or cell. These values match

those defined above in the Options. Numeric values can be

set to 0 (false) or 1 (true). String values can be set to any

valid value for that attribute.

colofs The column offset from the left edge of the text. If the

column region is from column 21 through 40, then colofs

will be 21. This should be treated as a read-only value.

cols The number of columns in the region. Read only.

row The row number within the current region, from 1 through

the last row in the region. With each execution of the

subroutine, the row will increase by 1. Read only.

row$ The text of the current row within the region. This can be

manipulated by the code.

rowofs The position of the current row, relative to the whole page.

If you need to refer to data in some other column of the

current row, use rowofs. Read-only.

UnForm Version 8.0

384

Functions available for your use, in addition to any intrinsic Business Basic functions, include:

Function Description

get(col,row,cols) Returns text from the page, given the column, row, and cols

parameters.

htmencode(text$) Returns text$ after converting HTML entities into

displayable versions.

set(col,row,cols,text

$)

Sets text$ into the page at the given column, row, and

columns.

urlencode(text$) Returns text$ after URL encoding to make it suitable for

inclusion in a hyperlink.

UnForm Version 8.0

385

COLWIDTH

Syntax

colwidth=text

Description

When UnForm generates a table for each page of a document, it defines a standard column cell width so

that text that lines up vertically in the report will remain lined up in the HTML version. UnForm

generates an initial single row of individual cells, using text as the cell width, as used in the HTML tag

"<td width=text>".

If a text value, such as a pixel count or other valid HTML cell width is specified, then UnForm will use

that value when defining the initial column cell sizes for each page.

UnForm Version 8.0

386

FRAME

Syntax

frame=y | yes | n | no

Description

The frame keyword can be used in conjunction with the multipage keyword to control the presentation

of the report. Without these options, UnForm will produce a single file (named with the output

keyword or –o command line option, or to stdout), containing an HTML table for each page of output

from the source file. With the multipage keyword, UnForm will produce unique files for each page of

output, plus a table of contents page (whose format is controlled by the toc keyword). If frame is set to

"y" or "yes", then an additional frame file is created for the browser to view the table of contents

constantly while viewing the report pages.

The output filename generated is for the frame file if frame is set to "y" or "yes", and the table of

contents file if frame is not present or is set to any other value.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 8.0

387

HDRON, HDROFF, HDRTD

Syntax

hdron=value

hdroff=value

hdrtd=value

Description

When a coldef hdr=text option is present, UnForm will add text to the top of the column, in a separate

cell. In order to make a column-heading stand out, it may be desirable to give it attributes that are

distinct from the column text. These keywords define HTML text attributes to add before and after any

column header. hdrtd applies <td value> to the cell tag, while hdron and hdroff apply to the heading

text. Values for individual row groups can be specified in the rowdef or coldef keywords.

For example, hdron=<small> and hdroff=</small> would make column headings small and

bold.

Be sure to close any tags in the hdron value with corresponding tags in the hdroff variable.

UnForm Version 8.0

388

LOAD

Syntax

load filename

Description

The load keyword is used to load a secondary text file into the rule file at parsing time, at the position of

the load keyword. This provides the ability to maintain separate text files for the definitions, grouped in

any manner desired. For example, a common set of options for all reports could be defined in a second

file, and each report could reference that file.

UnForm will try to open the file first as named, then in the UnForm directory if it is not found. Note that

the prefix setting, if present, in UnForm's config.unf file can be used to affect file searching.

Example:

[Report1]

load "stdoptions.txt"

UnForm Version 8.0

389

MULTIPAGE

Syntax

multipage=y | yes

Description

If multipage is set to "y" or "yes", UnForm will generate a different document file for each page of

output. The pages will be named filename.pagenum.htm, with pagenum being the sequential page

number of the report.

A table of contents will automatically be generated as well, with each link in the table of contents

referencing the proper document name. The table of contents file will be named one of two names:

filename.toc.htm if a frame structure is being generated, or filename.htm if not. When no frame is

generated, then the table of contents document becomes the base document for the output.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 8.0

390

NULLROW

Syntax

nullrow=y | yes

Description

If this value is set to "y" or "yes", UnForm will print undefined row sets as mono-spaced text, using

HTML <pre> and </pre> tags. By default, UnForm will suppress any rows that have not been allocated

with rowdef keywords.

UnForm Version 8.0

391

OUTPUT

Syntax

output "filename"

Description

If no "-o filename" is specified on the command line, UnForm will use the file filename specified here.

Use this keyword to specify a default output location for any given report.

UnForm automatically adds a ".htm" extension to filename.

UnForm Version 8.0

392

OTHEROPT

Syntax

otheropt "table-options"

Description

When UnForm generates a table for each page of the document, it establishes border and width options

for the table tag: <table border=border width=width>. If additional options are desired, specify them

with this keyword. If present, the table tag is generated like this:

<table border=border width=width table-options>

See also the border and width keywords.

UnForm Version 8.0

393

PAGESEP

Syntax

pagesep "html code"

Description

If a single document is generated for all pages of output (multipage is not set to "y" or "yes"), then

UnForm will place a paragraph tag (<p>) between each page. If something other than a paragraph tag is

desired, then specify the HTML code in the pagesep keyword.

The pagesep value can contain global string values generated from code blocks by referencing the string

value name inside square brackets.

For example: pagesep "<p><hr>[pagehdr]" would generate a paragraph tag plus a horizontal rule,

followed by the value in the global string "pagehdr", defined with the STBL() function in a prepage{} or

prejob{} code block.

UnForm Version 8.0

394

PREJOB, PREPAGE, POSTJOB, POSTPAGE

Syntax

prejob | postjob | prepage | postpage {

code block

}

Note: the opening brace "{" needs to be on the same line as the keyword. The closing brace may follow

the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the document generation process.

They represent four different subroutines that UnForm executes at specific points during processing.

The code block can be an arbitrary number of Business Basic statements; the total number of statements

in all code blocks can be about 6,000 (or less, depending on program size limits imposed by the run-time

environment).

 prejob executes after the rule set has been read, and after the first page is read, but before any

printing takes place. Use this code to open files or databases, prepare SQL statements or string

templates, create user-defined functions, and initialize job variables.

 postjob executes after the last page has been printed. Use this to close out your logic, such as adding

totals to log reports. There is no need to close files, since UnForm will RELEASE Business Basic.

 prepage executes after each page is read, but before any printing takes place. Use this to gather data

associated with any page, or to modify the content of the text if you need such modifications to apply

to all copies.

 postpage executes after the last copy of each page has printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable

assignments, and more. Program to your heart's content. UnForm will add extensive error handling

code within your code, and report syntax errors to the error log file or a trailer page.

You may use the following variables and functions in your code block:

 text$[all] is a one-dimensional array of the text for the page. For example, text$[2] is the second

line of the page.

 mid(arg1$,arg2,arg3) (or fnmid$(arg1$,arg2,arg3)) is a function that safely returns a substring

without generating an error 47 if the value in arg1$ isn't long enough to accommodate position arg2

and length arg3.

 get(col,row,length) (or fnget$(col,row,length)) is a function that safely returns text from the

text$[all] array, without substring or array out-of-bounds errors.

UnForm Version 8.0

395

 set(col,row,length,value$) (or fnset$(col,row,length,value$)) is a function that places value$ in the

text$[all] array at the place indicated. It returns value$.

 err=next may be used for any err=label option in any function or statement, in order to force

UnForm's error trapping to ignore an error. You may, of course, name your own err=label if desired.

When using variables and line labels, you should avoid using any values that begin with "UF_". UnForm

reserves all such variables and labels for its own use. You may use a backslash (\) at the end of a line to

continue the statement on the next line. Lines prefixed with "#" are not added to the code.

A discussion of programming in Business Basic is outside of the scope of this manual. If your needs

require programming, then it would be advisable to hire a professional Business Basic programmer,

acquire training for a technical member of your staff, or contract with SDSI for your needs.

Column definitions can also have code blocks, which are executed as each row of a column definition is

generated. See the coldef keyword for more information.

UnForm Version 8.0

396

ROWDEF

Syntax

1. [rowdef | crowdef] row, rows, options

{ code block }

2. rowdef "text | ~regexpr", rowoffset, rows, options

{ code block }

3. rowdef "text | ~regexpr", rowoffset, "to-text | ~to-regexpr", to-rowoffset options

{ code block }

Syntax 1 defines an absolute row region. rowdef 5,3 for example, would define a row region starting

with row 5, and extending 3 rows down (5-7). If the "crowdef" format is used, then row is the starting

row, and rows is the ending row. crowdef 5,7 would define the same region as rowdef 5,3.

Syntax 2 defines a region based on a search for a starting row that contains the text or matches the

regular expression. For each text value or regexpr found, the region will begin at the row rowoffset from

the point found, and extend for rows rows. For example, rowdef "Customer total",0,1 will create a

region from each row containing "Customer total" (0 offset is that row), and extending for 1 row (just

that row).

Syntax 3 defines the region based on two searches, one to find the first row, one to find the ending row

below the starting row. In both cases, the row used for the region is adjusted for the offset. rowdef

"Customer:",1,"Customer:",-1 would define a region between each occurrence of the text

"Customer:". If just the first string is found, then all rows from there to the last are specified. If just the

last string is found, then all rows from the first through there are specified. For this reason, be sure that

any absolute regions are specified first.

Under format 3, if the last string is not found, UnForm will continue that row definition on the page

following the first unallocated row at the time this row definition is evaluated on that page.

Description

Row definitions are used to define sets of rows for which a given group of column definitions would

apply. Each row definition defines a group of rows that will be presented within a single table row (<tr>

... </tr>). Under any given row definition, place the column definitions (coldef keywords) that will be

used to format the rows.

For example, an A/R Aging Report might contain a report heading, column headings, one or more

customer headings, and, under each customer heading, one or more detail lines. At the end of the detail

lines would be customer totals. This report would have five row definitions, for each type of row:

report heading, column heading, customer headings, detail lines, and totals. Each of these types of rows

UnForm Version 8.0

397

will have its own set of column groups (or in some cases, no column groups at all, allowing simple

mono-spaced presentation.)

There can be up to 255 row definitions within any rule set.

Each row definition can define attributes that will become defaults for the text and cell formatting of all

the column definitions. Additionally, row definitions can define an option called "suppress", which

causes UnForm to suppress the display of the row region. A comma separates each option.

Option How it gets applied

bgcolor=#rgb,

bgcolor=color

Cell gets a bgcolor=value attribute to control the

background color. The color can be expressed as an

#rrggbb hexadecimal value or as a color name supported by

the target browser, such as red, blue, white, etc..

blink Text gets <blink> attribute.

bold Text gets attribute.

bottom, top, middle Cell gets "valign=value" attribute to control vertical

justification. The default is "top".

center, left, right Cell gets "align=value" attribute to control horizontal

justification. The default is "left"

color=#rgb,

color=color

Text gets attribute. The color can be

expressed as an #rrggbb hexadecimal value or as a color

name supported by the target browser, such as red, blue,

white, etc..

font=font Text gets attribute. This is supported by

several modern browsers, though the font typeface selected

may not be available on all browser clients.

hdr=html text The top of the column gets the html text, followed by a line

break
 tag. Use this option to replace top of page

column headers with "in cell" column headers.

hdron=hdron text

hdroff=hdroff text

hdrtd=hdrtd text

The column header, if defined, gets placed in a cell with

<td> attributes specified hdrtd text, and text attributes

hdron text and hdroff text. Be sure to turn off any hdron

text HTML tags in hdroff text.

italic Text gets <i> attribute.

noencode If this option is present, then the text is not encoded for

HTML markup entities. This should only be used if you

know that the text contains valid HTML coding.

otheropt=options The table cell gets additional attributes not otherwise

specified by the other options.

size=n Text gets attribute. Sizes range from 1 to 7,

with 3 being considered a "normal" size.

suppress The rows are not displayed.

tr Each row in the row group gets a <tr> tag, ensuring that

UnForm Version 8.0

398

Option How it gets applied

column definitions, even if they contain data values of

varying height, will remain horizontally contiguous. If the

cells contain only text, this is generally not required, but if

some cells contain images, this keyword will likely be

required.

underline Text gets <u> attribute.

UnForm Version 8.0

399

TITLE

Syntax

title "title text"

Description

The title for any report can be defined in the rule set with this keyword. Once defined, anywhere in

HTML output templates that the tag "[$title]" is placed, this text will be substituted.

UnForm Version 8.0

400

TOC

Syntax

toc=y | yes | li | list | sh | short

Description

If this keyword is set to "y" or "yes", UnForm will generate a simple table of contents by constructing

hyperlinks to each page generated. The hyperlinks are placed either at the top of the document, in a

separate main document, or in a document referred to as the table of contents in a frame.

The following templates use a table of contents. Templates refer to files in the UnForm directory, and

are referenced in the parameter file under the "[html]" section: "both=" and "toc=". In each case, the

placement of the table of contents is based on the placement of the tag "[$toc]" within the template file.

The text displayed for each hyperlink is generated from the "pagenum=" item of the "[html]" section of

the parameter file (ufparam.txc or ufparam.txt.) This text can also be generated by Business Basic code

in the prepage{} or postpage{} code blocks, by setting the string variable "toc$" to the value desired.

If the keyword is set to "li" or "list", then the hyperlinks are created within an HTML unordered list

(...), and will normally be displayed as a bullet list.

If the keyword is set to "s", "sh", or "short", then the table of contents links consist of just the pagenum

descriptor followed by each page number, with no line breaks or bullets. In this case, any code that sets

the value of toc$ is ignored.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 8.0

401

WIDTH

Syntax

width=value

Description

The tables generated by UnForm for each page will normally occupy the entire width of the page, and

will therefore set the table width to 100%: <table width=100% ...>. If you would prefer a different width

setting, define it with this keyword. Be sure that if the value is a percentage of the screen, it has a

trailing "%".

See also the otheropt and border keywords.

UnForm Version 8.0

402

Sample HTML Rule Set

Below are sample rule sets defined in the sample rule file, samphtml.rul. The sample text input files

used by UnForm for the PCL output examples are redefined here for HTML. Comments are interspersed

in the rule sets to help clarify which keywords perform which tasks.

Aging Report Sample

To produce this aging report sample to a file, execute the following command:

uf80c -i sample3.txt -o aging.htm -p html –f samphtml.rul

You can substitute a different path/file name for "aging" to produce the HTML file elsewhere, such as in

the HTML document tree of your Web server.

The form is called "aging" to distinguish it from other rule sets. If the "-r aging" option is used on the

command line, then this set will be used.

[aging]

A detect statement identifies a report as the one defined by this rule set. If no "-r ruleset" option is used

on the command line, then this detect statement will be evaluated. If the text "Detail Aging" appears in

any column on row 2, this rule set is used.

detect 0,2,"Detail Aging"

The HTML output will produce 132 columns and 66 rows per page.

cols 132

rows 66

Any text consisting of 3 or more dashes will be erased. This removes all the dashed underlines at

customer totals. There are other ways to accomplish this, including defining a row set and using the

suppress option, or using a prepage{} code block to erase such text from the text$[] array.

hline "---"

The title used in HTML output for this report will be "Aging Report".

title "Aging Report"

If this line were not commented out (with the #), then anytime this rule set was used and no "-o

filename" was present on the command line, the output would go to "/tmp/aging.htm."

UnForm Version 8.0

403

#output "/tmp/aging"

This report will be generated in multiple files (one per page), with a table of contents page, and with an

HTML frame construct.

multipage=y

toc=y

frame=y

Between each page will be an HTML <p> tag (a paragraph separator). Any HTML text could be

supplied, including references to global strings inside square brackets ([variablename]). The

hdron/hdroff keywords supply HTML codes to place before and after any column definition headings,

defined with the hdr=text option in the coldef and rowdef keywords.

pagesep <p>

hdron=<i>

hdroff=</i>

This rowdef keyword defines a row set from row 1 for 5 rows. All column definitions within this row

will default to a background color RGB hex value of FFE0E0 (lots of red, high green and blue content).

rowdef 1,5,bgcolor=#ffe0e0

For the above row set, there are three column sets: 1 through 10, 11 through 110, and 111 through 132.

The columns are left, center, and right justified, respectively. Otherwise, except for the background

color, the browser will use its default values for displaying the data.

coldef 1,10,left

coldef 11,100,center

coldef 111,22,right

This row definition causes UnForm to suppress display of rows 6, 7, and 8 (the column heading

information). The rule set will define the column headers as necessary in other row sets.

rowdef 6,3,suppress

Each customer has a heading line, distinguished by the occurrence of a phone number in those rows.

The initial quoted value "~\(...-...-....\)" instructs UnForm to search for a regular expression match that

looks like a U.S. phone number in parentheses. From any and all such rows, it will start at 0 rows up or

down, and continue for 1 row. This defines those and only those rows that contain the phone numbers.

Columns defined for those rows will be bold, with blue text on a white background. As no columns are

defined under this row definition, UnForm allocates one column set the full 132 columns wide, and

applies the row defaults to the text.

Customer header

rowdef "~\(...-...-....\)",0,1,bold,color #0000ff,bgcolor #ffffff

UnForm Version 8.0

404

The invoice detail lines represent the most complicated of the row definitions, as there are numerous

columns with two different formats. We define constants for the two formats (left and right justification

being the only difference.) Then the rows are defined as any rows that contain a date structure of 2

characters, a slash, 2 characters, a slash, and 2 more characters. Note that even though some heading

rows have this structure, those rows have already been allocated by prior row definitions and won't

confuse things here. UnForm searches for any row with a date. Then starting from that row (row offset

of 0), it searches for a row that contains 5 dashes. If such a row is found, then the row set goes through

the row before (row offset -1) the dashes. If no such row is found, then the row set goes through the last

row on the page.

Invoice lines

const LEFT="bgcolor=#e8e8e8,color=black"

const RIGHT="bgcolor=#e8e8e8,color=black,right"

rowdef "~../../..",0,"-----",-1

Each invoice line is made up of 13 columns of information. Each has been defined by the ccoldef

keyword by starting and ending column values. Additionally, each is given a header value that will

appear at the top of the column, and a constant that references other attributes defined earlier in the

rule set.

ccoldef 1,10,hdr="Invoice",LEFT

ccoldef 11,20,hdr="Due Date",LEFT

ccoldef 21,31,hdr="PO Number",LEFT

ccoldef 32,39,hdr="Ord Number",LEFT

ccoldef 40,45,hdr="Terms",LEFT

ccoldef 46,52,hdr="Type",LEFT

ccoldef 53,64,hdr="Future",RIGHT

ccoldef 65,75,hdr="Current",RIGHT

ccoldef 76,86,hdr="30 Days",RIGHT

ccoldef 87,97,hdr="60 Days",RIGHT

ccoldef 98,108,hdr="90 Days",RIGHT,color=red

ccoldef 109,119,hdr="120 Days",color=red,RIGHT

ccoldef 120,132,hdr="Balance",right,bold,RIGHT

The customer totals occur just below the row of dashes at the end of each customer's invoices. This row

definition therefore searches for any rows containing 5 dashes, then starts 1 row down, and continues

for just 1 row.

Customer totals

rowdef "-----",1,1

The first 52 columns make up one column set. The report provides no text, so we include a code block

for this column that sets row$ to "Customer Totals:". Note that if this row set contained more than a

single row, we could say 'if row=1 then row$="Customer Totals:'. The remaining column sets just

apply right justification to the column values.

UnForm Version 8.0

405

ccoldef 1,52,right

{row$="Customer Totals:"}

ccoldef 53,64,right

ccoldef 65,75,right

ccoldef 76,86,right

ccoldef 87,97,right

ccoldef 98,108,right

ccoldef 109,119,right

ccoldef 120,132,bold,right

UnForm Version 8.0

406

8.0 ENHANCEMENTS

UnForm 8.0 offers many significant enhancements to its already powerful predecessors. A list of major

enhancements is provided below.

Deliver Command
The deliver command and a related deliver() code block function have been added, designed to simplify

the task of delivering documents by email or fax. While jobs run, subjobs are executed to produce a

document that is then emailed or faxed, depending on the format of a recipient address. Different fax

submission methods are supported, including command lines, email, and the internal Microsoft Fax

support via the Windows Support Server. A configuration file, deliver.ini, defines how email and fax

submissions are processed.

Related to the document delivery capability is address books, maintained with the new Address Book

code block object, or the browser interface to the UnForm server.

More details can be found in the Deliver Configuration chapter, and the deliver command and deliver()

code block function references.

Cover Pages
Cover pages are used to generate an initial page for a job using a different rule set, allowing for custom

cover pages to be generated as part of an UnForm job. This feature can be used when formatting

documents for fax delivery, or for other jobs that require an initial page of a different format than the job

itself.

Cover pages are defined with the cover command, the -cover command line option, or a set of code

block variables, coverset$, coverfile$, and coverargs$. Cover pages can also be turned off in code

blocks by setting nocover=1.

Printing Enhancements

True Type Fonts

True Type font support has been added to the pcl, pdf, and postscript drivers. Most True Type fonts that

are licensed for embedding and support Unicode characters can be configured in ufparam.txc file's

[ttmap] section. See the Server Configuration chapter for information about configuring TrueType fonts,

and the Fonts chapter for caveats and recommendations.

Unicode Character Support

UnForm Version 8.0

407

In conjunction with the TrueType font enhancement, UnForm can now produce Unicode text output in

two ways: via a text command using an embedded TrueType font, or via the textimage() function, which

uses Image Magick to generate an image of a Unicode string.

See the Text command for information about Unicode text. There is a ttprint.rul file in the samples

directory which can print all characters supported by a configured font.

The second technique for embedding Unicode text is to use a new function, textimage(). This function

uses Image Magick to produce an image of text data, using a specified font. For small amounts of

printed Unicode text, using images rather than embedded fonts can produce smaller output streams.

See the textimage() function in the Programming Code Blocks, Internal Functions chapter, for more

information about this function.

PDF Enhancements
The PDF transparency model modifies shading in images, and the text, box, and shade command

shading options. This allows color AND shading, and allows items below the shaded item to show

through, similar to the blending that goes on in PCL output. Transparency can be set on or off by default

with the pdftrans=1 or 0 setting in uf80d.ini. It can also be turned on or off via the -pdftrans or -

pdfnotrans command line options, or the transparency rule set command. If it is turned off, shading is as

in previous releases.

The copies command now produces non-collated copies, like produced in the pcl and postscript drivers.

Former versions treated copies and pcopies as identical in pdf output. Note that rule sets that used the

copies command during PDF output will produce different page ordering than previous releases. To

restore the collated copy order, use the pcopies command.

The protect command now supports 128-bit encryption, by adding the "128" option.

The image command now recognizes a 'page n' option, which leverages Ghostscript to generate a full

page image of the nth page of the PDF file. The normal behavior of the image command and PDF files

is to search for the first image element of the file, rather than generating an image of an entire page.

PDF files that contain incremental updates are now supported. Of particular note for this feature are

attachments generated by Microsoft Word, with the 'save as PDF' add-in, which automatically adds an

empty incremental update.

The micr command is now supported, using the micr TrueType font licensed for inclusion in UnForm.

If micr commands should be ignored for PDF output, enclose them in 'if driver laser' blocks.

Support has been added for linearized PDF files as well as those with incremental updates. PDF files up

to version 1.4 are now supported, and any later revision files that do not use an internal file structure

called an Object Stream are also compatible.

UnForm Version 8.0

408

Object Oriented Programming Features
New object oriented programming features have been added, offering modern techniques for rule set

coding that can streamline code block programming. Several internal objects have been added that

simplify many formerly tedious tasks. A chapter is devoted to Object Oriented Coding and to each of

the new internal objects. These objects include:

 addrbook - address book management

 binfile - binary file access

 collection - collections of values by index and name

 date - date management

 doclist - library document lists

 http - http/https client for interacting with web servers

 inifile - ini file access

 keyfile - keyed file access

 libraries - library lists

 library - library management

 rac - remote access codes for documents

 search - library search execution

 system - operating system and file system access

 textfile - text file access

 xmlreader - xml document parsing

Code Block Programming Enhancements
In addition to the new object oriented coding techniques, many code block variables and functions have

been added in this release. New functions, documented in the Programming Code Blocks chapter,

include:

 arrset() updates an array with text values at specified positions, similar to the set() and mset()

functions that update the page print stream text array

 basename() returns the file name from a full path

 cdate() converts text data into a date value (a Julian number)

 clientenv() now works in subjobs

 cstrans() translates text between two character sets or symbol sets

 deliver() executes a fax or email delivery of a document

 dirname() returns the directory portion of a full path

 entityencode(), entitydecode() encode and decode HTML entity values in text

 fileext() returns the extension of a filename

 fromuc() translates text from unicode

 getaddress() retrieves an address from an address book

 getcolumn() slices a column of fields out of a series of text lines

 getpaircount() returns the number of name=value pairs in a string

UnForm Version 8.0

409

 getpairvalue() parses strings of name=value pairs

 getpatternvalue() locates text patterns in text strings or arrays

 imgx(), imgy() returns an image's width and height

 logwarn() logs a message to the warning messages written to a job's temp/*.err file and to the

design tool

 pdfpages() returns the number of pages in a PDF file

 putaddress() writes an entry into an address book

 setlogin() sets login/password values when using the library object

 sqlconnect() connects to SQL databases

 sqlexecute() executes a SQL command on a connection

 sqlfetch() returns rows from a SQL query

 tempfile() generates a temporary file that is automatically removed when the job completes

 textimage() generates an image with unicode text, using Image Magick

 touc() translates text to unicode

New variables include:

 coverargs$ specifies command line options for a cover page subjob

 coverfile$ names a rule file containing coverset$

 coverset$ sets a rule set to use for a cover page

 nocover=1 turns off cover page generation

 noemail=1 turns of the email command

 uf.parent contains the job ID of the parent job, helpful for logging

 uf.login$ contains the -arclogin user ID

Archiving Enhancements
The archive browser interface has been extensively re-written to provide more streamlined access to

documents, and to document management. New features include image viewer emailing, direct

document access when the library, doctype, and doc ID are known, address book management, custom

forms integrated with CGI-driven rule set processing, and powerful saved searches with run-time

prompting. A performance improvement in the UnForm images command is noticeable when

consolidating marked PDF documents as well.

In addition, new virtual libraries are generated for external users. When an external user (a user with an

entity ID) is browsing a library for the first time, a copy is made of the library metadata structures for

just records identified with the entity ID of the external user (other users with the same entity ID will

share this copy). This copy is maintained when the main library records are modified or deleted. The

external users browse this smaller library, providing the full browsing experience, but with only their

documents.

UnForm Version 8.0

410

Virtual libraries are deleted if unused for 30 days. They are stored in the "ent" subdirectory structure

under the library path, and will add to storage requirements, depending on how many entity ID-

associated documents are copied, and how many external users login and use a library.

The first-time copy can take a while. The browsing interface warns users of this possibility.

Zebra Enhancements

The lockcols command and the -lockcols command line option prevent recalculation of the cols value.

Support for many new barcode symbologies has been added. See the Zebra barcode command for more

information.

Windows Support Server Enhancements
The Windows Support Server now supports compression when communicating with an UnForm server

that supports zlib compression (indicated with the uf80c –v command). This can improve performance

when using image conversion and scaling or Ghostscript-based PDF to image conversion.

The Support Server is now used when producing barcodes with features not supported in the server-

based barcode library. Primarily, this includes 2D barcode support, rotation, and human-readable text

support.

The Support Server includes technology to support text parsing from PostScript input streams.

Miscellaneous Enhancements

Multiple archive commands are now supported. Note there is a potential behavior difference if rule sets

contain multiple archive commands. Now all execute. In 7.x, only the last one executed.

A new -arclistfmt option, xmlf, adds a base64-encoded embedded file element to the listdocs xml

format.

Setting noemail=1 in a code block turns off the email command, allowing code block control over

whether or not to execute the email command at the end of the job.

EPS output: -p eps supported to produce an eps file based on the first page, first copy of the job. This

allows output from an unform job to be used as an image for a subsequent PostScript job. EPS is also

widely supported in document production and imaging programs.

Control of textjob$[all] generation: -notextjob|-textjob command line control, and textjob=1|0 in

uf80d.ini [defaults] section to define the default behavior.

UnForm Version 8.0

411

Configuration files now support continuation lines using a "\" suffix, which indicates the next line

extends the current line. This is particularly useful in the deliver.ini file, and can be used in uf80d.ini

well.

The image command now supports a 'page n' option when used in the PDF driver with a PDF file named

as the image. Ghostscript is invoked to convert the specified page into an image.

In cases where Ghostscript 8.10 or higher is configured, either via the Windows Support Server or in the

UnForm server's [drivers] section of uf80d.ini (see pdffitpage=1 notes), the images command is now

performance-optimized for both PDF and PostScript output when PDF files are used as images. PDF

source images are converted to the required format exclusively with Ghostscript, bypassing the extra

processing through Image Magick that was required in previous releases. Black and white PCL output

was optimized in previous releases. Note that Postscript 3 (-p ps3) output supports compression of black

and white images on systems with zlib support, resulting in lower bandwidth requirements for Postscript

printing.

The local timezone in Internet UTC-offset format (i.e. -0800 for Pacific Daylight Time) is automatically

resolved based on local system settings, and passed to MailCall when running the email command or

email() code block function.

The previous server log file is renamed to uf80d.log.bak upon server restart. The server log format is

now a tab-delimited file, to ease log analysis. The Windows UnForm server offers a log viewer with

column sorting and filtering.

Windows print driver output is supported using the –o "*winprt*;name" option, in conjunction with an

installation of Ghostscript, to support any Windows printer. See the –o option in the Command Line

Options chapter. Note that this feature is only supported on Windows UnForm servers.

Paper sizes can now be specified in a widthxheight format, such as 8.5x11. The format supports

specification in centimeters and millimeters (using a cm or mm suffix) as well as the default of inches.

Server-side SQL database access is available via three new code block functions: sqlconnect(),

sqlexecute(), and sqlfetch().

A new secure password store has been added, maintained via the browser interface by an administrator.

Passwords are stored under an ID, and two functions, setlogin() and sqlconnect(), support a password

format of "store:ID" to lookup the stored password value at runtime.

Image Manager
Numerous enhancements have been added to the Image Manager, including:

 Improved OCR operations utilizing Microsoft Office Document Imaging

 Custom form definitions, in addition to code driven custom forms

UnForm Version 8.0

412

 Server-based script jobs, set value jobs, lookups, and forms, in addition to local jobs

 Support for multiple users in Terminal Server environments

 Group rotation of images at scan/import time as well as via the menu and toolbar

 Support for PDF importing, with automatic Ghostscript-based conversion to tiff

 Numerous script commands and functions for library manipulation and image management

 Uploads are logged in the server log file as line type "scan", with the message containing the

library, type, doc ID, sub ID, user, and IP address of the Image Manager

 Scripts can lock the properties grid to prevent accidental editing of values

The Image Manager help file describes the features in detail.

Application Formatted Output
Beginning with version 8.0.03, UnForm accepts PostScript input as a pre-formatted print stream. Using

GhostScript and the Windows Support Server (bundled with Windows versions of UnForm and

available free for stand-alone installation), the job is parsed into pages that can then be added to by rule

sets for cosmetic enhancements, plus access is provided to the text content for document management

functions such as archiving and electronic delivery.

More details can be found in the UnForm AFO chapter.

New Learning Resources
A series of new sample rule files have been added that demonstrate specific features of UnForm rule

sets, supplementing the already extensive list of samples provided with UnForm.

Caveats
 The micr command now supports PDF output. Rule sets that assume PDF output will not have a

MICR font line when using the micr command should be modified to suppress it when producing

PDF output, either through an 'if driver "laser"' section or by using conditionally assigned

variables in the micr command itself.

 PDF output defaults to using transparency when shading text and boxes. The resulting output

will show underlying data through the shaded region, unlike previous releases. If this is not

desirable, see the transparency command.

UnForm Version 8.0

413

INDEX
[tcpports] section, 46

30 day demo activation, 55

Across, 127

Activation keys, 55

advanced.rul, 247

Alias lines, 51

Alignment, 180, 232

annotate, 128

Application Formatted Output, 76

Application integration, 49

archive, 130

archiving, 72, 87

Attach, 133

Author, 135

Barcode

PCL, PDF, 136

Zebra, 140

bbpath, 21

BBx

code blocks, 288

BBx integration, 51

bbxread function, 334

bbxread(), 21

Bin, 143

Bold, 145

Box, 147

Boxr, 150

Business BASIC

code blocks, 288

Case-conversion, 180

Characters

-testpr option, 70

Check printing, 212

circle, 153

client-server architecture, 14

Code blocks

arrays, 289

BASIC functions, 356

error codes, 362

number data, 290

operators, 290

precopy, etc. commands, 221

programming, 288

special functions, 334

special variables, 329

string data, 290

variables, 289

Collation, 158

Color

box command, 148

font command, 180

UnForm Version 8.0

414

text command, 232

Color images

-gw option, 61

Cols, 155

Command line length

-z option, 71

Command line options, 59

Commands

across, 127

annotate, 128

archive, 130

attach, 133

author, 135

barcode, PCL and PDF, 136

barcode, Zebra, 140

bin, 143

bold, 145

box, 147

boxr, 150

circle, 153

cols, 155

compress, 156

const, 157

copies, 158

cpi, 160

crosshair, 161

detect, 162, 164

down, 166

dpi, 167

duplex, 174

email, 175

erase, 177

fixedfont, 178

font, 179

gs, 182

hline, 183

hshift, 184

if copy, 185

if driver, 186

image, 188

images, 193

italic, 145

javascript, 196

keywords, 197

landscape, 198

light, 145

line, 202

lpi, 206

macro, 208

margin, 210

merge, 211

micr, 212

move, 213

notext, 215

outline, 216

UnForm Version 8.0

415

output, 217

page, 218

paper, 219

pcopies, 158

portrait, 220

precopy, 221

protect, 223

rows, 224

shade, 225

shift, 227

subject, 228

symset, 229

text, 230

title, 236

tray, 238

underline, 145

vline, 241

vshift, 242

zcopies, 199

zdarkness, 200

zspeed, 207

Compress, 156

Concepts, 82

Configuration, 21

Const, 157

Content-based rule files, 126

Copies, 158

Copy blocks, 185

Cpi, 160

Crosshair, 161

Crosshair pattern

-x option, 71

cut function, 335

Desktop delivery, 113

Desktop forms, 114

Detect, 162, 164

Document imaging conversion, 28

Down, 166

Dpi, 167

Dsn_sample, 168

dtdel function, 114

dtform function, 115

Duplex, 174

with an attachment, 133

Email, 175

command line options, 61

configuration, 364

email code block function, 338

Emergency activation, 55

Encryption, 223

end if, 185

env function, 338

Erase, 177

Error codes, 362

exec function, 338

UnForm Version 8.0

416

Fit to width, 180

Fixedfont, 178

Flow of processing, 79

Font, 179

get function, 340

Ghostscript, 28

Graphical shading, 61, 182

Greenbar option, 61

Grid drawing, 148

Gs, 182

Hline, 183

HP JetDirect, 46

HP/GL

-nohpgl option, 63

Hshift, 184

HTML driver, 371

HTML format

-p option, 66

if copy, 185

If driver, 186

Image, 188

Image Alchemy, 28

Image Magick, 28

images, 193

Images

scaling and conversion, 28

Input file

-i option, 62

Installation

clients, 17

configuration, 21

Unix download, 15

Windows, 16

Integration with applications, 49

IP addresses, 23

Italic, 145

javascript, 196

job functions, 345

Job status

-jobs, -myjobs, 72

Jobs

job code block functions, 346

Justification, 180, 232

Keywords, 197

Landscape, 198

Landscape orientation

-land option, 62

Laser format

-p option, 66

left function, 347

Library, 21

Licensing, 55

Light, 145

line, 202

Lines per page, 218

UnForm Version 8.0

417

-page option, 67

Link file, 53

Logging, 21

lower function, 347

Lower-case, 180

Lpi, 206

Macro, 208

Macros

working with, 244

Mailcall reference, 367

mailcall.ini, 364

Margin, 210

mcut function, 348

Merge, 211

mget function, 348

MICR, 212

mid function, 348

Mono-spaced text, 180, 232

Move, 213

Notext, 215

Order of operations, 79

Orientation

-land option, 62

landscape command, 198

portrait command, 220

Outline, 216

Output, 217

-o option, 64

Output format

-p option, 66

Page, 218

Page length

-page option, 67

Paper, 219

Paper size

-paper option, 68

Parameter passing

-prm option, 68

parse function, 348

Pass-through printing, 70

PCL format

-p option, 66

Pcopies, 158

PDF

command line options, 68

compress command, 156

encryption, 223

keywords command, 197

outline command, 216

protect command, 223

subject command, 228

title command, 236

PDF format

-p option, 66

Perl, 14, 17

UnForm Version 8.0

418

Permanent activation, 55

Pitch, 180, 231

Points, 180, 231

Portrait, 220

Postscript, 233

PPD file, 343

PPD files, 62

Precopy, 221

Process flow, 79

Programming, 288

proper function, 349

Proportional text, 180, 232

Protect, 223

ProvideX

code blocks, 288

ProvideX integration, 53

Regular expressions, 246

right function, 350

Rounded boxes, 150

Rows, 224

Rule file

-f option, 61

Rule files, 125

content-based, 126

Rule set

-r option, 69

Sample rule files, 247

Security, 23

Serial numbers, 55

Server operation, 14, 16

set function, 351

Shade, 225

Shaded text, 180, 232

Shift, 227

simple.rul, 247

Slave printing, 70

SMTP server, 364

Special characters, 70

sub function, 352

Subject, 228

Sub-jobs

job code block functions, 346

Symbol sets, 180, 229, 231

-testpr option, 70

Symset, 229

TCP/IP

-port option, 68

-server option, 69

TCP/IP monitor, 46

Text, 230

Text sizes, 180, 231

Timeouts, 21, 70

Title, 236

Tray, 238

trim function, 354

UnForm Version 8.0

419

uf$ variable, 331

uf80c.ini, 17

uf80d options, 14

uf80d.ini, 21, 28

uf8ptr ProvideX print driver, 53

ufsetup.sh, 15

Underline, 145

UnForm

client-server architecture, 14

concepts, 82

introduction, 12

UnForm AFO, 76

Unix

client installation, 17

download installation, 15

server operation, 14

upper function, 355

Upper-case, 180

Variables, 329

Vline, 241

Vshift, 242

web browser interface, 95

Windows

client installation, 17

server installation, 16

server operation, 16

Windows Support Server, 21, 109

zcopies, 199

zdarkness, 200

Zebra format

-p option, 66

zspeed, 207

	TABLE OF CONTENTS
	INTRODUCTION
	CLIENT-SERVER ARCHITECTURE
	SERVER INSTALLATION
	CLIENT INSTALLATION
	WEB SCRIPT INSTALLATION
	CONFIGURING THE SERVER
	CONFIGURING EXTERNAL PROGRAMS
	DELIVER CONFIGURATION
	BROWSER FORMS CONFIGURATION
	HTML Form Structure
	CGI-Driven Rule Sets
	Javascript Execution of Rule Sets
	Form Access Configuration

	MESSAGE TRANSLATIONS
	DYNAMIC RULE FILE TRANSLATIONS
	TCP/IP MONITOR
	INTEGRATING UNFORM WITH APPLICATIONS
	Integrating UnForm with BBx
	Integrating UnForm with ProvideX

	LICENSING
	UNFORM COMMAND LINE OPTIONS
	UNFORM AFO – APPLICATION FORMATTED OUTPUT
	FLOW OF PROCESSING
	CONCEPTS, PRIMER, AND TIPS
	DOCUMENT ARCHIVING AND MANAGEMENT
	Overview
	Structure Details
	Document-level Identification
	Image-level Identification
	Adding UnForm-Generated Documents
	Using the Web Browser Interface
	Direct Browser Access to Documents
	Customizing the Web Interface
	Using the UnForm Client
	Triggering Archiving of UnForm Jobs
	Adding External Documents
	Document Retrieval
	Document Deletion
	Document Listings
	Searching for Documents
	Testing Existence of Documents
	Importing Documents from sdStor

	UnForm Image Manager
	Functions Related To Archiving
	Building Demo Archive Data
	Transferring Archives to A New System

	MIGRATING ARCHIVING FROM UNFORM 7.X TO UNFORM 8.0
	Migrate to 8.0 on a new system
	Migrate to 8.0 on the same system

	WINDOWS SUPPORT SERVER
	DESKTOP DELIVERY AND FORMS
	Desktop Delivery
	Desktop Forms

	ADDRESS BOOKS
	DATABASE ACCESS
	DESKTOP CLIENT
	Deployment
	DTC Rule Sets
	Detect
	Title
	DTCPanel
	DTCHelpfile
	DTCButton
	Code Block Response For Buttons
	Code Block Response For ParseValue Requests

	RULE FILES
	Content-based Rule Sets
	ACROSS
	ANNOTATE, CANNOTATE
	ARCHIVE
	ATTACH
	AUTHOR
	BARCODE (PCL,PDF, PS)
	BARCODE (ZEBRA)
	BIN
	BOJ, BOP, EOJ, EOP
	BOLD, ITALIC, LIGHT, UNDERLINE
	CBOLD, CITALIC, CLIGHT, CUNDERLINE
	BOX, CBOX
	BOXR, CBOXR
	CIRCLE
	COLS
	COMPRESS, NOCOMPRESS
	CONST, GLOBAL, LOCAL
	COPIES, PCOPIES
	COVER
	CPI
	CROSSHAIR
	DELIVER
	DETECT
	DOWN
	DPI
	DSN_SAMPLE
	DTCBUTTON
	DTCHELPFILE
	DTCPANEL
	DUMP
	DUPLEX
	EMAIL
	ERASE, CERASE
	FIXEDFONT
	FONT, CFONT
	GS
	HLINE
	HSHIFT
	IF COPY … END IF
	IF DRIVER … END IF
	IF EXPRESSION … END IF
	IMAGE
	IMAGES
	ITALIC
	JAVASCRIPT
	KEYWORDS
	LANDSCAPE, RLANDSCAPE
	LCOPIES
	LDARKNESS
	LIGHT
	LINE
	LOAD
	LOCKCOLS
	LPI
	LSPEED
	MACRO
	MACROS
	MARGIN
	MERGE
	MICR
	MOVE, CMOVE
	NOTEXT, NOOVERLAY
	OUTLINE
	OUTPUT
	PAGE
	PAPER
	PORTRAIT, RPORTRAIT
	PRECOPY, PREDEVICE, PREJOB, PREPAGE
	POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE
	PROTECT
	ROWS
	SHADE, CSHADE
	SHIFT
	SUBJECT
	SYMSET
	TEXT
	TITLE
	TRANSPARENCY
	TRAY
	UNDERLINE
	UNITS
	VLINE
	VSHIFT
	ZCOPIES, ZDARKNESS, ZSPEED

	WORKING WITH MACROS
	REGULAR EXPRESSIONS
	SAMPLE RULE FILES
	SIMPLE1 - invoice rule set (simple.rul)
	SIMPLE2 – invoice rule set (simple.rul)
	SIMPLE3 – invoice rule set (simple.rul)
	SIMPLE4 – invoice rule set (simple.rul)
	INVOICE - invoice for pre-printed form (advanced.rul)
	STATEMENT - plain paper form, two page formats in same job (advanced.rul)
	aging report - enhanced Aging report (advanced.rul)
	LABELS – text labels to laser labels (advanced.rul)
	132x4 – multi-up, scaled reporting (advanced.rul)
	ZEBRA LABEL – Zebra(label printer example (advanced.rul)
	PDF Outline Sample (advanced.rul)
	Additional Sample Rule Files

	PROGRAMMING CODE BLOCKS
	Basic Syntax
	Object Oriented Programming
	Object Instantiation
	Object Access
	Object Destruction

	Built In Objects
	addrbook
	binfile
	collection
	date
	doclist
	http
	inifile
	json
	keyfile
	libraries
	library
	marked
	rac
	search
	system
	textfile
	webapi
	xmlreader

	Internal Variables
	Internal Functions
	Runtime verbs and functions
	Error Codes

	EMAIL INTEGRATION
	HTML OUTPUT
	Creating HTML
	HTML Configuration
	HTML Output Templates
	HTML Rule Sets
	BORDER
	COLDEF
	COLWIDTH
	FRAME
	HDRON, HDROFF, HDRTD
	LOAD
	MULTIPAGE
	NULLROW
	OUTPUT
	OTHEROPT
	PAGESEP
	PREJOB, PREPAGE, POSTJOB, POSTPAGE
	ROWDEF
	TITLE
	TOC
	WIDTH
	Sample HTML Rule Set
	Aging Report Sample

	8.0 ENHANCEMENTS
	Deliver Command
	Cover Pages
	Printing Enhancements
	PDF Enhancements
	Object Oriented Programming Features
	Code Block Programming Enhancements
	Archiving Enhancements
	Zebra Enhancements
	Windows Support Server Enhancements
	Miscellaneous Enhancements
	Image Manager
	Application Formatted Output
	New Learning Resources
	Caveats

	INDEX

