
UnForm Version 6

1

UnForm® User Guide

Version 6.0
UnForm is published under license by:

Synergetic Data Systems, Inc.
2195 Talon Drive

Latrobe, CA 95682
USA

Phone: (530)-672-9970
Fax: (530)-672-9975

Email: sdsi@synergetic-data.com
Web page: http://synergetic-data.com

UnForm is Copyright ©1994-2004 by Allen D. Miglore. All rights reserved.
UnForm is a registered trademark of Synergetic Data Systems, Inc.

Other product names used herein may be trademarks or registered trademarks of their respective owners.

UnForm Version 6

2

UnForm® Page Enhancement Software
License Agreement

NOTICE: OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THE FOLLOWING TERMS AND CONDITIONS. PLEASE READ THEM. IF
YOU DO NOT AGREE WITH THEM, RETURN THE PACKAGE UNOPENED, AND RETURN OR DESTROY ANY COPIES OF THE PROGRAM IN YOUR
POSSESSION. THE DEALER FROM WHOM YOU PURCHASED THE SOFTWARE WILL REFUND YOUR PURCHASE PRICE.

"Program", as used herein, refers to both this documentation and the software programs described by this documentation.
"Developer", as used herein, refers to Allen D. Miglore. "Publisher" as used herein refers to Synergetic Data Systems, Inc.

LICENSE
You may use the Program on a single machine, and you may copy the Program into any machine-readable format for backup purposes only. If you transfer the Program to another
machine, you agree to destroy the Program, together with all copies, in whole or in part, on the original machine.

You may not copy, modify, or transfer the Program, in whole or in part, except as expressly provided herein. You may not sublicense, assign, or otherwise transfer the Program to
any third party except by the express written consent of the Developer or Publisher.

TERM
The license is effective until terminated. You may terminate at any time by destroying the Program together with all copies of the Program in your possession. It will also termi-
nate automatically upon failure to comply with any of the terms of this agreement. You agree upon such termination to destroy the Program together with all copies in your
possession in any form.

CONFIDENTIALITY OF THE PROGRAM
You understand that the Program is proprietary to the Developer, and agree to maintain the confidentiality of the Program. You agree that neither you, nor any person or entity
acting on your behalf, will copy or otherwise transfer the Program, in whole or in part, in any form (including printed source code), to any third party. You agree to retain the
Developer's copyright notices, in all forms, throughout the Program. You agree not to de-encrypt or de-compile the Program.

LIMITATION OF LIABILITY
The Program is provided "AS IS" without warranty of any kind, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the Program is with you.

In no event will the Developer or Publisher be liable to you for any damages, including any lost profits or other incidental or consequential damages arising out of the use or
inability to use the Program, even if advised of the possibility of such damages.

SUPPORT
Support for the Program should be obtained from the Dealer from whom it was purchased. Support pricing and terms are established by the Dealer, not the Developer or
Publisher.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS.
YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND THE DEVELOPER
AND PUBLISHER AND IT SUPERSEDES ANY PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN YOU AND
THE DEVELOPER RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

UnForm Version 6

3

TABLE OF CONTENTS
TABLE OF CONTENTS ..3

INTRODUCTION ...6

CLIENT-SERVER ARCHITECTURE...7

SERVER INSTALLATION ...8

CLIENT INSTALLATION ..11

CONFIGURING THE SERVER ...13

CONFIGURING EXTERNAL PROGRAMS ..15

TCP/IP MONITOR ...18

INTEGRATING UNFORM WITH BBX..21

INTEGRATING UNFORM WITH PROVIDEX...23

INTEGRATING UNFORM WITH NON-BUSINESS BASIC APPLICATIONS ..25

LICENSING...27

UNFORM COMMAND LINE OPTIONS ..31

VERSION 6 FEATURES..42

FLOW OF PROCESSING..45

CONCEPTS, PRIMER, AND TIPS...48

RULE FILES..53
CONTENT-BASED RULE SETS..54
ACROSS...55
ATTACH ..56
AUTHOR..58
BARCODE (PCL,PDF) ..59
BARCODE (ZEBRA)...62
BIN ...65
BOJ, BOP, EOJ, EOP ...66
BOLD, ITALIC, LIGHT, UNDERLINE..67
CBOLD, CITALIC, CLIGHT, CUNDERLINE ...67
BOX, CBOX...68
BOXR, CBOXR..71
COLS ..74
COMPRESS..75
CONST ...76
COPIES, PCOPIES...77
CPI ..78

UnForm Version 6

4

CROSSHAIR..79
DETECT ...80
DOWN..82
DPI..83
DSN_SAMPLE...84
DUMP...85
DUPLEX...86
EMAIL..87
ERASE, CERASE ..89
FIXEDFONT ..90
FONT, CFONT...91
GS ...94
HLINE ..95
HSHIFT ..96
IF COPY … END IF ..97
IF DRIVER … END IF ..98
IMAGE ...99
ITALIC ...103
KEYWORDS..104
LANDSCAPE, RLANDSCAPE...105
LIGHT ..106
LPI ..107
MACRO..108
MACROS..109
MARGIN ..110
MERGE ..111
MICR ..112
MOVE, CMOVE ..113
NOTEXT ..115
OUTLINE ...116
OUTPUT...117
PAGE..118
PAPER..119
PORTRAIT, RPORTRAIT...120
PRECOPY, PREDEVICE, PREJOB, PREPAGE ..121
POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE...121
PROTECT...124
ROWS...125
SHADE, CSHADE ...126
SHIFT ...128
SUBJECT..129
SYMSET...130
TEXT ..131
TITLE ...136
TRAY ...137
UNDERLINE..138
UNITS...139
VLINE ..140
VSHIFT ..141

WORKING WITH MACROS..142

REGULAR EXPRESSIONS ..144

SAMPLE RULE FILES..145

UnForm Version 6

5

SIMPLE1 - INVOICE RULE SET (SIMPLE.RUL) ..146
SIMPLE2 – INVOICE RULE SET (SIMPLE.RUL)..148
SIMPLE3 – INVOICE RULE SET (SIMPLE.RUL)..151
SIMPLE4 – INVOICE RULE SET (SIMPLE.RUL)..154
INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL)..158
STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB (ADVANCED.RUL)165
AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL)...171
LABELS – TEXT LABELS TO LASER LABELS (ADVANCED.RUL) ..177
132X4 – MULTI-UP, SCALED REPORTING (ADVANCED.RUL)...179
ZEBRA LABEL – ZEBRA® LABEL PRINTER EXAMPLE (ADVANCED.RUL) ...180
PDF OUTLINE SAMPLE (ADVANCED.RUL) ...182

PROGRAMMING CODE BLOCKS...184
BASIC SYNTAX ...185
INTERNAL VARIABLES ...190
INTERNAL FUNCTIONS ...194
VERBS AND FUNCTIONS...198
ERROR CODES ...204

EMAIL INTEGRATION..206

HTML OUTPUT ...213
CREATING HTML..214
HTML CONFIGURATION ...216
HTML OUTPUT TEMPLATES ..218
HTML RULE SETS ...221
BORDER ..222
COLDEF...223
COLWIDTH ...227
FRAME...228
HDRON, HDROFF, HDRTD...229
LOAD ...230
MULTIPAGE ...231
NULLROW ..232
OUTPUT...233
OTHEROPT..234
PAGESEP ...235
PREJOB, PREPAGE, POSTJOB, POSTPAGE ...236
ROWDEF ...238
TITLE ...241
TOC ..242
WIDTH ...243
SAMPLE HTML RULE SET...244
AGING REPORT SAMPLE...244

INDEX ..248

UnForm Version 6

6

INTRODUCTION

UnForm is a software product designed to work as a filter between an application and an output device
like a LaserJet printer or a program like a fax product. Most applications can be simply configured to
print through UnForm, which in turn processes the output from the application, determines if custom
processing is necessary, and then applies any enhancements before it is output.

For example, if a UNIX program sends output to the spooler like this:

 cat file-name | lp -dlaser -s 2>/dev/null

then the output can be changed to use UnForm (note the use of the –oraw option, which can vary by
operating system):

 cat file-name | uf60c -f acct.rul | lp -dlaser –oraw –s 2>/dev/null

or for better performance, UnForm can print directly from the server:

 cat file-name | uf60c –f acct.rul –o ">lp –dlaser -oraw"

UnForm can also work in Windows environments, as long as the application can produce a file and then
execute UnForm to process the file and produce output.

UnForm is unique in its ability to analyze report output to determine what, if any, customization to
apply. When a report is detected that requires enhancements, UnForm can add line drawing, shading,
attributes, font control, and text to the form. UnForm can also handle the processing of multiple copies,
multiple output devices, attachments, overlays, and graphic images, and includes support for the
complete Business Basic programming environment to add true programmed intelligence to any form.

The enhanced output can be used to simulate pre-printed forms, or to change the look of plain-paper
forms, for which headings and dashed lines are printed by the application, from crude to professional.
UnForm can also be used to enhance reports, such as financial statements or aging reports, raising them
from mundane to board room quality.

UnForm can produce enhancements on any printer or device that offers the HP PCL5 printer language.
This includes all HP LaserJet and compatible printers beginning with the HP LaserJet III, many UNIX
faxing software packages, and other products.

UnForm can also produce virtually identical output in Adobe's Portable Document Format (PDF), and
similar output in Zebra's ZPL II language, supported on many Zebra thermal label printers. With proper
configuration, UnForm can automatically convert its PDF output to any format supported by
Ghostscript, including postscript, tif, jpeg, png, and more. Lastly, UnForm can parse column and row
oriented reports and produce formatted HTML output.

UnForm Version 6

7

CLIENT-SERVER ARCHITECTURE

UnForm Version 6 introduces a new client-server architecture, where the UnForm processing of
documents can occur on a different machine from the application. The resulting enhanced document
can be printed, emailed, sent to a fax gateway, or stored at the server, or can be returned to the client
machine for printing or storage from its perspective. One important benefit of using a client-server
model is that the application process that is sending jobs to UnForm via the client software need not wait
for the job to finish if the server will be handling the output. This provides better performance to the
application user, particularly for large or complex jobs that take time for UnForm to process.

The UnForm server can run on either UNIX or Windows systems. The server provides the UnForm
processing logic and a listener, which handles job requests from clients located on the network.

The UnForm clients can be installed anywhere on the network, on Windows or UNIX systems. On
Windows, the client is a native Windows executable. On UNIX, the client is a Perl program, so UNIX
systems require Perl level 5 or above. Clients perform the application interface work, taking input from
the application, submitting it to the server, and in many cases, returning the result back to the client for
processing.

There is nothing to prevent the same machine from acting as both client and server, and in fact, the
server installation automatically installs a client on that machine. Submitting a job to 'localhost' when
the client and server run on the same machine can improve performance, as job data need not be
transferred over the network.

For complete information about how to operate the client and server programs, read the Command Line
Options chapter. In general, on Windows the server is operated from the Status Monitor option or as a
Windows service, and on UNIX the server is operated like this:

 uf60d start
 uf60d stop

The client supports an extensive set of options. Some simple examples:

 cat sample1.txt | uf60c –f simple.rul | lp –dhp –oraw
 uf60c –i sample1.txt –f simple.rul –o ">lp –dhp –oraw"
 uf60c –i sample1.txt –f simple.rul –p pdf –o client:sample1.pdf

In the first example, uf60c submits the job and returns the result to its spooler. In the second example,
uf60c submits the job and the server prints the result to its spooler. In the third example, uf60c submits
the job requesting PDF output, and returns the result to its file sample1.pdf.

UnForm Version 6

8

SERVER INSTALLATION

UNIX Server CD installation instructions:

1. Login as root.

2. Mount the CD as a file system that supports lowercase file names. If you are unsure how to do

this, check your man pages: man mount. The following table illustrates sample mount
commands for various operating systems, assuming standard CD device names and that the
mount directory /mnt is available. You may need to adjust these commands according to your
configuration.

SCO UNIX OS5 mount –o lower /dev/cd0 /mnt
SCO UNIX mount –r –f HS,lower /dev/cd0 /mnt
Unixware mount –F cdfs –r /dev/cdrom/cdrom1 /mnt
AIX mount –vcdrfs –r /dev/cd0 /mnt
Sun Solaris mount –rt hsfs /dev/sr0 /mnt
HP/UX mount –r –F cdfs –o cdcase /dev/dsk/c1d0s2 /mnt

3. Change to the UnForm60 UNIX directory in the mount directory: cd /mnt/unform60/UNIX

4. Run the install script: ./install.sh, or if you do not have execute permission to the file,

sh install.sh. You must agree to the license agreement, then you will be presented a list of
operating system versions. Choose the correct version for your system.

5. UnForm will then be installed to the selected directory, and the set up script ./ufsetup.sh will be

automatically executed in the UnForm directory.

 The ufsetup.sh script will create two scripts, called /usr/bin/uf60c and /usr/bin/uf60d. The uf60c

program is the client, while uf60d manages the server.

6. Activate demo mode, or activate permanently, using ./license.sh.

7. Start the server: uf60d start

8. Use the uf60c –v command to ensure UnForm is installed and set up correctly. The output from

this command will display information about the installation. Note that uf60c requires Perl
version 5 or higher.

See the Licensing section for additional activation information.

Note that you will probably want to place the uf60d start command in your system boot scripts, often
found in the /etc/init.d directory or a similar location, depending on your version of UNIX.

UnForm Version 6

9

UNIX Server download installation instructions:

1. Login as root.

2. Create a directory to hold the UnForm files, and change to that directory.

 Example: umask 0
 mkdir /usr/unform6
 cd /usr/unform6

3. Uncompress and extract UnForm from the download file.

 uncompress uf60_xxx_tar.Z
 tar xvf uf60_xxx_tar

4. Execute the UnForm set up script.

 ./ufsetup.sh

 The ufsetup.sh script will create two scripts, called /usr/bin/uf60c and /usr/bin/uf60d. The uf60c

program is the client, while uf60d manages the server.

5. Activate demo mode, or activate permanently, using ./license.sh.

6. Start the server: uf60d start

7. Use the uf60c –v command to ensure UnForm is installed and set up correctly. The output from

this command will display information about the installation. Note that uf60c requires Perl
version 5 or higher.

See the Licensing section for activation information.

Note that you will probably want to place the uf60d start command in your system boot scripts, often
found in the /etc/init.d directory or a similar location, depending on your version of UNIX.

UnForm Version 6

10

Windows Server installation instructions:

1. From the CD, use Explorer to locate the D:\unform60\win directory, and double-click the

setup.exe program (use Control Panel Add/Remove Programs if the system supports Terminal
Services). If you downloaded UnForm from the Internet, simply execute the downloaded
executable (use Control Panel Add/Remove programs if the system supports Terminal Services).
Follow the on-screen prompts from the installer to install UnForm to your system. This will
install both the uf60d.exe server program and the uf60c.exe client program. The client program
and its associated support files will be installed in the Windows directory, enabling a command
line launch without a full path, as the Windows directory is always included in the PATH
environment variable.

2. Click the Server Configuration option from the Start menu. This will conditionally rename

certain files and prompt for several configuration values. The values entered are stored in
several local .ini files in the UnForm server directory. You can also use the Configure button
from within the UnForm Server Manager.

3. Click the Server Manager option from the Windows Start, Programs, UnForm 6.0 Server menu.

4. Activate the demo mode, then if desired, activate permanently, by pressing the Licensing button

and using the form that displays. On line help is available if needed.

5. Click the Start button from the Server Manager to start the server manually.

6. Use the Server Version option from the Start menu to ensure the server is running properly and

the client can operate from the server computer. The output from this command will display the
version and licensing information.

7. If desired, and you are running the server on Windows NT, 2000, XP or any of the Windows

variants that support NT Services, you can install the server as a service by running the Install
as a Service option. When the UnForm server is run as a service, it is automatically started
when Windows boots up. You must start and stop the service using the Windows Services
applet, found in the Control Panel Administrative Tools option. The UnForm Server Manager
options for starting and stopping the server are disabled.

See the Licensing section for activation information.

UnForm Version 6

11

CLIENT INSTALLATION

The uf60c client software can be used to submit jobs to UnForm from anywhere on your network after
the server is installed and operating. The client software is automatically installed on the same machine
as the server, so jobs can be submitted locally. However, you can install the client software on any
network computer. Any client can talk to any server, so you can mix and match different operating
systems as you need. For example, you could install the Windows server, and have both Windows and
UNIX clients submit jobs to it.

Clients must be installed on any machine that will be submitting jobs to UnForm. For example, in a
Windows network, with the UnForm server installed on a single network server, each workstation that
will be submitting jobs must have a client installed and configured to communicate with that server.

The UNIX client is installed from the file uf60c_tar.Z, while the Windows client installer is called
uf60c_setup.exe.

The UNIX install steps are as follows:

• Ensure the system has Perl level 5 or higher: perl –v
If not, Perl can be obtained from http://perl.com or http://cpan.org.

• Create a directory for the client, such as mkdir /usr/lib/sdsi/uf60client
• Set permissions on that directory: chmod 777 /usr/lib/sdsi/uf60client
• Copy the uf60c_tar.Z file to that directory and cd to that directory
• Uncompress the file: uncompress uf60c_tar.Z. If you have gzip, then the gunzip utility can

also uncompress the file.
• Extract the files: tar xvf uf60c_tar
• Run the setup script: ./uf60csetup.sh
• Edit the uf60c.ini file to set up the client configuration:

The uf60c.ini file looks like this:

[defaults]
server=localhost
port=2714
#logfile=uf60c.log
#mailto=root
retry=30
wait=2

Change the server= line to point to the server host name or IP address, and the port line to the proper
listening port configured in the server's uf60d.ini file. The port default is 2714, and will not normally be
changed. Note that the server and port can also be specified on the uf60c command line. The values
entered here serve as defaults.

UnForm Version 6

12

If you want uf60c to log errors, uncomment the logfile= line, setting the value to a log file name.

If you want uf60c to email (using the UNIX mail command) error messages to an administrator,
uncomment the mailto= line, setting the value to an email address available from the client computer.
Note that the Windows client does not support emailing of error messages.

The retry and wait lines set the number of times, and delay between tries, that the client will attempt to
connect to the server before giving up. If any retries are needed, and the log file is specified, then a
message will be logged.

On Windows, the installation steps are:

• Run the uf60c_setup.exe installer program.
• Run the Configure UnForm Client option from the Start menu. Enter the appropriate values

for the server and port, and optionally the log file.

UnForm Version 6

13

CONFIGURING THE SERVER

The server is configured via the uf60d.ini file, which can be edited with any text editor. On Windows,
many of these options can be configured with the Configure button in the Server Manager. In addition
to these items, you can also configure access to Ghostscript, Image Magick, or Image Alchemy
elsewhere in the uf60d.ini file. See the Configuring External Programs chapter for more details.

In the defaults and security sections, here are the values available:

[defaults] section
port=n Sets the primary listing TCP/IP port to n. The default is 2714. Note that if

you use NAT translation or if you have a firewall between the clients and
server, then this port (along with the procports defined below) must be
configured to allow clients access.

logfile=path Sets the name of the server's log file to path. By default, it is stored in the
UnForm directory. Standard log entries include connection information.
Detailed logging includes verbose data transactions.

logdetail=n Set n to 0 for standard logging, 1 for detailed logging. You should not leave
detailed logging enabled for normal use, as the log file can grow very large.

timeout=n Set n to the number of seconds that a connection can remain idle before
closing. The default value is 3600, or one hour. Setting this value to 0 will
avoid timeout-based disconnects. This value primarily affects designer
connections, which can remain active for long periods.

age=n This value sets the maximum age, in days, of job log entries. When jobs are
submitted, basic job information is kept in a log file. If errors were recorded,
the error file also remains in the temp directory under the UnForm server.
After this many days, the files and log entries are automatically removed.

rulefile=path Sets the default rule file to path, used for jobs that do not specify a rule file on
the command line.

bbpath=path If the bbxread() function is used, this value points to the BBx executable that is
invoked when required, such as /usr/lib/basis/pro5/pro5.

library=path1;path2;
…

Sets directory paths that are automatically searched for rule files, images, and
attachments. By default, UnForm searches the UnForm directory and also
supports full paths.

[security] section
allow=list This is a semi-colon delimited list of valid IP addresses or wildcards that are

allowed to connect to the server. Note that the loopback I address 127.0.0.1 is
always allowed to connect. The default list is 192.*.*.*;10.*.*.*, which allows
the two standard non-routable LAN spaces to work.

procports=list This is a comma-delimited list of ports or port ranges that are used for
secondary connections. When a client connects to the server on the primary
port, a second task is launched to handle that connection. That task uses a
procport value to communicate with the client. You should define at least as
many procports as you have job and designer licenses.

UnForm Version 6

14

Also note that if you use NAT translation or if there is a firewall between the
clients and the server, these ports need to be configured in addition to the
primary listening port.

hideconn=n This value, which defaults to 1, is supported on Windows installations. If n is
0, and the server is running as an application rather than a service, connections
show up on the task bar. Otherwise, they are hidden.

[tcpports] section
port=options Each line defines a port on which the server listens for raw print job deliveries,

such as from Windows TCP/IP ports. Each job submission is then processed
using a uf60c command line configured with a pre-defined –ix option plus any
other options defined. For more information, see the TCP/IP Monitor chapter.

Note also many parameters are stored in the ufparam.txt file. You can create a custom version of this
file, called ufparam.txc, which will be used instead of ufparam.txt. Any new parameters that are added
during a release cycle are documented in the readme.txt file, and can be added manually to keep
ufparam.txc up to date if necessary.

UnForm Version 6

15

CONFIGURING EXTERNAL PROGRAMS

The UnForm server supports the use of three external programs for handling two tasks: image scaling
and conversion, and document imaging conversion.

For image scaling, you can configure either Image Alchemy, a commercial product available from
Handmade Software (http://handmadesw.com), or Image Magick, an open source product available from
http://imagemagick.com. Once configured, image scaling is automatically used when an image
command contains size information and the image file is not a native laser or PDF file.

For document imaging conversion, you can configure Ghostscript, an open source or commercial
product available from http://ghostscript.com. Document imaging is managed by the –p command line
argument, and it enables a series of additional drivers, such as tif, postscript, and png.

Once the appropriate programs are installed, then edit the uf60d.ini file to configure them.

Use the [images] section to configure Image Alchemy or Image Magick, first by defining a
converter=path entry, where path is the execution path of the alchemy or convert programs. If the path
is in the operating system's PATH variable, then just a simple name will be required. Since the server,
uf60d, will be executing the program, you should make sure that the user under which it runs includes
the proper environment variable definitions. For example, Image Magick uses a variable called
MAGICK_HOME.

In addition to the executable, define several command line argument lines for pcl, pclc, and pdf, and
optionally others that can be called out by the option item of the image command. Generally, you can
simply uncomment the proper lines for Alchemy or Magick. The pcl command is invoked for laser
output, and the pdf command is invoked for PDF output. If the image command's color option is used,
or the –ci command line option is used, then the pclc command is invoked. Below is a sample uf60d.ini
[images] section, with Image Magick enabled:

[images]
External image conversion/scaling program setup

1) Define program path: converter=pathname
Use a full path if necessary, as this becomes a system call in UnForm.
On Windows, this will very likely be necessary.

2) Define arguments to be passed to converter here for pcl, pclc, and pdf.
Use %i for input image, %o for output, %d for dpi, %x for width, %y for height
pdf should not contain %x/%y, as scaling is performed by Acrobat.

Options passed from image command line can be appended to the name with a dash.
i.e. image 10,10,10,10,"image.bmp",option 123 would use pcl-123 or PDF-123.
Options can be up to 10 characters long, and are case sensitive.

Examples for Image Alchemy:
#converter=alchemy
#pcl="%i" "%o" -o -Q -D %d %d -+ -Xc%x -Yc%y -P 103 >/dev/null 2>&1
#pclc="%i" "%o" -o -Q -D %d %d -+ -Xc%x -Yc%y --r 9 >/dev/null 2>&1

UnForm Version 6

16

#PDF="%i" "%o" -o -Q -D %d %d --d -8 >/dev/null 2>&1

Examples for ImageMagick:
converter=convert
pclc="%i" -density %dx%d -colors 256 -dither -resize %xx%y "%o" >/dev/null 2>&1
pcl="%i" -density %dx%d -monochrome -resize %xx%y "%o" >/dev/null 2>&1
PDF="%i" -density 300x300 -colors 256 "%o" >/dev/null 2>&1
#PDF-72="%i" -density 72x72 -colors 256 "%o" >/dev/null 2>&1

PDF-72, above, is a 72 dpi image conversion, and would be specified
with 'option 72' in an image command. The resulting file will be much
smaller than the 300 dpi image shown in PDF=, though quality may suffer
too much for use, depending on the image itself.

Use the [drivers] section to define the Ghostscript-hosted imaging drivers. When this feature is enabled,
the –p driver option supports a series of new names, all derived from an intermediate PDF document
that is converted at the end of the job to the specified format. First, enable the gs=path line to instruct
UnForm how to run Ghostscript. On UNIX, this is often just the word "gs", while on Windows it is
often a full path to the gswin32c.exe program.

Other entries are simply name=device,multipage,dpi, where name is the UnForm driver name, device is
the –sDEVICE name used by Ghostscript, multipage is a 0 or 1, where 1 means the output is multi-
page=multi-file and 0 means all pages go to a single file, and dpi is the dots-per-inch resolution.

Note that the use of multi- or single-page output is often dependent on the image format. For example,
bmp files do not support multiple pages per file, while tif files do.

Note that the graphical designer may rely on the png entry shown, depending on how it is configured.

[drivers]
enable ghostscript drivers by uncommenting the gs= line
gs=gs
windows would typically need a full path
gs=c:\gs\gs8.xx\bin\gswin32c.exe

driver lines are structured as name=gsdevice,multipage,density
gsdevice is the ghostscript sDEVICE value
multipage is boolean 0 or 1, 1 means -o file is file<page>.ext
Many formats require a 1, as the image format supports only a
single image per file.
density is output density, as hhh[xvvv] (horizontalxvertical) dpi

bmp=bmp256,1,300
bmpmono=bmpmono,1,300

tif=tiffcrle,0,300
tifmono=tiffg3,0,300

png=png256,1,300
pngmono=pngmono,1,300

jpeg=jpeg,1,300

UnForm Version 6

17

ps=pswrite,0,300
eps=epswrite,1,300
deskjet=deskjet,0,300

UnForm Version 6

18

TCP/IP MONITOR

Beginning with version 6.0.07, UnForm includes a TCP/IP monitor program that can watch for raw print
jobs arriving from network computers, similar to how an HP JetDirect card would. In effect, the
UnForm server can serve one or more virtual JetDirect ports, each with an associated UnForm client
command line.

The monitor is automatically started if there are one or more port configuration lines defined in the
[tcpports] section of uf60d.ini. For example:

This line would print to the server's spooler –dlaser device, processing jobs through the acme.rul file:

 9100=-o ">lp –dlaser –oraw" –f acme.rul

This line would print to a Windows server shared UNC printer, processing jobs through the acme.rul
file:

 9101=-o \\winsrv\laser1 -f acme.rul

This line would generate pdf files to the path specified, using the date and job number to generate
unique names:

 9102=-o "/usr/pdfs/%d.%j.pdf" –p pdf

The following subsititions are made in the command line definition:

Characters Substitution
%d The date in YYYYMMDD format.
%t The time in HHMMSS format, using a 24 hour clock.
%p The process ID (this is not necessarily unique).
%j The sequential job number, which is an ever-increasing unique number.

When jobs are submitted to the UnForm server in this manner, it is important to realize that the
submission is one-way, and once printed the job resides entirely on the server. It is therefore not
possible to print a job and have data returned to the client (i.e. –o client:device), or to have PDF
previews generated on the submitting workstation (-p winpvw). Once the job is submitted to the TCP/IP
monitor, it becomes local to the UnForm server, as if uf60c is physically run on the server (which, in
fact, is what happens).

When jobs are submitted, they are dropped into the rpq/ subdirectory under the UnForm server
installation. All submission files are given a unique name with a ".in" extension, and a companion file
with a ".cmd" extension is also created that contains the command line options. As jobs are received,
and also at least once every 5 seconds, a sweep is made of newly submitted jobs, each submitted to the

UnForm Version 6

19

server via the server's local "uf60c" program. As a byproduct, you can drop jobs into this directory
independently of the server, being careful to create the ".cmd" file first, then the associated, complete
".in" file, using your own unique naming algorithm. Note that the sweep assumes that any *.in file is a
complete file and will have an associated .cmd file, so it is incorrect to open a .in file and begin writing
to it, as the sweep may attempt to process an incomplete file. Instead, create the file with a different
extension and then rename it when it is ready for processing.

To configure Windows printers to submit jobs to this monitor, you can use the built-in Windows support
for TCP/IP printers. When configuring a printer, you can choose to Add a Port, selecting Standard
TCP/IP Port. The Printer name or IP address of the "printer" will be the UnForm server, the Protocol is
"Raw", and the Port Number is the number of the configured port line defined in uf60d.ini. Be sure to
use the Generic/Text Only print driver when defining printers to use this port, as UnForm requires plain
text input streams.

The picture below shows a Windows XP example of the configuration screen:

Note that other operating systems also support methods of supporting raw TCP/IP printers. For
example, Linux contains the "jetdirectprint" script that is used by LPRng to send jobs raw TCP/IP
devices.

UnForm Version 6

20

UnForm Version 6

21

INTEGRATING UNFORM WITH BBX

BBx handles printers via alias lines in a configuration file, typically called config.bbx. Printer alias
lines identify a name, an output designation, a description, and several mode options. To incorporate
UnForm into the configuration file on a UNIX system, you need only include an UnForm command line
as part of the output designation.

BBx output designations can specify files, physical devices, or pipes, and UnForm can be installed to
work with any type of definition. Note that any escape sequences configured in modes like PTON, SP,
and CP are sent to UnForm and therefore need to be PCL sequences. UnForm understands how to strip
a job of PCL codes, but not other printer codes. In some cases, when UnForm sends a job straight
through without enhancements, these PCL sequences will also be passed on.

UNIX Aliases

A printer alias line on UNIX generally pipes to a program, such as the uf60c client program. This client
program in turn can pipe its output to the spooler, or to a file, or it can instruct the server to handle the
output from its end, by specifying the –o option.

Here is a sample alias line that pipes through UnForm to the local spooler:

alias P1 "|uf60c -f my.rul | lp -dxyz –oraw -s 2>/dev/null" "Printer Name" … various modes …

Here is a sample alias line that instructs the server to print the job to its spooler. The advantage of this
type of configuration is that the client doesn't have to wait for the job to finish. It submits the job to the
server and exits quickly.

alias P1 "|uf60c -f my.rul -o '>lp -dxyz –oraw'" "Printer Name" … various modes …

Note the use of the –oraw option in the above examples. It is important for UnForm's output to be
handled as binary data by the spooler. The –oraw option is used by some UNIX spoolers, such as the
SCO LaserJet model script, and the CUPS printing system. Other spoolers require different options,
such as "-o-dp" for AIX, –T pcl for Unixware, -b for some older Linux installations. Check your lp
configuration tools or man pages for the appropriate settings for options such as "binary", "raw", or
"pass-thru" printing.

UnForm can also print directly to a device, as in this example:

alias P1 "|uf60c -f my.rul -o /dev/lp0" "Printer Name" … various modes …

Note that this line will behave differently with the UnForm pipe than without. When opening and
sending output directly to a device, printing will occur immediately, without closing the device.
However, with the pipe to UnForm, the output will not appear until the device is closed. The
application may need to be modified to account for this if UnForm is to be used in this circumstance.

UnForm Version 6

22

Windows Alias Lines

Under Windows, where pipes are not available, change the printer definition to create a file, and then
use a post-processing mode, called EXECOFF, to execute UnForm with options to read the file and
output to a device.

A Windows alias line will look similar to this:

alias P1 C:/TEMP/P1.TXT "UnForm Printer" CR, LOCK=C:/TEMP/P1.LCK, O_CREATE,
SPCOLS=132, SP=1B451B287331362E3636481B266B3247, EXECOFF="uf60c.exe -ix
C:/TEMP/P1.TXT -o device -f my.rul"

In the above example, a file called P1.TXT is created, using the mode O_CREATE to create the file if it
doesn't exist, and using a lock file to prevent two users from writing to the same file at the same time.
Note that if a file is specified with a local workstation path, such as C:\\P1.TXT, then a lock file is
probably unnecessary. Just remember to specify the same path in the –ix option. Once the printer is
closed by the application, the code specified by the EXECOFF mode is executed, which runs UnForm as
an executable, using the P1.TXT file as input and the printer as output.

Note that pathnames containing backslashes will need double backslashes, due to the way BBx parses
the command line. For example, to refer to "uf60c.exe -i c:\data\p1.txt ...", you would need to specify
"uf60c.exe -i c:\\data\\p1.txt ...". You can also use forward slashes in place of backslashes, and you
don't need to double them.

The device in the –o argument can be one of two things:

• An LPTn port, which can be mapped to a UNC device name with the Windows "net use"
command.

• A UNC device name, defined by sharing a printer, so the name becomes //system/printer, where
system is the system with the shared printer, and printer is the "share name" of that printer.

Another variety of alias line can generate a temporary PDF file and display it on the client PC, assuming
you have an Adobe Acrobat Reader installed. This alias doesn't require a –o argument, but will honor it
as the client-side file name for the PDF document generated. The driver selected by the –p option must
be either win or winpvw, like this:

alias PUNF C:/TEMP/PUNF.TXT "UnForm Printer"
CR,LOCK=C:/TEMP/PUNF.LCK,O_CREATE,SPCOLS=132, EXECOFF="uf60c.exe -ix
C:/TEMP/PUNF.TXT -p winpvw -f my.rul"

Note that the uf60c client software must be installed locally on any workstation that will execute it
to submit jobs.

UnForm Version 6

23

INTEGRATING UNFORM WITH PROVIDEX

Simple UNIX Integration
On UNIX systems, you can integrate UnForm within the link file as the output device, and use a
standard LaserJet or plain text print driver. The device used in the link file would be simply a re-direct
to the uf60c program (if using ProvideX 6.0 features, a pipe (| rather than >) can be used as well), such
as ">uf60c –f acme.rul –o '>lp –dhp –oraw'".

Note that this option was not available in prior versions of UnForm.

Integration using the ProvideX Print Driver uf6ptr
This method works for both UNIX and Windows environments, and provides more program control
over the UnForm options when executing the uf60c client.

UnForm 6 installation includes a ProvideX print driver uf6ptr which should be copied to your ProvideX
lib/_dev directory. This driver provides platform-independent support for UnForm, along with
additional capabilities for managing UnForm command lines from the ProvideX application. In
addition, it supports WindX-based output. Once copied to your ProvideX lib/_dev directory, this driver
is available to use when defining ProvideX link files, which are used as printers in ProvideX.

Version 6 differs considerably from prior releases when configuring ProvideX printers to use
UnForm. In prior releases of UnForm, there was a unique driver for each type of UnForm output, and
the drivers often needed modification. With Version 6, there is a new universal print driver that should
never need modification. All that is necessary is that the uf60c UnForm client be installed on the system
where ProvideX is executed. When ProvideX and the UnForm server are installed on the same
machine, the uf60c client will be available. If not, then simply install the desired UNIX or Windows
client and configure the uf60c.ini file to point to the UnForm server.

To use the uf6ptr print driver:

When a link file is defined, you specify an output device and a driver program. The output device is
generally something system specific, like ">lp –dhp –oraw" on UNIX, or //SERVER/PTR on Windows,
or it can be a special driver name for Windows, such as *windev*, or [WDX]*windev*. In some cases,
it can be /dev/null or NUL, if the driver will be directing output somewhere for the user.

The uf6ptr driver determines a default output device based upon the link file's specified output, and then
re-routes the printer output to a temporary work file.

It then looks for a configuration file for additional uf60c command line parameters. This file is simply a
text file named linkfile.unf. For example, for a link file named P1, uf6ptr will look for a file called
P1.unf for additional parameters. In this text file can be one or more lines with uf60c command line
options.

UnForm Version 6

24

Once the file-based parameters have been loaded, uf6ptr then looks for the OPT value that was used in
the OPEN directive, if any, for additional parameters. Any parameters named in the OPT value will
override those found in the configuration file.

When all parameters have been resolved, a uf60c command line is built for execution at the end of the
job. In cases where the output needs to be returned to a WindX client, the driver handles uf60c
appropriately to create local output and copy that output back to the WindX PC.

Example 1:

LP is a link file pointing to device /dev/null.
LP.unf contains: -p pdf.

invoiceno$="00015"
OPEN(1,opt="-o /archive/"+invoiceno$+".pdf")"LP"

The result will be an uf60c command like this, which executes when the printer is closed:

uf60c –i workfile –p pdf –o /archive/00015.pdf

Example 2:

P1 is a link file pointing to device ">lp –dhp4000 –oraw".
No P1.unf file is defined
OPEN(1,OPT="-f acme.rul")"P1"

This will override the default rule file defined at the server, using acme.rul. Output will go to ">lp –
dhp4000 -oraw" on the machine where the UnForm server is running. Typically this is the same
machine that runs ProvideX. If it is not, add a –server servername option to OPT or linkfile.unf. In such
a case, if the >lp command isn't valid locally, you will need to add a –o option to the configuration and
change the link file to point to /dev/null (or NUL on Windows).

Example 3:
P2 is a link file pointing to device [WDX]*windev*.
Opening P2 will result in laser output being produced and sent to the WindX printer selected.

Example 4:
P3 is a link file pointing to device NUL.
P3.unf contains –p winpvw.
Opening P3 will cause production of a temporary PDF file. This file will automatically be viewed on a
WindX client or in a Windows ProvideX session.

UnForm Version 6

25

INTEGRATING UNFORM WITH NON-BUSINESS
BASIC APPLICATIONS

UnForm is capable of interfacing with any application that can provide it with text input. On UNIX, this
integration is generally performed via pipes, similar to the way it is integrated with BBx. On Windows,
your application must print to a text file, and then launch uf60c.exe when the printing is complete.

If your application prints by opening a pipe to the spooler, just insert UnForm into the pipeline:

Before: |lp –dprinter –s 2>/dev/null

After: |uf60c –f rulefile | lp –dprinter –oraw –s 2>/dev/null

 |uf60c –f rulefile –o '>lp –dprinter –oraw'

The second option, above, submits the job for printing on the server, while the first option will wait for
the server to return the job for local printing on the client.

If your application prints to a device, such as "/dev/lp0", then you can probably modify it like this:

Before: /dev/lp0

After: >uf60c –f rulefile –o /dev/lp0

Note the use of the –oraw option in the above spooler examples. It is important for UnForm's output to
be handled as binary data by the spooler. The –oraw option is used by some UNIX spoolers, such as the
SCO LaserJet model script, and the CUPS printing system. Other spoolers require different options,
such as "-o-dp" for AIX, –T pcl for Unixware, -b for some older Linux installations. Check your lp
configuration tools or man pages for the appropriate settings for options such as "binary", "raw", or
"pass-thru" printing.

In the case of direct device output, you will need to develop a site-specific mechanism for turning off
post-processing on the device, either permanently, or while an UnForm-modified job is printing.

If your application cannot print to a pipe, or runs on Windows, then your application can be modified to
print a text file, then execute UnForm when complete. Your environment may provide a way to do this
automatically, such as the EXECOFF mode in Visual PRO/5 noted earlier. Here is a simple Visual
Basic example of creating a file and launching UnForm:

open "work.txt" for output as #1
print #1,tab(35); "INVOICE"
… more printing …

UnForm Version 6

26

close #1
if shell("uf60c.exe –i work.txt –o //server/hplaser –f rulefile",6)=0 then

end
else

msgbox "UnForm failed to start."
end if

UnForm Version 6

27

LICENSING

UnForm is licensed based on the number of concurrent jobs it can process, with counts available as 1, 3,
5, 10, 15, 20, 25, 30, 40, 50, 75, 100, and unlimited. The UnForm Design Environment checks out a
special "Designer" license, and it is available in different concurrent counts as well.

Licensing is controlled entirely by the server process, uf60d. You can install the uf60c client programs
freely anywhere on your network.

Each UnForm installation has a serial number. There is one special serial number, UF0099999, reserved
for demo mode use on any machine. All permanent licenses are assigned a unique serial number and
must be licensed to a single machine installation. Serial numbers and their associated PIN codes are
assigned by SDSI when UnForm is purchased. In order to obtain permanent or emergency temporary
activation keys, the serial number and PIN code are required.

There are up to three activation keys that must be entered for full operation of UnForm: a system key, a
jobs key, and a designers key. The system key enables UnForm to operate on a specific computer. The
jobs and designers keys determine the number of concurrent job and design tasks that may run. For
demo mode operation, just a temporary system key is required; demo mode operation automatically
enables 3 jobs and 3 designers.

There are three types of system activation keys:

30-Day Demo
This license has a fixed serial number (UF0099999) and can run on any machine for 30 days. While
running under this serial number, UnForm will print "Demonstration Version" phrases on any enhanced
output, and will print a trailer page for each job. This is the first mode activated after an installation, as it
enables the retrieval of a System ID and Machine Class needed for permanent licensing later, as well as
allowing UnForm to operate in demo mode.

Permanent
This license has an assigned serial number, and requires a System ID and Machine Class to activate. A
permanent license does not expire, enabling UnForm to run perpetually on the machine where installed
and licensed. The System ID is derived from a given installation machine and attributes of a file in the
UnForm rt\lib\keys directory (Windows) or the rt\lib directory (UNIX), so it will change if the
installation is moved to a new machine, or even to a new location on the same machine. Once the
System ID changes, the permanent activation key will no longer work, and UnForm must be re-
activated.

If the original permanent installation of UnForm is no longer used, then you can request a reset of the
permanent license to enable a new System ID and Machine Class to be associated with the permanent
activation key. Contact sales@synergetic-data.com to request resets.

Emergency Temporary

UnForm Version 6

28

This license is assigned a serial number, like a permanent license, but it does not require a System ID or
Machine Class to activate. This allows you to re-install UnForm on a different machine than originally
licensed, and operate it for 30 days. Once a temporary license has been issued for a given serial number,
another temporary license cannot be issued for 45 days.

UNIX Licensing
To activate UnForm on UNIX, perform the following steps:

• Login as root.
• cd to the unform directory (i.e. cd /usr/lib/sdsi/uf60).
• Execute ./license.sh.

The license.sh script prompts for the following options:

UNFORM LICENSING OPTIONS

Use the following options if this machine is connected to the Internet:

1 - Permanent Activation (requires serial number and PIN code)
2 - Emergency Temporary Activation (also requires SN and PIN)
3 - 30-Day Demo Mode Activation

Use the following options for manual activation. Activation keys
can be obtained from http://unform.com/uf6lic.cgi.

4 - Display System ID and machine class (needed for option 5)
5 - Enter Permanent Activation
6 - Enter Emergency Temporary Activation
7 - Enter 30-Day Demo Mode Activation

q - quit
Enter selection:

To obtain either a permanent or emergency temporary activation, you will need to know your serial
number and PIN code previously assigned by SDSI. These values are not necessary to obtain a 30-day
demo mode activation.

If your machine has Internet access, you can perform activation easily by choosing options 1 through 3.
Options 1 and 2 will prompt you for your serial number and PIN. Each of the three options will use the
Internet to retrieve the desired activation key.

If the Internet is not available from the install machine, then you can perform activation manually by
using another machine to visit http://unform.com/uf6lic.cgi. Use option 4 to display the System ID and
Machine Class, which will be required to obtain a permanent activation key from this web site. Options
5 and 6 will prompt for a serial number, system key, jobs key, and designers key, in sequence. Option 7
will only prompt for a system key.

UnForm Version 6

29

Windows Licensing

The first step after an installation is to activate demo mode. This initializes the system ID file, enabling
a permanent license to be obtained. If you get an error message after pressing the Show System ID
button, then this installation has never been initialized, and you must activate demo mode first.

To activate demo mode:
If you are connected to the Internet, press the Automatic Demo Activation button. This will obtain a
current demo mode activation key from SDSI's website and activate the run-time engine.

If you are not connected to the Internet, go to a computer that is, and go to http://unform.com/uf6lic.cgi,
then click the link to get a 30-day trial. Note the activation key returned, and enter it exactly the same
way in the Demo Activation Key field, then click the Manual Demo Activation button.

To verify the activation, click the Show System ID button. If the System ID and Class fields get filled
in, then it worked.

To activate permanent mode:
To activate automatically over the Internet, you need to click the Show System ID button to get the
System ID and Machine Class fields. Then fill in your serial number and PIN code, and click the
Automatic Activation button. This will use your information to obtain a permanent activation key for the
system, as well as your job and designer activation keys, and activate everything.

UnForm Version 6

30

To activate UnForm manually, note your System ID and Machine Class, then go to
http://unform.com/uf6lic.cgi. Enter your serial number and PIN code, then click the button to get a
permanent license. When prompted, enter the System ID and Machine Class exactly as noted on this
screen. Note the three activation keys returned, and enter them exactly as provided in the three entry
fields, then click the Manual Activation button.

To activate in emergency temporary mode:
To obtain a temporary activation over the Internet or manually, follow the steps for a permanent license,
but check the Emergency Temp Activation option. The System ID and Machine Class are not used for
temporary activations.

Activation Errors

Permanent activation keys are dependent on the system ID and machine class information generated by
an installation. Therefore, a permanent activation key will only work on the original installation for
which it was generated. If UnForm needs to be moved or re-installed, a new permanent activation key
must be generated. This is only possible if SDSI resets the permanent key for your serial number, so
you must contact SDSI, certify that the original installation is no longer in use, and request a reset.

In the meantime, you can obtain an emergency temporary activation to allow your serial number to be
used on a new installation for 30 days.

If you attempt to get a new permanent activation key and are notified that one has already been
assigned, then contact SDSI to request a reset. If this cannot be done in a timely fashion, get an
emergency temporary key instead, and then contact SDSI at a later time.

Note that temporary keys are issued at most once every 45 days. If you get an error message indicating
the temporary key availability has not expired, then you must contact SDSI to get a reset.

Designer Evaluation Period
In addition to the 30-day UnForm demonstration mode, if you license UnForm for jobs but not
designers, an additional 30-day designer demo period is enabled. This demonstration period begins the
first time a designer connects to a licensed UnForm server.

UnForm Version 6

31

UNFORM COMMAND LINE OPTIONS

The uf60d server program can be started with the following options:

UNIX command lines
uf60d start Starts the server daemon.
uf60d stop Stops the server daemon.
uf60d restart Stops, then starts the server daemon.

Windows command lines
uf60d.exe /install Installs the server as a Windows Service. It will be started automatically on the

next boot, and may be started and stopped manually from the Control Panel,
Administrative Tools, Services applet. This option is available in the Windows
Start menu.

uf60d.exe /uninstall Uninstalls the server as a Windows Service. This option is available in the
Windows Start menu.

uf60d.exe /configure Displays the configuration window for the server. This option is available in the
Windows Start menu.

uf60d.exe /a Displays the server status window. If the server is NOT running as a service,
then it can be started and stopped from this window. This option is available in
the Windows Start menu.

uf60d.exe /start Manually starts the server if it is NOT installed as a service.
uf60d.exe /stop Manually stops the server if it is NOT installed as a service.

The uf60c client program offers many options, which control various aspects of how it communicates
with the server and how the server is told to execute the job. Note that if the command line becomes too
long for the operating system, you can use the –z or –zx options, which cause command line options to
be read from a text file.

Standard Options
Option Description
-300 Causes UnForm to suppress 300 dpi settings within the PCL output file. Some

PCL devices don't support the PCL unit of measure command, and instead
include it as printed output. If this option is used, any images (dump files) or
attachments must also be generated for 300 dpi and suppress any unit of
measure settings.

-act Causes UnForm to prompt for a new activation key. This is used when you
change from a demonstration copy of UnForm to a live copy.

-c copies Causes UnForm to issue multiple copies of the entire report. This differs from
the -pc option. If copies is set to less than 2, this option is ignored. This
option and the "-pc" option are mutually exclusive; also, rule sets can specify
copy options that will override command line options.

UnForm Version 6

32

-ci Forces pcl image conversions to retain color rather than force black and white.
See the image command for more information about automated image
conversion and scaling. This also implicitly sets the –gw option.

-cmp or –compress Either of these options causes UnForm to attempt compression of PDF output
using the RLE compression algorithm. This is most effective if the report data
contains repetitions of characters or spaces, and can result in PDF files that are
as much as 30% smaller.

Some additional processing time is used when this option is selected. You can
turn on compression for individual jobs using the compress command in a rule
set.

-cols n Sets the default columns per page when a job is using default scaling, as when
the –p pdf or –p laser options are used and no rule set is detected or specified.
See also the –rows option.

-e error-file Causes UnForm to output any errors to the file specified. Error files reside on
the client system, not the server.

-emattach "value"
-embcc "value"
-emcc "value"
-emfrom "value"
-emlogin "value"
-emmsgtxt "value"
-emoh "value"
-empswd "value"
-emsubject "value"
-emto "value"

These options supply values for an automatic email command. See the email
command documentation for descriptions of each option. The –emto option is
required, all others are optional, though certainly the –emsubject and
-emmsgtxt are likely required for a given application. For emailing to work,
the job must be a PDF job, and the server's mailcall.ini file must be properly
configured with a server= line defining the SMTP server.

-exec "launch-
program"

When the HTML output option (-p html) is used, UnForm can launch a
program once the first page of output is available for viewing. The program
launched must be resident on the machine where UnForm is operating.
Typically this will be a Web browser, but it can be any executable program.
UnForm will search the "launch-program" for the character "@", and
substitute the file name of the HTML document produced. If no "@" symbol
is present, then the file name is appended to the end of the launch-program
value. If launch-program contains any spaces, it must be quoted.

UnForm Version 6

33

-f rule-file Establishes a different rule file than the default specified during the
installation. Rule files are text files that contain descriptions of the form
enhancements for one or more forms. The enhancement options are described
in detail under Rule Files, below.

UnForm will always search for the rule file first in the UnForm server
directory, then by the full pathname given. Rule files must reside on the
server machine, not the client.

By convention, rule files have a .rul suffix, though this is not a requirement,
and the rule-file value can be any file name. The UnForm Designer tool
maintains a .rud suffix for working rule files and a .rul suffix for published
rule files.

-gb|-greenbar [options] Adds alternating shade patterns to simulate green bar paper. If the options
parameter is supplied, it should be in the form defined by the shade command
for repeating shade values. If no option value is supplied, the default is 3 lines
shaded at 10%, 3 lines skipped, repeated until the end of the page.

-gs Causes UnForm to generate laser driver shade regions graphically, rather than
using internal PCL shade commands. The result is finer shading detail,
especially at 600 dpi. Using this option will add between 2K and 4K per job.

The gs command can also be used in rule sets to control graphical shading at a
copy level.

-gw Forces UnForm to pass through PCL image width and height escape
sequences to the printer. This is generally necessary on color laser images to
avoid a black stripe from the right image edge to the right margin. However,
if you are using PCL images, then it is important that all images on a form
contain width and height values so they won't conflict with one another. Some
image generating programs don't store the width and height values.

-i input-file Names an input text file for UnForm to process as input. If not specified, or if
it is a dash (-i -), then standard input (std input) is read. Under Windows,
standard input cannot be used, so an input file must be supplied. Note that the
input file must reside on the client's computer, not the server.

-ix input-file Same as the –i option except the input text file is removed upon completion of
task. Note that the input file must reside on the client's computer, not the
server.

-land Turns on landscape print mode as the default. A portrait command in a rule
set will override this option. Note that landscape printing usually requires a
reduction in the number of rows per page, as compared with portrait printing,
in order to produce usable results.

-macros Turns on macros.
-macrocopy n Used in conjunction with the –makemacro option. A macro will be created for

the designated rule set copy.

UnForm Version 6

34

-makemacro n Causes UnForm to simply create the appropriate macro for the designated rule
set and designate it as the number n. It must be used jointly with the –r option
and can be used in conjunction with the -macrocopy option. See special
section discussing macros later in this documentation.

-nn Indicates that an error message should be issued if the input stream is empty.
The value used for the error message is in the [defaults] section of ufparam.txt,
in the entry nullmsg=message text.

-nohpgl Reverts to full PCL, rather than a mixture of PCL and HP/GL output. A
number of laser printed features use HP/GL, which is a standard feature of the
PCL5 language. Some PCL interpreters, such as those that may be included in
some fax or viewing software, may not support HP/GL, so this option can be
used to force standard PCL5 coding for many options, such as box drawing
and text alignment. A few features, such as rounded corner boxes, require
HP/GL and are not supported if this option is specified.

-nointr With this flag set, the Unix/Linux client will ignore interrupt signals once the
connection to the server is established. This allows it to keep running even if
a parent process receives an interrupt signal on platforms that propogate the
signal to child tasks.

UnForm Version 6

35

-o output-file Specifies an output file or device. If not specified, then standard output
(stdout) is used. Under Windows, an output file must be supplied unless one
of the special drivers, win or winpvw, is used. On UNIX, the output can be a
redirect or pipe to another program, such as lp or lpr.

Output names that contain spaces must be quoted.

The output file or output will, by default, be generated on the server machine.
If the name is prefixed with the phrase "client:", then it is returned to the client
for local handling. Here are some examples:

Server output:
-o ">lp –dhplaser –oraw –s 2>/dev/null"
-o "/tmp/archive/12345.pdf"

Client output:
-o client://prntsrv/laser
-o client:c:\archive\12345.pdf

Note that on UNIX, if there is no –o specified, or if the output is simply a dash
(-o -), then output goes to the client's standard out. A special output of
/dev/tty is also recognized as client-side output to the /dev/tty device, often
used for slave printing (see the –slon/-sloff options).

If the output will be handled by the server, the client will generally exit as
soon as the job has been successfully started on the server. If the output is to
be returned to the client (or the –wait option is specified), then the client will
wait for the server to finish.

UnForm Version 6

36

-p output-format Specifies the output format for the job. It may be one of the following values:

laser (or pcl), which produces PCL5 or PCL5c (color) output. The default
format is PCL5, but if this option is specified, and no rule set is detected or
specified, then the output is scaled to fit the page in conjunction with the –cols
and -rows options, or the content itself. Without any –p option, and without a
rule set, the job is passed through unmodified.

pdf, which generates files viewable by Adobe Acrobat Reader or PDF
viewers. If no rule set is detected or specified, then a scaled text job is
created, based on the –cols and –rows options, or the content itself.

zebran, which produces ZPL II output at n dots per mm (6, 8, or 12 – default
of 12) for Zebra label printers.

For special Zebra media handling, you can append the following to zebran:
• Media tracking (Y=standard, N=non-standard label stock). Standard label

stock is non-continuous. NOTE: changing between standard and non-
standard requires recalibrating the printer.

• Set print modes (T=tear-off, R=rewind, P=peel-off, C=cutter).

The default values are YT. For continuous labels, 8 dpmm, with a cutter, you
would specify –p zebra8NC.

html, which generates Web pages from reports, based on a special set of rule
set keywords.

win, win5, winpvw, which automatically produces a PDF file and launches
the Acrobat PDF viewer on the Windows client. win will automatically print
the document, using the Windows shell "print" option. This generally prints
the document to the default printer. The win5 option uses a command line
launch of Acrobat with a /p option, which was the technique UnForm 5 used.
This generally results in a printer selection dialog. Both win and win5 options
are dependent on the behavior of Adobe Acrobat, which can vary from version
to version (and from Windows version to version). winpvw will provide a
print preview. These options only work in Windows clients, and require both
Internet Explorer and an Adobe Acrobat Reader as an Explorer plug in.

Special Ghostscript-driven drivers are also available if Ghostscript is available
on the server machine, and if you have configured the uf60d.ini file [drivers]
section. The configuration specifies the path to Ghostscript and a set of driver
names with Ghostscript sDEVICE names, a multi-page flag, and a resolution.
For example:

[drivers]
gs=gs
bmp=bmp256,1,300

If the command line contains –p bmp –o imagefile.bmp, then UnForm will
generate an interim PDF file, and execute the gs command to convert that to
the format bmp256, with output files imagefile-1.bmp, imagefile-2.bmp, and

UnForm Version 6

37

-page lines Specifies the number of lines per page that UnForm should read from the
input. Normally, UnForm will find form-feed characters to delimit pages.
However, if the application simply prints even numbers of lines per page, this
can be used to define that value so UnForm can properly parse the input
stream. The rule file page command is normally used rather than this
command line option, since different reports can have different page sizes.
However, this option is useful when doing cross hair prints (the -x option) to
properly parse individual pages.

-paper paper
-ps paper

Specifies the paper size used by the printer. Valid values include letter, legal,
ledger, executive, a3, and a4. The default is letter. For a complete list, see the
[paper] section of ufparam.txt.

For Zebra printers, the paper setting is generally required, and is in the format
widthxheight, where width and height are decimal numbers indicating width
and height in inches of each label. 3.25x5.5, for example, would define a label
size of 3.25 inches wide by 5.5 inches high. The default size is 4x6.

-pc copies

Causes UnForm to issue multiple copies of the report, page by page. If copies
is less than 2, this option is ignored. This option and the "-c" option are
mutually exclusive; also, rule sets can specify copy options that will override
command line options.

-pdfauthor "value"
-pdfkeywords "value"
-pdfprotect "value"
-pdfsubject "value"
-pdftitle "value"

These options supply default values for the author, keywords, protect, subject,
and title commands, respectively. All options are used exclusively with PDF
output.

-port n Specifies the port that the server is listening on, if other than the default of
2714. The –server line can also be used to specify the port, in the format
server:port. The uf60c.ini file also can contain the default port to use in the
absence of this option.

-printblanks
-pb

Causes UnForm to process blank pages the same as non-blank pages.
Normally, blank pages are suppressed.

-prm "parameters" Provides the ability for the application to send parameters to UnForm on the
command line. This might be used, for instance, to pass a company number
for use in a code block. The format for parameters is "parameter-1=value-
1[;parameter-2=value-2;...]" Any number of parameters can be specified
within the limits imposed by the operating system for command line length.
Each parameter becomes a global string in Business Basic (use the GBL()
function to retrieve), and each is set to the value specified. Multiple
parameters need to be delimited by semi-colons (;). -prm
"company=01;name=Acme Paint", for example, would establish two global
strings: company and name. These could be referenced within code blocks
(prepage, precopy, etc.) as GBL("company") and GBL("name").

-quiet Forces the Windows version of uf60c to route any errors to the log file defined
in uf60c.ini, or “uf60c.log” by default, and to any –e file named on the
command line. Without this option, errors are reported in message boxes.

UnForm Version 6

38

-r rule-set

Used to specify a rule set name to use for the job. The rule set specified must
exist in the rule file used for the job (see the –f option). If this option is not
used, UnForm will attempt to automatically detect what form is being
processed based on specifications contained in the rule file. If no form is
detected, then UnForm creates a simple text job or may pass the job through to
the output unmodified. If the rule-set contains spaces, it should be quoted.
Rule set names are not case sensitive.

-rland
-rport

Turn on reverse landscape or reverse portrait orientation. These options are
only valid on laser output.

-rows n Sets the default rows per page when a job is using default scaling, as when the
–p pdf or –p laser options are used and no rule set is detected or specified. See
also the –cols option.

-s sub-file

Specifies a text file to be used as a substitution file. Substitutions are used by
UnForm when placing text in the form output. If the text can vary from one
form to another, such as company names and addresses, then multiple
substitution files can be defined, each containing different names and
addresses, and the proper one identified with this command line option. See
the text keyword for more information. The default substitution file is called
"subst". If sub-file is not a full path, UnForm will look for it in the UnForm
directory. UnForm will automatically generate stbl("@name") definitions for
each line in the substitution file. Code blocks and expressions can use the
stbl() function (gbl() on ProvideX) to return these values.

-server server Specifies the server, if the default server found in uf60c.ini is incorrect. The
server value can be a hostname or IP address of the system running the
UnForm server, and may optionally include :port suffix, such as
ourserver:2714. The port can also be specified with the –port option.

-shift n Causes all input text to shift n columns to the right, similar to the action of the
shift command. This can be useful in conjunction with the –x crosshair option
to force text to match the alignment it would have with a shift n command in a
rule set.

UnForm Version 6

39

-slon "codes"
-sloff "codes"

Causes local (client side) output to be started with the slon code and ended
with the sloff code. This option is only supported in the UNIX client. The
code can contain text and special escaped characters:

\e Escape
\n Newline
\r Carriage return
\0nn Octal character nn (i.e. \033 is an escape)
\xhh Hex character hh (i.e. \x1b is an escape)

These values are typically set in conjunction with a –o /dev/tty option, in
order to send a job back to the client-side terminal device for slave printing.
Use of these options also causes the UNIX client to attempt to change the stty
setting of the –o device to "raw" for the duration of the output.

A typical slave print client command line might look like this:

cat sample1.txt | uf60c –f simple.rul –slon "\e[5i" –sloff "\e[4i" –o /dev/tty

-status
-nostatus

Overrides the default behavior of the status window when submitting jobs in
the Windows client uf60c.exe. The default behavior is to show the window
for jobs that will be returned to the client, and not show the window for jobs
that will be printed by the server.

-testpr font symset Generates a test print showing nearly all characters (ASCII 1 to 254) in the
font and symset codes identified. For a list of font codes and symbol sets, see
the ufparam.txt file, sections [fonts] and [symsets], respectively.

This option supports both laser and pdf drivers. To generate a PDF file, add "-
p pdf" to the command line. Output can be sent to a file or device with the "-
o" option, or on UNIX can be piped to standard output. Note that with the pdf
driver, the only symbol set used is 9J.

-timeout n Sets the socket timeout, for connecting to the server, to n seconds. If the
server takes more than this amount of time to accept the connection, the client
produces an error. The default value is 10 seconds.

-v Causes UnForm to print version information and exit.
-vshift n Causes all input text to shift n rows down, similar to the action of the vshift

command. This can be useful in conjunction with the –x crosshair option to
force text to match the alignment it would have with a vshift n command in a
rule set.

UnForm Version 6

40

-wait Causes the client to wait for job completion, even if the server is printing the
job. Normally, when the client submits a job to the server, it will exit as
quickly as the server acknowledges the job has started (not, of course, if the
output needs to come back to the client). By including the –wait option, the
client will wait until the server job is complete, even if the output will be
handled by the server. The purpose of this option is to allow client reporting
of any errors the server might encounter once the job starts.

-x [page[,page, …]]
-xl [page[,page, …]]

Causes the first page of input, or the pages specified, to be printed with a cross
hair pattern. This is typically done once to assist in determining placement of
text, and then removed. Sometimes, a special printer definition is set up
within an application, using the -x option, so that any form can be printed to
that printer for layout purposes. Note that setting the environment variable
UFC to "y" will cause this option to be automatically implemented.

Optionally, specify one or more (comma-delimited with no spaces, or
hyphenated for ranges) page numbers to get UnForm to produce cross hair
patterns on specific pages of the input stream. For example, '-x 1,3-5' would
produce cross hair patterns on pages 1, 3, 4, and 5, suppressing all others. If
the input doesn't contain form-feed page delimiters, be sure to use the –page
option as well.

When the –x option is used, no rule set is applied to the job. See the
crosshair command if you want to apply a grid to enhanced output.

The –xl option will produce a landscape version of the crosshair printing.

-z filename
-zx filename

Adds command line options contained in the text file filename to the
command line as if they were part of the command line itself. This option is
helpful if a command line length exceeds the operating system limit. If the –
zx option is used, then filename is erased once it has been read.

The file is simply a text file with arguments separated by white space or new
lines. Lines beginning with a # character are not included.

Job Status Viewing Options

UnForm Version 6

41

-jobs
-myjobs

These options trigger the viewing of jobs submitted to the server. The –jobs
option shows all jobs submitted to the server, while –myjobs shows just those
jobs submitted by the current user. Job records are kept for a configurable
amount of time, determined by the age= setting in the uf60d.ini file on the
server.

By default, the data displayed includes the job number, date/time, user, input
size, pages complete, percentage complete, and status. The –detail option,
below, adds the rule set, driver, and error message columns.

In Windows, the jobs display in a grid. On UNIX, the jobs are displayed
continuously on the display terminal, and will generally need to be processed
through page filters. For example, to view a paginated display of any jobs that
ended with errors:

uf60c –jobs | grep 'Errored'| more

-detail This option will cause the job listing to include additional data, including the
ruleset, driver, and any ending error message.

-active This option will limit the job display to jobs that are currently processing on
the server.

UnForm Version 6

42

VERSION 6 FEATURES

Graphical Design Tool
A new Windows-based graphical design environment is available as an optional product for Version 6.
This tool is designed primarily as a rule file editor, with syntax highlighting and custom forms for
editing commands, setting job properties, viewing watch lists, previewing and drawing, and test
printing.

Client-Server Model
UnForm 6 has a new architecture that allows a server to be running on a Windows or UNIX network
server, and client programs to be run on any computer, Windows or UNIX, that runs the user's
application software.

PDF Enhancements
New rule set commands include author, keywords, protect, and subject, in addition to the existing title
and outline commands. The protect option adds encryption options to the PDF file. Each of these PDF
options now has a command-line equivalent, so more command-line control is available when creating
PDF files in a scripted environment.

Email Enhancements
The email command has been enhanced to add cc, bcc, additional attachments, optional RFC header
support, and login/password options for mail servers that require authentication. All the email command
options are now also available as command line options, making it easy to use UnForm for generic
report emailing in a scripted environment.

In addition to the email command, which works on a single job at a time, the new email() function can
be used in a code block to send an email at any point in the job stream. The new sub-job control
functions, described below, make it easy to generate sub-jobs of UnForm to create PDF files out of job
fragments, which can be coupled with the email function to easily support batch emailing of PDF files.

Sub-job Support
The traditional way to manage the sub-jobs of a nested UnForm procedure involved lots of
sophisticated, platform-specific code block work. In addition, it occupied a run-time user slot. Version
6 adds four code block functions to easily manage sub-jobs without any impact on the license. The
functions are jobstore(), jobfile(), jobexec(), and jobclose(). They are fully documented in the
Programming Code Blocks chapter.

Image Conversion and Scaling
UnForm can be configured to use an external image program to convert and/or scale images on the fly to
pcl or pdf format. Two external, platform-independent image products are supported: Image Alchemy
(commercial) and Image Magick (open source). In addition, the images can be cached if desired,
thereby only requiring a conversion once for any given set of characteristics, though conversion time for
typical images is generally very fast. See the image command for information about configuring this
feature.

UnForm Version 6

43

Image Alchemy is available from Hand Made Software, http://handmadesw.com.

Image Magick is available from http://imagemagick.com.

Ghostscript-based Drivers
UnForm can be configured to use Ghostscript to generate various formats of output from an interim PDF
output file. For example, an option such as –p tiff –o mydoc.tif can be used to generate a tif image
document. This feature also provides an ability to generate Postscript and Deskjet output for printers
not normally supported by UnForm. Ghostscript can be obtained from http://www.ghostscript.com.

General Enhancements
The new boxr and cboxr commands can be used to draw rounded corner boxes.

An improved graphical shading model uses less overhead and now can be applied to shaded text as well,
giving text watermarks an improved look, especially at dpi settings of 600 or 1200. In addition,
graphical shading can now be turned on and off in a code block using the gs$ variable.

HP/GL has been implemented in many elements, including justified text, resulting in performance
improvements in many cases.

The shade options of the box, font, and text commands now support numeric expressions.

New lcolor and scolor options are available on the box command, to provide distinct colors for lines and
internal shading.

The grid options of the box command support a fourth segment value to shade the grid section with a
specified color name or rgb value.

The barcode command is more flexible with regard to data lengths, so the correct symbology code of a
given family is used without specifying the one that correctly matches the length.

The across and down commands have a new, optional gap parameter that is used to calculate inter-label
gap pixels, which is helpful when formatting small labels to match a label stock.

The fit option has been added to the font command, so a given text region can be scaled to ensure it fits
in a defined number of columns.

Style and weight options have been added to the font and text command, adding support for pcl fonts
that require specification of a non-standard style or weight.

Added the getoffset and getcols options to the text command, for use in relative text commands (with a
search string or pattern), so the data to print can be derived from the content stream. This matches a
capability provided in the barcode command in Version 5.

UnForm Version 6

44

Added the ccols option to the text command, as a complement to the cols option, the difference being
that ccols specifies the ending column, while cols specifies the number of columns.

Added special handling of an input file called nul, null, or /dev/null, so that rule set output can be
generated without requiring any input.

Added special handling of an input stream that starts with a rule set, so that a developer can dynamically
include a rule set in a job stream, without relying on an external file.

Added a new –nn (not null) command line option, along with a configurable error message, to generate a
message if the input stream is not empty.

Added a new –gb or –greenbar command line option to simulated green bar paper.

Added new behavior if the driver is specified as laser (-p laser) to automatically scale output to the page
size if no rule set is detected or specified. This is similar to the behavior with –p pdf, in which a plain
PDF file is generated and scaled to make the page content fit the physical page size.

Added –cols and –rows command line options to specify default columns and rows parameters for pass-
through jobs.

Added –z and –zx command line options to read subsequent options from a file, providing support for
long command lines that exceed operating system limits. The –zx option erases the file after it has been
read.

Added a new string template (composite string) variable UF$ that contains numerous sub-values related
to the command line and the UnForm environment. For example, uf.home$ contains the home directory
of the UnForm server. This variable is available in code blocks and expressions, and is fully
documented in the Programming Code Blocks chapter.

Added the new functions env(), parse(), parseq(), right(), left(), and sub() for use in a code block or
expression. These functions are documented in the Programming Code Blocks chapter.

Added support for a configurable work file directory, using environment variables or a global string
which can be defined in a prejob code block. UnForm now looks for the stbl/gbl("$tempdir"), and
failing that, the UFTEMP, TMP, and TEMP environment variables, in that order.

UnForm Version 6

45

FLOW OF PROCESSING

UnForm processes jobs in a complex but defined manner. The following list describes in general what
occurs when a job is submitted:

The client program is executed with options, generally including input and output specifications, a rule
file, and any other command line arguments. On UNIX, it is possible for the input and/or the output to
be "standard input" and "standard output", so that the client can process jobs in a pipe. Here are a few
examples:

uf60c –i sample1.txt –o ">lp –dlaser –oraw" –f acme.rul

cat sample1.txt | uf60c | lp –dmylaser –T pcl

cat sample1.txt | uf60c –p pdf >/home/mypdfs/xyz.pdf

uf60c –i sample1.txt –o client:myfile.pdf –p pdf

In all cases, the input file comes from the client and is sent to the server. With a –o option, the output
normally stays on the server, though if the output designation is prefixed with "client:", then it is
returned to the client. On UNIX, if "standard output" is designated, the output is also returned to the
client. The rule file specified with the –f option resides on the server.

For performance reasons, it is normally desirable to specify a server-based output designation with the
-o option. In that circumstance, the client only runs long enough to submit the job and ensure the
command line arguments are acceptable to the server, then returns to the application. If the client will
be receiving the output, it must wait for the job to finish and retrieve it, which can be time consuming
(though certainly less so if the client and server are the same machine).

When the server receives the job, it stores the input in a temporary file, and calls the UnForm processor
to handle the job.

UnForm reads the input file to obtain the first page. It looks for a form-feed, or if no form-feed is found,
it reads the first 255 lines. It then strips the data of any PCL escape sequences in order to get a plain
text array of lines. Lines must be terminated with line-feed characters (ASCII 10) or carriage-return,
line-feed sequences (ASCII 13, 10).

This first page is processed against the rule file. If a –r ruleset command line argument was used, then
the rule file is scanned for the specified rule set. Otherwise, each rule set's detect statements are tested
using the first page of text. When the rule set is found, it is parsed into commands and code blocks. If
no rule set is found, then the job is handled by pass-through logic, or if a rule set was specified with –r
and not found, an error occurs and the job exits.

UnForm Version 6

46

If the parsed rule set indicates a page size with the page n command, any excess lines read from the first
page are returned to the input buffer. As the input stream is read for additional pages, UnForm will read
only n lines per page. Note that if a form-feed character is encountered before n lines have been read,
then the page is also considered complete.

If a prejob code block is present, it is executed.

Now processing of the job begins. Each page is processed in the following order:

• The prepage code block is executed.
• Any command expression values are resolved.
• For each copy:

o The precopy code block is executed.
o Command expressions are resolved.
o Any hshift or vshift commands are executed (if shiftfirst=1 in ufparam.txt [defaults]).
o Move commands are executed.
o Font, bold, italic, underline, and light commands are executed.
o Shade commands are executed.
o Box commands are executed.
o Text commands are executed.
o Hline and vline commands are executed.
o Erase commands are executed.
o Any hshift or vshift commands are executed (if shiftfirst=0 in ufparam.txt [defaults])
o Attach commands are executed.
o Image commands are executed.
o Barcode commands are executed.
o The application text, with any font attributes applied, is added.
o Micr commands are executed.
o The postcopy code block is executed.

• The postpage code block is executed.
• When all pages have been processed, the postjob code block is executed.
• As the job is processed, the output designation for each copy is checked, and if the output is

changed, predevice and postdevice code blocks are executed. When running a PDF job, the only
time the output can be changed is in the prejob code block, or with an output command that is non-
copy specific. The postdevice code block is executed after the output is complete and closed,
making it suitable for handling the output file itself (for emailing, faxing, etc.).

Once the job is complete, it is available to return to the client, if the client's command line requires it.
The client has monitored the job for completion in that case, and it then retrieves the job output. Note
that if the rule set has overridden the output designation for the job, or part of the job, then the client will
only be able to retrieve what was sent to the original output designation.

UnForm Version 6

47

So the following scenario will conflict:
• uf60c –i sample1.txt –o client:/tmp/invoice.pdf –f advanced.rul –r invoice
• In the invoice ruleset is this: output "/home/pdfs/invoice.pdf"
• The server will send output to its /home/pdfs/invoice.pdf file, leaving the temporary output for the

client empty. The client /tmp/invoice.pdf file will be an invalid, empty file.

UnForm Version 6

48

CONCEPTS, PRIMER, AND TIPS

UnForm is a very powerful tool, with dozens of commands and features. It can be difficult to grasp the
basics from such a large toolset, but the basics are really very simple. Once UnForm is installed by an
administrator, the only skills required to develop typical business forms are an ability to edit text files on
your system, and an ability to execute UnForm as needed to test your changes.

Here are some basic concepts that you should understand before proceeding:

• UnForm processes text input and produces formatted output. The input can come from a file or, on

UNIX, can come from UnForm's standard input. The output can go to a file or a device on either the
server or the client, or on UNIX can go to the client's standard output.

• UnForm uses a rule file to define all the form and print jobs it might process. In that rule file are one
or more rule sets, each of which represents one form or print job. Rule files and the rule sets they
contain are simply text files with command lines, which you can edit with any text editor. The rule
file should be stored in the UnForm directory, and specified with the "-f rulefile" command line
argument. If you don't specify the rule file on the command line, then the default rule file named at
installation is used.

• Unless the "-r ruleset" command line option is used, UnForm reads the first page of input and
compares that first page with all the detect statements found in each rule set. These statements
instruct UnForm to look for text or patterns at specified locations or lines (or anywhere on the page).
If all the detect statements for a given rule set match the contents of the first page, then UnForm
selects that rule set and begins to produce output. If a match is not found, then the next rule set is
tested, and so on until all the rule sets have been tested. If no match is found, then UnForm will pass
the job through without any changes or enhancements, or in the case when a pdf or pcl driver is
specified with a –p driver command line option, will produce a text job scaled to fit each page.

• Each job has its own geometry, that is, the basic columns and rows to which UnForm scales
everything. If you specify cols 85, then UnForm will scale each character and all the enhancement
positions and sizes to 1/85th of the printed space between the margins. In a sense, the job wraps
enhancements around the text input as it is sent to the output.

• The commands in the rule set determine what enhancements are applied. These can be text
additions, font changes, boxes, shade regions, barcodes, images, and more. Each change is
controlled by a command line in the rule set, such as box 5.5,2,20,4.

Some commands don't add output, but instead modify the text input to UnForm. The text will
normally print in the Courier font, scaled to the number of columns you specify. You can change
the attributes of that text in any rectangular region with font command, or manipulate it with the
move and erase commands.

UnForm Version 6

49

• Some commands control the printer. For example, the tray command can select the input tray on a
laser printer, and the bin command can select an output bin.

• You can have UnForm generate multiple copies of each page of input. Each copy can have unique
characteristics by using if copy n blocks. This is a simple structure that starts with a line "if copy
n", where n is the copy number, followed by any number of lines of enhancement commands,
followed by a line "end if".

Creating Rule Files with the UnForm Graphical Designer

• Obtain sample output from your application for the form you want to design. Most applications

provide the means to print to a text file. If no other means exists, you can define a printer that prints
to UnForm with a –debug command line option, in which case UnForm will leave a copy of the
input stream on the server, under the UnForm directory, in temp/jobno.in. You can find job numbers
and their print times and size with the uf60c –myjobs command.

Store this text file in the UnForm directory on the server.

• Start the UnForm Designer on a Windows system, and connect to the UnForm server when
prompted. Create a new rule file, then a new rule set, then set the sample to the file created above.
The UnForm Designer is a rule file editor with on line help, command editors, and drawing and
preview capabilities. More information about using it can be found in the on line help that comes
with the product.

Manual Rule Set Creation Steps

• Obtain sample output from your application for the form you want to design. This output can be

printed to a text file, or you can simply use two printers defined with UnForm, one with the crosshair
option (-x), the other with normal output. If you are working on a Windows system or have network
access from a Windows system to the server where UnForm operates, you can use the pdf driver and
an Acrobat Reader to save paper while developing the design.

• Print your sample through UnForm with the crosshair option turned on. This will provide you with a
grid of text positions printed by your application. If you have a file printed by your application, the
command line for a grid would look like this: uf60c –x 1-99 –i input-file –o output-device or uf60c
-x 1-99 –i input-file | lp -dxxx . If your sample does not contain form-feeds, you can add a –page n
option to tell UnForm how many lines are to be read per page.

• Since you will be printing this sample many times, you may wish to create a script or batch file to
automate the command line, which will be something like: uf60c –i input-file –f rule-file –o output-
device or uf60c –i input-file –f rule-file | lp -dxxx.

UnForm Version 6

50

• Looking at the text of the input file, determine what makes this job unique. Sometimes there is a
title, such as "PURCHASE ORDER", printed at a specific position. That may be enough to
determine the uniqueness of the document so just add detect column, row, "PURCHASE ORDER".
You might need to find multiple patterns by using more than one detect statement. Patterns are
specified by starting the detect string argument with a ~ character. The balance of the string is a
regular expression. Common syntax elements for regular expressions include "." to match any
character, [0-9] to match any digit, [A-Z] to match any capital letter, and * to match any number of
repetitions of the prior match character. A more complete description of regular expressions is in
the Regular Expressions chapter.

To try out your detect statement(s), try adding just those statements plus a single text command, then
print the job. If your job prints with that text in addition to the text from your application, then your
detect statements are working. This is what the rule set will start to look like:

[purchase_order]
detect 40,2,"PURCHASE ORDER"
text 1,1,"Test Text"

Note that it is possible to execute a rule set without detect statements, by adding "-r ruleset" to the
command line.

• The rest of the form design is simply a matter of adding commands for text, boxes, and shade
regions. It is usually best to work consistently from top to bottom, left to right in the different
sections of the form. Use comments (lines starting with #) liberally; they make the rule set easier to
follow when you come back later to make a change.

A good place to see complete rule sets are the sample rule files provided with UnForm, simple.rul and
advanced.rul. These two files are thoroughly documented in Sample Rule Sets chapter. In addition to
simple form designs, the samples show techniques with complex designs, such as jobs with multiple
formats of input, and jobs that have embedded programming capabilities.

Tips and Techniques

• Always start with a crosshair pattern, so the basic text provided by the application, and its exact

placement, can be seen. As the crosshair mode prints just the first page, use short versions of the
reports or forms. There are several ways to create a crosshair version of a report:

o Print the report to a file, then process that file with UnForm's command line, such as uf60c -i

filename -o output-device –x

o Add a printer configured with the "-x" option, and print to that printer.

If your report doesn't contain form-feed characters at the end of the page, then you should print just

UnForm Version 6

51

one page worth of data, or add a –page n option to the command line. Otherwise, UnForm will
assume the page is made up of as many lines as are printed, up to 255 lines.

• Use detect statements to identify each form. UnForm is designed to process all your reports and just
enhance those it can identify; all others are passed through unchanged. This is easier to set up than
forcing a given printer device to be named for every form or report, as is required of most form
packages.

• Specify the columns and rows for the form or report using the cols and rows commands. If this isn't
done, then UnForm will assume 80 columns by 66 rows. An exception to this assumption is that if a
page keyword is used, then the rows will be taken to be that value unless a rows command is also
present.

• Remove unwanted text with the erase command, or move it with the move command. In
programming code, such as in the prepage or precopy routines, you can modify the text$[] array
directly or via the set() function.

• Apply attributes to the text with the bold, italic, light, or underline commands. These apply to the
text generated by the application (not to text you add with the text keyword). Or use the font
command, which can apply any of these attributes as well as apply other characteristics to the
application text data.

• Use the font command to modify the font of text from the application, All text printed by the
application will print in Courier unless changed with the font command. When changing to a
proportional font, be sure to make the changes to specific logical regions, such as a column of prices.
If you change the font for the entire page, then columns will not align properly.

• Add text, such as headings or messages, with the text command. Text can be literals enclosed in
quotes, named values from a substitution file if prefixed with "@", environment variables prefixed
by $, or an expression enclosed in { } characters. Text can be rendered at any size and in any font
supported by the printer or device. Remember that fixed pitch fonts, such as Courier, are sized in
characters per inch, while proportional fonts are sized in points. The larger the cpi, the smaller the
font. The larger the point size, the larger the font.

• Add shading and box drawing with the shade and box commands. Reverse shading is accomplished
by shading a region with 100% (black) shading, and using a font or text command to modify the text
to shading of 0% gray (white). Simply using a row or column value of 1 will draw lines. To draw a
box and shade the interior, use the shade option of the box keyword.

• Add logos and other images with the image command. With this command, UnForm normally
looks specifically for PCL raster images (or PDF images if the pdf driver is used) in the file.
UnForm can also be configured to use Image Magick or Image Alchemy for on-the-fly conversion of
tradional image formats to native PCL or PDF.

UnForm Version 6

52

• Use the attach command to add overlays or attachments. This command does not search only for
image data. It does, however, search for and remove initialization and form-feed codes.

Attachments should be treated as separate copies: use the pcopies command to allocate enough
copies, then use if copy n to add the attachment, notext to suppress the application text output, and
make sure your other enhancements don't apply to the attachment copy.

To create an overlay, use the attach command, but allow the text and enhancements to also be
applied on the same copy. Attachment documents for PCL output can be created using a PCL5
printer on Windows, selecting the Print to File option or setting it up to use a FILE: port. For PDF
attachments, use Adobe Distiller, choosing non-optimized, ASCII output options.

• If the application doesn't use form-feeds at the end of each page, then use the page keyword to tell
UnForm how many lines are used for each page. Many applications, especially with forms, will use
just line-feeds when scrolling to the top of each form. UnForm will need to be told where the end of
a page is, in this case.

Use Business Basic programming as a powerful macro language. All the data that is sent by the
application to each page is available for your use. Use this data to get fax numbers and generate faxed
copies, or to print shipping labels derived from the invoice ship-to addresses while packing lists are
printed, or to add additional information such as costs or comments to forms, or to print logs or send
email. See the precopy{} command reference, and the Programming Code Blocks chapter for more
information.

UnForm Version 6

53

RULE FILES

Rule files are text files that contain descriptions of form enhancements. There can be any number of
these enhancements, called rule sets, in a rule file. A header line composed of a unique name enclosed
in square brackets indicates a new rule set. For example, an invoice form rule set would begin with the
line [Invoice], followed by lines indicating enhancements to the invoice output sent by the application.
Without a rule set to work with, UnForm will not perform any enhancements. UnForm determines
which rule set to work with based on either a command line option (-r), or detect commands contained
in the rule set.

The enhancements that follow the [form-name] line are made up of commands and (usually) a list of
parameters separated by commas. The available enhancements are described on the following pages.

Unless otherwise noted, all column and row specifications are 1-based (i.e. the first column is 1, rather
than 0).

Commands that have parameters accept either a space or an equal sign between the keyword and the
first parameter; page 66 and page=66 are equivalent.

If a command and its parameters require a large amount of text, it is possible to split a command across
multiple lines by adding a backslash character at the end of a line to indicate the command continues on
the next line. You can have as many continuation lines as necessary. UnForm removes leading spaces
and tabs from continuation lines, so you can use indention to improve readability, as long as you
remember to place any required spaces before the backslash on the initial line. For example:

text 1,30,"This line of text is continued \
 on this line.",12,cgtimes

Note that the UnForm Design Tool puts continuation lines back together, so this feature is useful only
when using a text editor for rule file development.

The driver differences and support for different keywords is noted. Note, however, that when a
command indicates all drivers, this doesn't necessarily indicate support by html. For the HTML driver,
please refer to the HTML chapter.

UnForm Version 6

54

CONTENT-BASED RULE SETS

In addition to rule files, it is also possible to include a rule set in the content of a job, by beginning the
job with a name in square brackets, like [ruleset]. If UnForm sees this line structure as the first line of a
job, it then reads the input stream until it encounters a form-feed (ASCII 12, hex 0C), and then doesn't
process the rule file at all. Instead, it uses the rule set provided for the job. The first character after the
form-feed is treated as the start of the document, so take care that you don't have an extra line-feed that
would throw off line numbers.

Using this technique, it is possible for applications such as report generators to enhance output
programmatically.

UnForm Version 6

55

ACROSS

Syntax

across n [,gap]

Description

This instructs UnForm to allocate virtual pages across the physical page, evenly spaced within the left
and right margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale
images, barcodes, or attachments. Also see the down command.

Across can be used inside an 'if copy' block, but is only compatible with non-collated copies. As a
result, copy-specific across is only available in the laser driver, and only in conjunction with the copies
command, not pcopies.

If the optional gap value is specified, it indicates the number of horizontal pixels between each virtual
page. If it is not specified, the default is to use one column (as opposed to pixels).

See the 132x4 rule set in advanced.rul for an example of using the across and down commands.

Drivers: laser, pdf

UnForm Version 6

56

ATTACH

Syntax

attach "filename" | {expr}

Description

This will add the specified file to the output. The file will be added before any other text or data for a
given copy is sent to the printer, so this can work as an overlay file, or it can be placed in the output
instead of any text or other output, appearing like a stand-alone attachment.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which
will be interpreted as the file name as each copy prints.

When used as an attachment, assign a copy to the attachment, and use the notext keyword to suppress
printing of text, like this:

if copy 1
 # the standard format
 # duplexing? add duplex 1 in this copy
 text …
 box …
 etc…
end if

if copy 2
 # the attachment
 attach "/usr/unform/attach/attach1.pcl"
 notext
end if

When processing the file, UnForm will remove any printer initialization codes and page ejects from the
file.

The easiest way to create an attachment file is to use a Windows workstation and install a PCL5 type
printer, such as the HP LaserJet III or higher. Set the port for the printer to FILE:. Then create the
attachment using any word processor and print to that printer. Windows will ask for a file name, and
when printing is complete, the resulting file is suitable for use as an attachment. If your document
contains fonts that are not present in the printer you will be using, be sure to modify the print driver to
print True Type Fonts as graphics, if possible. Also, it is sometimes necessary to use a PCL5 type
driver, rather than a PCL6 driver.

To create an attachment file for the pdf driver, use Adobe Distiller, part of the Adobe Acrobat product.
When using Distiller, be sure to set the job options to turn OFF the "Optimize PDF" flag, and ON the

UnForm Version 6

57

ASCII flag. UnForm's PDF parser relies on a standard (old) PDF file format, which the optimization
does not produce.

Drivers: laser (pcl format), pdf (PDF format)

UnForm Version 6

58

AUTHOR

Syntax

author "authorstring" | {expression}

Description

If this command is present, then PDF document creation adds an author authorstring, or the result of
expression, to the document content. This value is available in the General Properties Display dialog in
the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 6

59

BARCODE (PCL,PDF)

Syntax

1. barcode col|{numexpr}, row|{numexpr},"value"|{expr},symbology,height,spc-pixels

2. barcode "text|~regexpr|!=text|!~regexpr[@left,top,right.bottom]", col|{numexpr}, row|{numexpr}, "",
symbology, height, spc-pixels, getoffset cols, getcols cols, eraseoffset cols, erasecols cols

Description

col and row determine the upper left corner of the barcode. If used, numexpr is a Business Basic
expression that generates a numeric value for the column or row.

value is a text string, up to 28 characters, to barcode. Often this is symbology-dependent. If check
digits are required, they are generated internally in UnForm. Within barcode families, if a unique
symbology is associated with a specific length, then UnForm will internally select the correct
symbology. For example, if a 9-digit zip code is specified with symbology 900 (5-digit postnet), then
symbology 905 will be used automatically.

expr is a Business Basic expression that generates the text to barcode.

symbology is one of the following numbers:

Code Description
100 UPC VERSION A
105 UPC VERSION A + 2 DIGIT SUPPLEMENTAL ADD-ON
110 UPC VERSION A + 5 DIGIT SUPPLEMENTAL ADD-ON
125 UPC VERSION E
126 UPC VERSION E supporting number series 1, 6-digit input
130 UPC VERSION E + 2 DIGIT SUPPLEMENTAL ADD-ON
135 UPC VERSION E + 5 DIGIT SUPPLEMENTAL ADD-ON
150 UPC/EAN/IAN – 13
155 UPC/EAN/IAN – 8
200 INTERLEAVED 2 OF 5 – 2:1 CHECK DIGIT
205 INTERLEAVED 2 OF 5 – 2:1 NO CHECK DIGIT
220 INTERLEAVED 2 OF 5 – 3:1 CHECK DIGIT
225 INTERLEAVED 2 OF 5 – 3:1 NO CHECK DIGIT
300 STANDARD CODE 2 OF 5 – 2:1 CHECK DIGIT
305 STANDARD CODE 2 OF 5 – 2:1 NO CHECK DIGIT
320 STANDARD CODE 2 OF 5 – 3:1 CHECK DIGIT
325 STANDARD CODE 2 OF 5 – 3:1 NO CHECK DIGIT
400 CODE 39 (3 OF 9) – 2:1 NO CHECK DIGIT
405 CODE 39 (3 OF 9) – 2:1 CHECK DIGIT

UnForm Version 6

60

410 CODE 39 (3 OF 9) – 2:1 NO CHECK DIGIT (FULL 128 ASCII)
415 CODE 39 (3 OF 9) – 2:1 CHECK DIGIT (FULL 128 ASCII)
440 CODE 39 (3 OF 9) – 3:1 NO CHECK DIGIT
445 CODE 39 (3 OF 9) – 3:1 CHECK DIGIT
450 CODE 39 (3 OF 9) – 3:1 NO CHECK DIGIT (FULL 128 ASCII)
455 CODE 39 (3 OF 9) – 3:1 CHECK DIGIT (FULL 128 ASCII)
500 CODE 93
600 CODE 128 – SERIES "A"
605 CODE 128 – SERIES "B"
610 CODE 128 – SERIES "C"
700 CODABAR – NO CHECK DIGIT
705 CODABAR – CHECK DIGIT
900 USPS Postnet – 5 DIGIT
905 USPS Postnet – 9 DIGIT
910 USPS Postnet ABC – 11 DIGIT

height is expressed in points or pixels. If it is an integer, such as 50 or 175, then it is treated as pixels at
300 dpi. If it is a floating-point number, like 18.7 or 12.0 (it contains a decimal point), then it is treated
as points (1 point=1/72 inch). The maximum height is 3000 pixels.

spc-pixels is the number of pixels allocated to spacing between bars, from one to 50, the default being 2.

In syntax 2, triggered by a quoted value as the first argument, barcodes will be generated at all locations
on a page where the text or the regular expression regexpr occurs. The value(s) to barcode will be based
upon what text matches occur. Each match will determine the value to barcode based on the word found
(up to the first space or the end of the line), and the placement of the barcode. The value to barcode can
be adjusted by the getoffset cols (integer columns from the location of the match) and getcols cols
(number of columns to use for the value). The location of the barcode can be adjusted by the col and
row parameter, where 0,0 is the location where the match is found. The match text found can be erased
from the report by setting eraseoffset cols and erasecols cols.

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The search for text or regexpr can be limited to a region on the page by adding a suffix in the format
'@left,top,right,bottom'. To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

Version 5 Note: The positioning algorithm for PDF versions of the barcode was modified in Version 5
to match the positioning of laser barcodes. If your application depends on this older algorithm, then you
can modify your ufparam.txt file (preferably by copying it to ufparam.txc and then modifying that file,
to avoid losing your changes during an update) to add (or change) 'v4pdfbcd=1' in the [defaults] section.

Drivers: laser, pdf

UnForm Version 6

61

Examples:

barcode 10.5,22,{get(10,21,5)},900,12.0,2 will add a 12.0 point high, 5-digit postnet barcode based on a
zip code found at column 10, row 21.

barcode "bcd:@16,22,20,55",0,0,"",600,75,2, getoffset 4, getcols 10, erasecols 14 will search for
data starting with "bcd:" in the region starting at column 16, row 22, through column 20, row 55,
barcode the 10 characters following it, and erase the underlying text.

UnForm Version 6

62

BARCODE (ZEBRA)

Syntax

barcode col|{numexpr}, row|{numexpr}, ("value" | {expr}), symbology, height, spc-pixels, text
[above|yes|no], rotate [90|180|270], ratio rvalue, checkdigit, start startc, stop stopc, ucc, mode m,
security s, cols c, rows r

Description

col and row define the upper left corner of the barcode. If used, numexpr is a Business Basic expression
that generates a numeric value for the column or row.

value is a literal value to barcode, expr is a Business Basic expression that generates the text to barcode.

symbology is one of:

Symbology Code Name
1 Code 11
2 Interleaved 2 of 5
3 Code 39
8 EAN-8
9 UPC-E
A Code 93
C Code 128
E EAN-13
I Industrial 2 of 5
J Standard 2 of 5
K ANSI Codabar
L LOGMARS
M MSI
P Plessey
S UPC/EAN extensions
U UPC-A
Z Postnet
4 Code 49
7 PDF417
B CODEABLOCK
D UPS Maxicode

For Maxicode, you may specify a mode of 2 for UPS US addresses, 3 for UPS non-US addresses, or 4
for non-UPS coding (the default is 2). The data must consist of 2 segments:

UnForm Version 6

63

Segment 1:
• Mode 2: 3-digit class of svc, 3-digit country code, 9-digit zip code
• Mode 3: 3-digit class of svc, 3-digit country code, 6-character zip code

Zebra requires this segment; the remaining segment format is specified by UPS.

Segment 2:

• Data content as required by UPS, starting with the "[)>"+$1E$ header.

For modes other than 2 or 3, segment 2 can contain variable content.

height is either an integer, interpreted as the number of pixels, or a decimal number, such as 20.0 or
40.6, interpreted as points (1/72 inch).

spc-pixels is the narrow bar width in pixels, from one to 10, defaulting to 2.

Following spc-pixels, the options can be in any order.

Rotate will rotate the barcode the given number of degrees.

Ratio will modify the wide bar to narrow bar ratio, from 2.0 to 3.0 in 0.1 increments. The default ratio
is 2.0. Some symbologies have fixed ratios.

text or text yes will print the human readable value below the barcode. text above (or just above) will
print this value above the barcode.

text no will not print the value, even if that is the default for the given symbology.

checkdigit will cause a checkdigit to be calculated and printed by the printer.

start char will set the start character, if used by the symbology.

stop char will set the stop character.

ucc will set the UCC Case Mode on code 128 barcodes.

mode m will set the mode code, which is symbology dependent. The UCC Case Mode may be set for
code 128 with 'mode U'. The code 49 mode can be A for auto, or 0-5 as defined in the ZPL
programmers' guide.

security n well set the security and/or error correction level for the PDF417 bar code. n can be a digit
from 0 to 8.

cols c, rows r will set the cols and rows values for the PDF417 barcode. If not set, this barcode will
assume a 1:2 row to column aspect ratio. c can range from 1 to 30, r from 3 to 90, and the product of c x
r can't exceed 927.

UnForm Version 6

64

Drivers: zebra only

UnForm Version 6

65

BIN

Syntax

bin bin-number

Description

The bin keyword is used to specify the output bin for any copy. Larger, departmental laser printers
often have two or more bins, allowing print job output to be separated. In UnForm, you can specify a
bin for each copy, or for the whole job.

bin-number is printer-specific, with one generally being the top, face-down bin, and 2 being a side or
rear face-up bin. Some models may offer additional bins; see your printer's documentation for
additional bin codes.

Drivers: laser only

UnForm Version 6

66

BOJ, BOP, EOJ, EOP

Syntax

1. {boj | bop | eoj | eop} hex codes
2. {boj | bop | eoj | eop}"text string"

Description

These keywords provide the ability to add escape codes to the beginning of the job (after the printer is
initialized but before any data prints), before each page of each copy, after each page of each copy, and
after the job ends, just before the printer is re-initialized.

The escape sequences can be entered either as hex codes, such as 1b28633045 (interleaved with spaces
if desired), or as a text string. To enter a text string, the value must be quoted.

When entering a text string, it is possible to include non-printable characters with angle bracket
notation, such as "<27>&k10G", where "<27>" is used to include an escape character.

UnForm will normally provide all the control needed for a job. These keywords are included to handle
unusual requirements, such as perhaps adding PJL coding to a job for special paper handling
requirements.

Examples:

This example shows adding PJL codes to a job, setting the title to "Title Of Job".

boj "<27>%-12345X@PJL<10>@PJL JOB NAME=<34>Title Of Job<34><10>@PJL ENTER
LANGUAGE=PCL<10>"

Drivers: laser only

UnForm Version 6

67

BOLD, ITALIC, LIGHT, UNDERLINE

CBOLD, CITALIC, CLIGHT, CUNDERLINE

Syntax

1. bold|italic|light|underline col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. bold|italic|light|underline "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr},
row|{numexpr}, cols|{numexpr}, rows|{numexpr}

If cbold, citalic, clight, or cunderline is used, then columns and rows are interpreted to be the opposite
corner of the region, and columns and rows are calculated by UnForm.

Description

The region indicated by the col, row, cols, and rows parameters will have the indicated attribute (bold,
italic, light, underline) applied. All text in the input within that region, but not text generated by text
keywords, will be affected. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no affected regions, or several.
column and row are 0-based in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@" character in
text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Note that the font command is a more powerful alternative to these commands, and it also offers support
for fonts that support specific weights or styles other than these.

Examples:

bold 1,5,30,4 bolds a region from column 1, row 5, for 30 columns and 4 lines.

underline "TOTAL:",0,0,36,1 underlines a region beginning at a position where the text "TOTAL:" is
found, extending for 36 columns. If "TOTAL:" isn't found, the keyword is ignored until the next page is
analyzed.

Drivers: laser, pdf. underline and light is supported on laser only. Not all pcl fonts support the light
and bold options.

UnForm Version 6

68

BOX, CBOX

Syntax

1. box col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]
[,rgb rrggbb] [,dbl|double [gap]] [,left l] [,right r] [,top t] [,bottom b] [,icols=gridcols] [,irows=gridrows]
[,ccols=gridcols] [,crows=gridrows] [,lcolor=color] [,lcolor rgb=rrggbb] [,scolor=color] [,scolor
rgb=rrggbb]

2. box "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color] [,rgb rrggbb] [,dbl|double [gap]] [,left l]
[,right r] [,top t] [,bottom b] [,icols=gridcols] [,irows=gridrows] [,ccols=gridcols] [,crows=gridrows]
[,lcolor=color] [,lcolor rgb=rrggbb] [,scolor=color] [,scolor rgb=rrggbb]

If cbox is used, then columns and rows are interpreted to be the opposite corner of the box, and columns
and rows are calculated by UnForm.

Description

A box of the indicated dimensions will be drawn. All dimensions can be specified to 2 decimal places,
in the range of -255 to +255. Whole number col and row represent center points; lines are drawn to the
center point of the character position identified in order to facilitate connections between lines. This
differs from the shade keyword, which shades full character cells. It may be easier to use the box
keyword's shade parameter than to calculate shade positions that are offset from similar box parameters.
To draw lines rather than boxes, simply set the cols or rows to 1. If both cols and rows are 1, then a
vertical line is drawn 1 character high. To draw a box that is 1 column wide or 1 row deep, use 1.01 or
.99. If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no boxes drawn, or several. column and
row are 0-based in these formats and can be negative if required. The search for text or regexpr can be
limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal
"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

UnForm Version 6

69

Line Thickness
The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels
to use when drawing the box outline. The default thickness is 1 dot. UnForm always uses dots at 1/300
inch. If a shade parameter is desired, then the thickness parameter is required.

The left, right, top, and bottom options override the specified thickness for any given side of the box.
Setting "left 0", for example, would erase the left side of the box, while "right 4" would set the right side
to 4 pixels wide.

The double or dbl option indicates a double-lined box. Both the inner and outer lines will be drawn at
the normal thickness, and the optional gap may be specified to set the pixels between each line. The
default gap is 1 pixel. The gap must be a digit between 1 and 9.

Shading
The optional shade parameter may be used to specify a "percent gray" value from 1 to 100. Most laser
printers can only print about 8 different shades of gray, so a value of 45, for example, may print the
same pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any
shade at all: a shade level of 0 will force a white interior, even if another box or shade command draws
shading inside the bounds of the box. If an interior color is specified, shading is ignored.

Color
Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use
"lcolor" or "lcolor rgb" for lines, and "scolor" or "scolor rgb" for shade.

Grids
The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.
gridcols specifies one or more vertical column settings in the structure of
column[:thickness[:shade[:color|rrggbb]]]. Multiple columns can be delimited by any character other
than digits, the decimal point (.), and the colon. Each column designates a vertical line to draw from the
top to bottom edges of the outer box. If a thickness is specified, then the line is drawn using that
thickness (0 would draw no line at all). The default thickness is 1. If shade is specified, then a shade
region is drawn from the left edge or prior column. gridrows is identical in structure to gridcols, but
specifies the horizontal rows rather than vertical columns. The "icols" and "irows" introducers indicate
columns and rows relative to the upper-left corner of the outer box. The "ccols" and "crows"
introducers indicate absolute columns and rows. In each case, any column or row specification outside
the bounds of the box is ignored.

For partial shading, partial color shading, or multiple color shading, see the shade keyword. You can
improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher
dpi settings, by using the gs command.

UnForm Version 6

70

Examples:

box 5.5,2.5,34,3,2,10 will draw a box 34 columns wide and 3 lines high, at column 5.5, line 2.5. The
box border will be 2 dots wide (1/150 inch). It will be filled with 10% gray shading.

box 1,1,55,1 will draw a horizontal line, 55 columns wide, at column 1, line 1.

box "Customer Total",-1,-1,60,3 will draw a box around the text "Customer Total", beginning 1
column before and 1 row up, for 60 columns and 3 rows.

cbox 12,{start_row-.5},40,{end_row+.5} will draw a box with the top and bottom lines based on two
numeric variables, which would have been previously calculated in a prepage or precopy code block. In
using the cbox version, the second pair of numbers indicates the lower-right corner, rather than the
number of columns and number of rows. The code block used to calculate these positions might look
something like this code, which finds the first and last rows that contain any data in the row range of 22
through 55:

prepage{
start_row=0,end_row=0
for line=22 to 55
 if trim(text$[line])>"" then if start_row=0 then start_row=line
 if trim(text$[line])>"" then end_row=line
next line
}

cbox .5,22,80.5,66,3, ccols=10.5 30 55.5 67.5, crows=23.25:1:20 60 will draw a box from column 0.5,
row 22 through column 80.5, row 66. The lines of this outer box will be 3 pixels wide. Inside this box
will be vertical lines at columns 10.5, 30, 55.5, and 67.5. Also inside the box will be a 1 pixel high
horizontal line at row 23.25, with 20% shading from row 22 to row 23.25, and another 1 pixel horizontal
line at row 60.

Drivers: all (gridcols and gridrows options supported only in laser and pdf)

UnForm Version 6

71

BOXR, CBOXR

Syntax

1. boxr col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]
[,rgb rrggbb] [,tl=topleft] [,tr=topright], [,bl=bottomleft], [,br=bottomright] [,icols=gridcols]
[,irows=gridrows] [,ccols=gridcols] [,crows=gridrows] [,lcolor=color] [,lcolor rgb=rrggbb]
[,scolor=color] [,scolor rgb=rrggbb]

2. boxr "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color] [,rgb rrggbb] [,tl=topleft] [,tr=topright],
[,bl=bottomleft], [,br=bottomright] [,icols=gridcols] [,irows=gridrows] [,ccols=gridcols]
[,crows=gridrows] [,lcolor=color] [,lcolor rgb=rrggbb] [,scolor=color] [,scolor rgb=rrggbb]

If cboxr is used, then columns and rows are interpreted to be the opposite corner of the box, and
columns and rows are calculated by UnForm.

Description

A box with rounded corners of the indicated dimensions will be drawn. All dimensions can be specified
to 2 decimal places, in the range of -255 to +255. Whole number col and row represent center points;
lines are drawn to the center point of the character position identified in order to facilitate connections
between lines. If used, numexpr is a Business Basic expression that generates a numeric value for the
column, row, columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no boxes drawn, or several. column and
row are 0-based, in these formats, and can be negative if required. The search for text or regexpr can be
limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal
"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Line Thickness
The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels
to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at
1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Corner Rounding
To specify the degree of rounding for different sides, specify values for tl, tr, bl, and br, as desired. The
specification for each corner is col:row:scale, where col is the number of columns from the corner to

UnForm Version 6

72

begin the rounding, row is the number of rows from the corner to begin rounding, and scale is the level
of rounding, from –100 for fully convex, to 100 for fully concave, where 0 becomes a straight line from
the column and row break points. If no rounding options are specified at all, then UnForm will apply
default rounding to all four corners. If any rounding is specified, then any unspecified corners become
square corners.

Shading
The optional shade parameter may be used to specify a "percent gray" value of from 1 to 100. Most
laser printers can only print about 8 different shades of gray, so a value of 45, for example, may print the
same pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any
shade at all: a shade level of 0 will force a white interior, even if another box or shade command draws
shading inside the bounds of the box.

Color
Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use
"lcolor" or "lcolor rgb" for lines, and "scolor" or "scolor rgb" for shade.

Grids
The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.
gridcols specifies one or more vertical column settings in the structure of
column[:thickness[:shade[:color|rrggbb]]]. Multiple columns can be delimited by any character other
than digits, the decimal point (.), and the colon. Each column designates a vertical line to draw from the
top to bottom edges of the outer box. If a thickness is specified, then the line is drawn using that
thickness (0 would draw no line at all). The default thickness is 1. If shade is specified, then a shade
region is draw from the left edge or prior column. gridrows is identical in structure to gridcols, but
specifies the horizontal rows rather than vertical columns. The "icols" and "irows" introducers indicate
columns and rows relative to the upper left corner of the outer box. The "ccols" and "crows" introducers
indicate absolute columns and rows. In each case, any column or row specification outside the bounds
of the box is ignored.

For partial shading, partial color shading, or multiple colors shading, see the shade keyword. You can
improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher
dpi settings, by using the gs command.

UnForm Version 6

73

Examples:

boxr 10,9.5,70,4.25,2,5,lcolor=blue will draw a box with default rounding on all corners, with a 2 pixel
edge and 5% shading. The edge line will be drawn in blue if the output device supports color.

cboxr 0.5,60,80.5,66,1,0,bl=3:1.5:75,br=3:1.5:75 will draw a box with corners 0.5,60 and 80.5,66, with
a 1 pixel border, no shading, and just the bottom left and right corners rounded. The rounding will start
3 columns and 1 row from the corners, and be rounded outward.

Drivers: laser, pdf

UnForm Version 6

74

COLS

Syntax

cols n

Description

This keyword specifies the number of columns to use for the form or report. The base font is scaled to
accommodate this many columns. If present, this value will override any calculation based on the cpi
keyword.

The number of columns n can be any value up to 255.

Examples:

cols 80 will set the print pitch to accommodate 80 columns per page.

Drivers: all

UnForm Version 6

75

COMPRESS

Syntax

compress

Description

If this command is present, then PDF output is compressed using the RLE compression algorithm. This
is most effective when repeated characters like spaces are present in the output, such as wide reports
with empty space between columns. Pdf output can be reduced by as much as 30%, though in some jobs
there may be little or no change. Compression requires extra processing and will therefore affect
performance.

Compression can also be turned on with the –compress command line option.

Drivers: pdf only

UnForm Version 6

76

CONST

Syntax

const ID=value

Description

The const keyword provides the capability to use a named value as a parameter to other keywords. If,
for example, you want to place a series of text values at a certain column position, but may need to
adjust the position in the future, and then set a constant ID to the column position value, then use the ID
in the column position of all the text values.

const COLPOS=22.25
text COLPOS,30,"Text line 1"
text COLPOS,31,"Text line 2"
text COLPOS,32,"Text line 3"

A given constant ID can be reused, and references to it in subsequent rule set lines will reflect the new
value. Also, a constant defined before the first rule set in the rule file will apply to any rule sets in the
file, unless the same ID is reused in any particular rule set.

Note that case does make a difference. "COLPOS" and "colpos" are different constants. Take care not
to use constant names that may inadvertently cause unintended replacements. For example, it may be
tempting to use a constant named "font", but this would conflict with any font command. There would
be no conflict, however, between a constant named FONT and a lower-case font command.

Constant names are limited to 25 characters, and constant values are limited to 75 characters. If you use
a quoted value, the outer quotes are removed before the value is substituted into the rule file commands.

Drivers: all

UnForm Version 6

77

COPIES, PCOPIES

Syntax

copies copies
pcopies copies

Description

These keywords are used to generate multiple copies of the form. The number of copies is specified by
the number copies. If the copies form is used, then the entire print job is duplicated the number of times
indicated. If the pcopies form is used, then each page is duplicated as it is printed, so the pages come
out collated.

The two versions of this keyword are mutually exclusive; the last one that is found in the rule set is the
one used. Note also the -c and -pc command line options can be used, though these keywords take
precedence, if specified.

Individual copies can be managed to any degree necessary via "if copy n" rule set logic, and also full
programming logic with the "precopy {}" and "postcopy {}" logic entry points. Use this to modify the
output device for specific copies, or to modify the content of specific copies.

To add attachments that are separate pages from the standard form pages, assign a copy to the
attachment, and add a notext keyword for that copy.

copies 2

if copy 2
notext
attach "/usr/unform/attachments/attach1.pcl"
end if

Examples:

copies 2 will print the entire report twice.

pcopies 3 will print each page three times.

Drivers: all, pdf driver treats copies as pcopies

UnForm Version 6

78

CPI

Syntax

cpi characters-per-inch

Description

The cpi keyword indicates what pitch UnForm should use when printing the text of a form or report.
From this, along with the paper dimensions, UnForm can determine the columns per page and ensure
that the proper pitch is selected. As UnForm uses cpi to calculate a cols value, cpi values are rounded to
allow even character spaces. It is advisable to use cols rather than cpi.

See also lpi, cols, rows.

Examples:

cpi 16.66 will set the character spacing to a common "compressed" character pitch.

Drivers: laser, pdf, zebra

UnForm Version 6

79

CROSSHAIR

Syntax

crosshair

Description

If this command is present in a rule set, then UnForm will generate a crosshair grid over the page,
making rule file development easier. Crosshair mode can also be turned on from a code block with the
crosshair$ variable.

Drivers: laser, pdf

UnForm Version 6

80

DETECT

Syntax

detect column(s),row(s),"[^[!]]text"
detect column(s),row(s),"[^[!]]~regexpr"

Description

This option is used to identify a form from the data read by UnForm. If the -r option is used on the
UnForm command line, then detect keywords are ignored. Otherwise, each rule set's detects are
analyzed until a match is found. If more than one detect keyword is specified for a rule set, then the job
must match all of them. Detection occurs only at the start of the job, using the first page of data read
from the input stream.

If column and row are 0, then the whole page is scanned for the occurrence of the text. If column is 0
and row is greater than 0, then the whole line is scanned.

column and row can contain ranges in the format from-through, such as '20-25' for the columns (or
rows) 20 through 25.

The format of the quoted third parameter determines how the detection scan is handled. If plain text is
specified, then a literal match for text is performed. If the text begins with the prefix character ~, then a
regular expression search for regexpr is performed.

If the text begins with ^, then a case insensitive match is performed.

Following the optional ^ character, but before the ~ character, may be a ! character, indicating a scan for
NON-matches.

The following prefix sequences are valid: ^, ^~, !, !~, ^!, ^!~, meaning, respectively: case insensitive
text, case insensitive regular expression, text not found, regular expression not found, case insensitive
text not found, case insensitive regular expression not found.

Examples:

detect 0,2,"INVOICE" would search for INVOICE anywhere on line 2.

detect 10-12,4,"~../../.." would match a date format at column 10, 11, or 12, on row 4.

detect 65-66,6-8,"!~../../.." would match a date format NOT occurring at column 65 or 66, on rows 6
through 8.

UnForm Version 6

81

detect 0,2-3,"^invoice" would match INVOICE, Invoice, invoice, etc. anywhere on lines 2 or 3.

Drivers: all

UnForm Version 6

82

DOWN

Syntax

down n [,gap]

Description

This instructs UnForm to allocate virtual pages down the physical page, evenly spaced within the top
and bottom margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale
images, barcodes, or attachments. Also see the across command.

Down can be used inside an 'if copy' block, but is only compatible with non-collated copies. As a result,
copy-specific down is only available in the laser driver, and only in conjunction with the copies
command, not pcopies.

If the optional gap value is specified, it indicates the number of vertical pixels between each virtual
page. If it is not specified, the default is to use 1 row (as opposed to pixels).

See the 132x4 rule set in advanced.rul for an example of using the across and down commands.

Drivers: laser, pdf

UnForm Version 6

83

DPI

Syntax

dpi 300 | 600 | 1200

Description

The dpi keyword instructs PCL printers to print at the specified dots per inch. The default dpi value is
300; however, many printers are capable of printing at 600 or 1200 dpi (or possibly even higher values).
This takes more printer memory, but results in crisper characters and lines.

Drivers: laser only

UnForm Version 6

84

DSN_SAMPLE

This command is used exclusively by the UnForm Designer tool, to store the name of a sample text file
to apply to previews generated in the design environment.

UnForm Version 6

85

DUMP

See the image command.

UnForm Version 6

86

DUPLEX

Syntax

duplex mode [, left-offset] [, top-offset]

Description

Duplex printing, if supported by your printer, causes printing on both sides of the paper.

mode can be 1 for long-edge binding, or 2 for short-edge binding. A mode of 0 will print in simplex
(single-sided) mode.

left-offset and top-offset are optional values in decipoints (1/720th inch) that indicate how far to shift the
page printing from the left and top edges, respectively. Note that margins may need to be adjusted (with
the margin keyword) if offsets are used.

Note that any duplex command will cause a page eject on a laser printer, so timing of the duplex
command is important. For example, if you use pcopies 2, and the second reserved for a back side
attachment, the duplex command should be in the 'if copy 1' block. This forces copy 1 to be on the front
side and copy 2 to follow on the back side. This concept is shown in the example below.

Examples:

pcopies 2
if copy 1
 duplex 1
 # complete form for front of page
end if
if copy 2
 # attachment for back of page
 notext
 attach "terms.pcl"
end if

Drivers: laser

UnForm Version 6

87

EMAIL

Syntax

email { to | {toexpr} }, { from | {fromexpr} }, { subject | {subjectexpr} }, { msgtxt | {msgtxtexpr} } [,cc
"cc"|{ccexpr}] [,bcc "bcc"|{bccexpr}], [,attach "attach"|{attachexpr}] [,otherhead|oh
"otherhead"|{otherheadexpr}] [,login "login"|{loginexpr}] [,password|pswd "password"|{passwordexpr}]

Description

The PDF document being created will be emailed as an attachment upon completion, using the
information supplied. The name of the attached file is supplied with the "-o" argument on the UnForm
command line, or can be overridden by setting the variable output$ in a prejob code block.

Each of the first 4 values is positional, and each can be a literal value or an expression enclosed in curly
braces. The to value is the only required value, and must be a fully qualified email address, or a comma-
separated list of email addresses. The from value, if supplied, must also be a fully qualified email
address. If it is not supplied, then a default address will be used from the mailcall.ini file.

Note that the expressions are resolved as of the last copy of the last page of the job. If you need to use
data from an initial page, use a prejob code block to assign variables, and then use those variables in the
expressions.

In order to use this command, the mailcall.ini file must be edited to configure a mail server
(server=value) line. See the Email Integration chapter for more detail about configuration, and also for
information about using direct calls to the MailCall program bundled with UnForm. Direct calls enable
more control over email processing.

The msgtxt value can contain line-feed characters to break lines. These characters can be added in
expressions as CHR(10) functions or as $0A$ hex literals, or with the literal backslash-n (\n) character
sequence. Note that if the message text starts with a structure "<value>", then it is assumed to be an
HTML message, and the appropriate header tag is set to send the message as HTML.

Optional arguments can follow the message text value in any order, prefixed by the appropriate option
name:

cc Followed by a literal that is, or an expression in curly braces that resolves to, a list

of email addresses separated by commas. These addresses become the CC, or
carbon copy, list for the email.

bcc Followed by a literal that is, or an expression in curly braces that resolves to, a list
of email addresses separated by commas. These addresses become the BCC, or
blind carbon copy, list for the email. Blind carbon copy addresses are stripped
from the email header before the message is sent.

attach Followed by a literal that is, or an expression in curly braces that resolves to, a list

UnForm Version 6

88

of additional attachment files, separated by commas. Note that the PDF job itself
is always emailed as an attachment, so only use this option for adding additional
attachments to the message.

otherhead or oh Followed by a literal that is, or an expression in curly braces that resolves to, one
or more line-feed or "\n" delimited custom email headers.

login Followed by a literal that is, or an expression in curly braces that resolves to, a
login name. Some mail servers are configured to require a login and password for
authentication. This value and the password value are then required.

password or pswd Followed by a literal that is, or an expression in curly braces that resolves to, a
login password. Some mail servers are configured to require a login and
password for authentication. This value and the login value are then required.

Example

prejob{
email_to$=trim(get(1,1,50))
invoice_no$=get(60,5,6)
}

email {email_to$}, "sales@acme.com", {"Invoice number "+invoice_no$}, "Please pay the attached
invoice promptly.\n\nBest regards,\n\nAcme Distributing", cc "accounting@acme.com"

Drivers: pdf only

UnForm Version 6

89

ERASE, CERASE

Syntax

1. erase col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. erase "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}

If cerase is used, then columns and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

Description

The text from the input, in the region indicated by the column, row, columns, and rows parameters, is
erased. This keyword may be used to easily clear unwanted text from the output. The text is erased
after text expressions and prepage and precopy code blocks are executed, so the information to be erased
is available to those routines. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no erased regions, or several.
column and row are 0-based in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@" character in
text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Also see the erase option of the hline and vline keywords.

Examples:

erase 1,5,30,4 erases text from a region from column 1, row 5, for 30 columns and 4 lines.

erase "John Smith",0,0,10,1 erases all occurrences of "John Smith" from the page.

Drivers: all

UnForm Version 6

90

FIXEDFONT

Syntax

fixedfont fontcode

The fixedfont keyword overrides the default fixedfont setting found in the [default] section of the
ufparam.txt file. If there is no fixedfont value in that file, then the fontcode 4099 (Courier) is used.

The fontcode specified is used for the text sent to UnForm by the application. It must be a non-
proportional, scaleable font, except in the circumstance where a non-scaleable font provides the exact
pitch required by UnForm to lay out the columns within the margins.

Drivers: laser only

UnForm Version 6

91

FONT, CFONT

Syntax

1. font col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode]
[,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,fixed | proportional]
[,color] [,rgb rrggbb] [,justification] [,upper|lower|proper] [,fit] [,weight w|weightname] [,style
style|stylename]

2. font "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic]
[,underline] [,light] [,shade percent] [,fixed | proportional] [,color] [,rgb rrggbb] [,justification]
[,upper|lower|proper] [,fit]] [,weight w|weightname] [,style style|stylename]

If cfont is used, then columns and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

Description

The font keyword applies font control to all input stream text in the defined region of column, row,
columns, and rows. The other parameters are all optional. If used, numexpr is a Business Basic
expression that generates a numeric value for the column, row, columns, or rows.

If syntax 2 is used, then font attributes are applied relative to the occurrence of text or the regular
expression regexpr. In these cases, there may be no attribute regions, or several. column and row are 0-
based in these formats, and can be negative if required. The search for text or regexpr can be limited to
a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@"
character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Font Names and Numbers
fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all
PCL5 compatible printers. Alternately, font fontcode can specify a specific fontcode supported by your
printer. For example, if your printer supports True Type Arial, specify "font 16602". Bitmap fonts (as
opposed to scaleable fonts) should not be used. fontname and fontcode can also be specified from the
"ufparam.txt" file. UnForm 6 uses HP/GL by default for laser output, and justification is supported on
all native printer fonts. However, if the –nohpgl command line option is used, then only certain, known
fonts (found in fonts.txt in the UnForm directory) can be properly justified, if the center, decimal, or
right justification option is used. When producing PDF output, only native PDF fonts are supported.
All others are mapped to one of these fonts: Courier, Helvetica, or Times-Roman.

UnForm Version 6

92

Symbol Sets
symset can be any symbol set supported by your printer. The default symbol set is "9J", using a
Windows ANSI character set. symset can also be a name from the "ufparam.txt" file. The pdf driver
only supports the Windows ANSI symbol set.

Point and Pitch Sizes
size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a
fixed font. Values range from about 4 to 999.75. The default is based on the rows per page. Note that
for proportional fonts, the larger the number, the larger the size printed. Fixed fonts are the opposite.

Attribute Styles
The words "bold", "italic", "underline", and "light" will apply the indicated attribute(s) to the text.

Shaded Text
percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.

Fixed and Proportional Text
Any font code below 4100 is presumed to be fixed (mono-spaced), and codes 4100 and up are presumed
to be proportional. To override this assumption, specify one of the words "fixed" or "proportional".

Color
Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF).

Justification
justification can be one of the following words: "left", "center", "right", or "decimal". UnForm will
remove leading and trailing spaces from the text and justify it within the column specification. Decimal
justification will use a "." character unless a "decimal=character" line is placed in the ufparam.txt file
under the [defaults] section.

Text Case Conversion
The mutually exclusive "upper", "lower", and "proper" options will convert the text in the fonted region
to all UPPER, lower, or Proper case. Proper case capitalizes the initial letter of each word or word
segment preceded by a non-letter or non-digit character.

Fit to Width
If the "fit" option is used, then each line in the font region is scaled down, if necessary, to fit within the
defined number of columns for the region. This differs from the text command's fit option, in that each
line is treated distinctly, rather than the entire set of lines being calculated as a unit.

Weight and Style
Some laser printer fonts must be specified with given weight or style in order to be selected by the
printer. For example, the font Clarendon Condensed is only available if the condensed style is specified,
by adding "style 4" or "condensed" to the font command. Style and weight options and codes can be
found in the ufparam.txt file. Note that fonts are expressly designed for certain weights and styles, and

UnForm Version 6

93

simply specifying an unsupported value does not produce the desired result. In fact, it may result in
selection of a different font entirely. Check your printer's documentation or control panel prints for
supported fonts.

Note that if you use identical font commands for two adjacent or overlapping regions, UnForm will
combine the regions. For proportionally spaced fonts, the result will be misaligned columns. To avoid
this, you can add non-operational options, like "black" or "shade 100" to alternating commands, so
UnForm will not treat them as identical.

Examples:

font 10,20,29,50,cgtimes,12,center will change the text in the region starting at column 10, row 20, for
29 columns and 50 rows, to 12-point cgtimes. The text will be centered within the 29 column width.

cfont 1,20,132,52,courier,16.67 will change the font of the region specified to 16.67 pitch courier.
Since courier is a mono-spaced font, the number 16.67 is interpreted as a pitch (characters per inch)
rather than a point size.

cfont {pos("Description"=text$[22]},23,{pos("Units"=text$[22])-1},60,univers,10 will calculate the
starting and ending column based upon where "Description" and "Units" occur in line 22, and change
the font for that column range, for rows 23 through 60.

Drivers: all, but note the following:

PDF: maps pcl font names and numbers to Courier, Helvetica, or Times-Roman. Symbol set 9J is the
default and the only symbol set supported.

zebra: symbol sets are not supported. size is limited to scalability of the font in the printer's firmware,
typically integer multiples of the base font size in dots. Color is not supported, nor is justification.
Shading can be either 100% (black) or 0% (white). Font names are not mapped. Specify fonts instead
as font codes, which must be internal font identifiers, such as a-f, 0-9. See the ZPL documentation for
font codes.

The fit option is only supported in laser and pdf drivers.

UnForm Version 6

94

GS

Syntax

gs [yes | on]

Description

The gs command can be used to control graphical shading. The command by itself or followed by the
words "yes" or "on" will turn on graphical shading. Any other parameter value will turn graphical
shading off, resulting in the highly efficient, though not as finely rendered, internal laser shade
commands. The –gs command line option can be used to specify graphical shading by default.

If dpi is set to 600 or above (and the printer supports 600 dpi printing), graphical shading is even more
finely rendered. Note that some faxing products that convert pcl code into low-density bitmaps provide
more readable output without graphical shading. You can selectively turn graphical shading on or off
within "if copy" blocks.

Using the gs command will add approximately 2000 bytes of additional overhead to a job.

Example:

gs on

if copy 2
 gs off
 output "|vfx –n " + faxnumber$ +" –F pcl"
end if

Drivers: laser only

UnForm Version 6

95

HLINE

Syntax

hline "text" [,erase] [,extend] [,thickness]

Description

Any horizontal occurrence of the text indicated, of at least the length indicated, will be replaced with a
horizontal line. The text must be composed of a single character repeated any number of times. There
can be multiple hline keywords in a rule set, if needed. For example, if both dashes (-) and equal signs
(=) are used for lines in a form, both can be specified in separate hline keywords.

This keyword is useful if the application already produces boxes and lines with standard characters.
Also see the vline keyword.

As with all box drawing, UnForm will consider line endpoints to be at the center position of a character,
which may impact how lines intersect. Lines are drawn 1 pixel (1/300 inch) thick.

If the "erase" option is used, then no line is drawn. Instead, the horizontal text values are simply
removed from the output.

If the "extend" option is specified, the lines are extended ½ character left and right. The thickness
parameter specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format
'@left,top,right,bottom'. To use a literal "@" character in text, it is necessary to specify "\@".

Example:

hline "---" will search the report for 3 or more horizontal dashes. All such dashes found will be
replaced with a horizontal line.

Drivers: all

UnForm Version 6

96

HSHIFT

See the shift command.

UnForm Version 6

97

IF COPY … END IF

Syntax

if copy n,n,…
…
end if

Description

The if copy command will cause any following commands, up to an end if command, to apply only to
the copy or copies specified. The feature is used to manipulate the content of various copies. For
example, you may wish to add a text message on a specific copy, or suppress a region of text with a
white shade. When combined with attach and notext keywords, attachments can be added without the
printing of text.

end if indicates that conditional processing of the rule set is done, and keywords apply to all copies
again. The end if keyword may also be entered as endif or fi.

Examples:

if copy 2 will process keywords following this line, until an endif keyword is found, and apply
keywords only to copy 2.

if copy 3,4,6 will apply keywords to the 3 copies identified.

Drivers: all

UnForm Version 6

98

IF DRIVER … END IF

Syntax

if driver n
…
end if

Description

The command if driver will cause any commands to apply only when the rule set is evaluated under the
driver n. The driver is specified with the command line option "-p", and defaults to "laser".
end if indicates that conditional processing of the rule set is done, and keywords apply to all copies
again. The end if keyword may also be entered as endif or fi.

Example:

This example will use the image "pdflogo.pdf" when "-p pdf" is used on the command line.

if driver pdf
 image 1.5,2,15,6,"pdflogo.pdf"
end if

Drivers: all

UnForm Version 6

99

IMAGE

Syntax

image col|{numexpr}, row|{numexpr} [, cols|{numexpr}, rows|{numexpr}], {"file" | {expr}} [,color],
[,cache] [,option code] [,shade percent]

Description

The image command is used to print an image file specified by file to each page when the output
position is the column and row indicated. This option is typically used to add graphic logos to forms.
The column and row can be specified with decimal fractions to 1/100 character. The image file must be
in the native format for the driver being used: pcl raster for laser, PDF for pdf, zpl for zebra. An
exception to this is that if image conversion is configured, then most image formats can be converted to
pcl or pdf as needed. See Automated Image Conversion, below.

If the row is 0 or 255, then UnForm will apply no positioning to the output. In this case, the positioning
desired should be present in the file. UnForm will scan the file, looking for image information and
possibly position data. Just that information will be sent to the output device. If the row is greater than
0 and less than 255, then UnForm will ignore any positioning that might be contained in the image file,
and instead place the upper left corner of the image where specified.

The optional cols and rows parameters are used in some circumstances. If not supplied, and scaling is
possible, then each defaults to 10. The following list specifies how cols and rows are used:

• PDF images are scaled so that they fit within the cols and rows specified.
• Laser images are scaled only if automated image conversion is enabled (see below).

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which
will be interpreted as the file name as each copy prints.

If UnForm is producing PDF output, and the image file name ends in .pcl, .prn, or .rtl, then the file name
is modified to have a .pdf extension automatically. This allows a single fixed file name to accommodate
both laser and PDF output without special logic. If automated image conversion is enabled, and the
extension is other than one of these four values, then the image is converted to the appropriate format
and size.

Shading of an image, most often used for producing a watermark, can be specified using the shade
percent option. This causes a shade mask of the percent specified to be applied as a mask to the image,
resulting in a portion of the pixels being converted to white.

UnForm Version 6

100

Creating Native Image Formats Manually
The most commonly used method is to use the publisher's web site image conversion utility, available
from the UnForm page at http://synergetic-data.com. You can upload an image file and receive back
images in PCL, RTL, or PDF format.

Another way to generate a PCL image for UnForm is to set up a HP LaserJet III or higher printer on a
Windows workstation, and specify the "port" to be a file. You don't need a physical printer, just the
Windows printer driver. Then use a graphics or word processing tool to display the image and print to
that printer. Make sure that the properties are set to raster graphics and not vector graphics. Windows
will prompt for a file name, and produce that file as a PCL raster image that UnForm can use. Note that
even if the file has a .prn extension, it will still be a PCL file. Do not select a driver that uses PCL6, as
that may not produce a PCL raster image. Choose PCL5 driver, or a sub-level, such as PCL5e.

Note that for color laser printers, UnForm requires a HP RTL (raster transfer language) format file.
Color LaserJet printer drivers for Windows do not produce RTL images. Image Alchemy, from
Handmade Software Inc. (http://www.handmadesw.com), is recommended to create RTL files, or you
can use the image conversion utility mentioned above.

To create an image file for the pdf driver, use either Adobe Acrobat Distiller or rely on the automated
image conversion, if configured. If you use Distiller, be sure to set the job options to turn OFF the
"Optimize PDF" flag, and ON the ASCII flag. UnForm's PDF parser relies on a standard, non-optimized
PDF file format.

PDF Image Considerations
Image file names can be up to 75 characters in length.

The default value for cols and rows is 10, if not supplied. Version 5 and prior allowed image sizes to
vary by device by simply not enforcing a scaled size.

PDF images are scaled to the largest size that will fit within cols and rows while maintaining the aspect
ratio of the source image. Version 5 and prior scaled images to both cols and rows, even if the result
stretched the original image.

Automated Image Conversion and Scaling
UnForm can be configured to use external image management software to perform scaling and
conversion as needed, if a supplied image is not in pcl or PDF native format. Two commonly used
products are the commercial Image Alchemy, available from http://handmadesw.com, and open source
ImageMagick from http://imagemagick.org. The configuration for this is entered into the [images]
section of the uf60d.ini file. One entry, converter=program sets the path of the converter executable
(usually "convert" or "convert.exe" for ImageMagick, and "alchemy" or "alchemy.exe" for Image
Alchemy). Entries for command lines for pcl, pclc, and PDF are configured for pcl, color pcl, and PDF,
image conversion lines, respectively.

UnForm Version 6

101

Related to the conversion are three options: color, cache, and option code. These three options have the
following use:

If the word color is present, then the command line configured for pclc is used, rather than the default
pcl line. Note that this has no effect on PDF output, and it should not be used if the target device is a
black and white laser printer, as the image produced will probably be incompatible with that type of
printer. The –ci command line option can also be used to specify color images by default.

If the word cache is present, then UnForm will store converted files by their base name and
characteristics in the images sub-directory in the UnForm directory. UnForm will then use this pre-
converted file in subsequent jobs calling for the same file and options. Note that this technique will not
work if different paths are used for the same base file name. For example, if a standard file called
"signature.bmp" is found in different users' home directories, it would not work to cache the images, as
every user's signature would be have the same name. If the source image ever changes, simply remove
the file(s) from the images directory, and UnForm will re-convert the files as needed.

The option code entry can be used to reference secondary conversion lines in the uf60d.ini file. By
referencing code, different conversion command lines can be configured and specified by the image
command. The name referenced will be pcl-code or PDF-code, as required. Option code values can be
up to 10 characters long and are case sensitive.

Within each line, UnForm will replace the following markers with appropriate values determined from
the image command:

%i for the input image file
%o for the output PDF or pcl image file that UnForm will use
%d for resolution in dots per inch
%x for image width in pixels
%y for image height in pixels

Here is an example of configuration using Image Magick for UNIX, using the convert command:

Examples for ImageMagick (note pcl requires 5.5.7+)
converter=convert
pclc=%i %o -density %dx%d -dither -resize %xx%y >/dev/null 2>&1
pcl="%i" -density %dx%d -monochrome -resize %xx%y "%o" >dev/null 2>&1
pdf="%i" -density 300x300 -colors 256 "%o" >/dev/null 2>&1
pdf-72="%i" -density 72x72 -colors 256 "%o" >/dev/null 2>&1

UnForm Version 6

102

Examples:

image 0,255,"/usr/unform/logo.pcl" will place the named file on each page. The file should contain
the desired cursor positioning.

image .5,1.25,"/usr/unform/logo.pcl" will place the raster image contained in the named file at column
.5, row 1.25.

image {icol},{irow},{icols},{irows},{logo$} will place an image file specified in the variable logo$ at
the position specified by the variables icol and irow. If used in a pdf driver or when automated
conversion and scaling is invoked, the variables icols and irows would specify the image size (more
specifically, its bounding box) in columns and rows. All the variables would have to be created in a
code block, such as prejob{} or prepage{}.

Drivers: all.

Laser requires pcl raster format, pdf driver requires PDF format, zebra requires zpl format. If automatic
image conversion is configured, then laser and PDF images can be produced from various formats
supported by the configured converter. Shading applies only to laser images.

UnForm Version 6

103

ITALIC

See the bold keyword.

UnForm Version 6

104

KEYWORDS

Syntax

keywords "keywordstring" | {expression}

Description

If this command is present, then PDF document creation adds a keyword keywordstring, or the result of
expression, to the document content. This value is available in the general properties display dialog in
the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 6

105

LANDSCAPE, RLANDSCAPE

Syntax

landscape or rlandscape

Description

This keyword will ensure that UnForm produces output in landscape (horizontal) orientation. The
default orientation is portrait (vertical), unless UnForm encounters a PCL control code setting landscape
mode (hex 1B266C314F) on the first page. Use of this keyword will force landscape mode regardless of
PCL control codes found in the input.

The rlandscape command will turn on reverse landscape mode.

Note that landscape is supported inside 'if copy' blocks, allowing different copies to be in different
orientations.

Also see the portrait keyword.

Drivers: laser, pdf (rlandscape is laser only)

UnForm Version 6

106

LIGHT

See the bold keyword.

UnForm Version 6

107

LPI

Syntax

lpi line-height

Description

The lpi keyword indicates the vertical line height UnForm should use when printing the text of a form or
report. From this, along with the paper dimensions, UnForm can determine the rows per page and
ensure that the proper vertical placement is selected for each line. To save time and effort, use the rows
keyword and UnForm will calculate the lpi.

See also cpi, cols, rows.

Examples:

lpi 8 sets 8 lines per inch.

lpi 6.6 uses a common laser printer value based on 66 lines in a 10 inch printable page length on letter
paper.

Drivers: all

UnForm Version 6

108

MACRO

Syntax

macro n

Description

This keyword will cause UnForm to invoke macro number n in the LaserJet printer. This macro must be
defined and downloaded to the printer as a permanent macro. This keyword could be used to call a
macro for a company letterhead, for example. For more information, see the Working With Macros
chapter.

Drivers: laser only

UnForm Version 6

109

MACROS

Syntax

macros on|off

Description

This keyword causes UnForm to invoke (or not invoke) macros for fixed raster elements (box, shade,
text, image, and attach). Macro usage can significantly reduce the data transfer requirements to the
printer, most noticeably on a serial or parallel connection with many pages of similar output. The
printer must have enough memory to store and execute the macros.

The default macros setting is "off"; the "-macros" command line option establishes the default macros
setting to "on". This keyword overrides either default for this rule set.

Macros are numbered from 0 to 32767. UnForm will start macro definitions at 32000 unless the
"[defaults]" section, "macrono" field is set to a different value in the ufparam.txc file. If a site uses
macros and finds a conflict with this number, then the value should be changed to allow an available
contiguous range for UnForm.

Drivers: laser only

UnForm Version 6

110

MARGIN

Syntax

margin[s] left, right, top, bottom

Description

The margin keyword is used to increase the margins used by UnForm when calculating row and column
positions. Normally, UnForm will use a 0.25 inch margin on all 4 sides, based on the paper size in use.
If you need to increase any margin, you can specify the dot offsets desired. Note that the values for left,
right, top, and bottom are entered in dots, which default to 300 dpi, but can be modified by the dpi
keyword.

For example, margin 75,75,0,150 (at 300 dpi) would set left and right margins to 0.5 inches, the top
margin would remain at 0.25 inches, and the bottom margin would be 0.75 inches.

Drivers: laser, pdf

UnForm Version 6

111

MERGE

Syntax

merge "ruleset" [, "rulefile"]

Description

This command will insert the contents of the ruleset into the currently parsed rule set. If the rulefile
parameter isn't supplied, the current rule file is used. Otherwise, rulefile is opened in the UnForm
directory or by full path, if specified, and is scanned for ruleset. This command can be used to
incorporate common elements into many rule set formats. For example, a name and address heading
could be placed into a rule set called "address_header", and various forms could use the command
merge "address_header" to include the commands it contains.

Note that if no rulefile is specified, then the rule file specified for the job is used for the merge, even if
the merge is nested within another merge that specifies another rule file.

Unlike other UnForm commands, merge works within code blocks, such as precopy or prepage, as well
as outside of code blocks.

Drivers: laser, pdf, zebra

UnForm Version 6

112

MICR

Syntax

micr col|{numexpr}, row|{numexpr}, "account"|{expr}, "check"|{expr}

Description

Prints MICR font at the col and row specified, for laser check printing. If used, numexpr is a Business
Basic expression that generates a numeric value for the column and row. The account number must be
in the format :123456789:xxx", where the colons surround the 9-digit bank number, and the balance of
the account number is terminated with, or contains, a quote. Quotes can be identified in a text literal
with <34>. A space after the bank number and terminating colon is optional. When the MICR code is
generated, colons or A become a "transit" symbol, B becomes an "amount" symbol, quote or C become
an "on us" symbol, and a hyphen or D becomes a dash . Account numbers can contain these symbols,
spaces, and digits. The check number can be up to 12 digits long. This keyword supports 8 inch checks
only, not the smaller 6 inch variety, which requires a different format for the MICR.

If no "on us" symbol is present in the account number (i.e. no <34> or C character), then one is
appended automatically.

The fixed bank number is typically hard-coded, but can be an expression if enclosed in braces {}. The
check number will generally be an expression, which can use get() to retrieve the number from the
application print, or can be a variable defined in a prepage{} block.

Note that with proper soft font configuration, you can use the text command to print MICR encoded data
in any format, such as that required by a deposit slip. The same MICR soft fonts included for use with
this command can be used as text soft fonts.

Example:

micr 6,42.25,":123456789:9999-1234<34>",{trim(get(65,5,6))} would print a MICR encoded line
with the indicated bank and account number, and a check number derived from the input stream data
printed at column 65, row 5, for 6 characters.

Drivers: laser only

UnForm Version 6

113

MOVE, CMOVE

Syntax

1. move col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, newcol|{numexpr},
newrow|{numexpr} [,retain]

2. move "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}, movecols|{numexpr}, moverows|{numexpr} [,retain]

Description

cmove causes cols and rows to be interpreted as the opposite corner of the region to be moved.

The move keyword moves a block of text to a new location on the page. Syntax 1 moves the region
indicated by col, row, cols, and rows so the new upper left point is at newcol, newrow. Syntax 2
searches for occurrences of text or the regular expression regexpr, respectively, and uses each location
found as a point from which col and row are measured (0-based movement). The rectangular region
specified is then moved movecols left or right, and moverows up or down. The search for text or regexpr
can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a
literal "@" character in text or regexpr, it is necessary to specify "\@".

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows, and also the "new" column and row (syntax 1) and the "move" columns and rows
(syntax 2).

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The optional "retain" parameter will cause UnForm to leave the text in its original location, in effect
copying the text rather than moving it.

Move commands simply shift text around in an internal array, so it is possible for moves to cascade to
other moves. Moves that specify positions (syntax 1) are performed in the order found in the rule set,
then moves that are relative to text (syntax 2) are performed in the order found in the rule set.

Note that move commands occur after any shift or vshift commands. If you would like to move data
based on positions before the shift and vshift commands, consider using a text command with an
expression using the cut() or mcut() functions.

UnForm Version 6

114

Examples:

move 5,10,40,4,20,20 moves text at column 5, row 10, 40 columns wide and 4 rows high, to the region
20,20,40,4.

move "Date",0,0,4,1,-4,0 moves all occurrences of the word Date left by 4 columns.

Drivers: laser, pdf

UnForm Version 6

115

NOTEXT

Syntax

notext

Description

This keyword specifies that no report text should be printed. Typically, this would be placed inside an
"if copy n" block in order to add an attachment and prevent overwriting of the form text.

Example:

if copy 2
 attach "/usr/unform/attachments/attach1.pcl"
 notext
end if

Drivers: all

UnForm Version 6

116

OUTLINE

Syntax

outline [level]

Description

The outline keyword turns on the production of PDF outlines (also called bookmarks) and the automatic
display of the outline when the document is displayed in an Adobe Acrobat Reader. The content of the
outline is set page by page, by setting the variable "outline$" in a precopy or prepage code block. Multi-
level outlines can be specified by delimiting the levels with vertical bar (|) characters in the outline$
string.

If level is supplied, it must be an integer greater than zero. This indicates the highest outline level that
will be initially opened when Acrobat displays the document. The default behavior is to have all levels
open, but with exceptionally large reports, it may be desirable to have just the first 1 or 2 levels initially
opened.

See the outline rule set in advanced.rul for and example.

Drivers: pdf only

UnForm Version 6

117

OUTPUT

Syntax

1. output "output-device"

2. output {expression}

Description

The output keyword is used to modify the output device of any copy. Normally, all copies are printed
to the output device specified in the "-o" option, or to standard out on UNIX. However, it is sometimes
desirable to have copies of forms sent to different devices, such as a different laser printer, or a fax
product.

The output-device can be a printer device, a pipe or re-direct (starting with | or >), or a filename.
Beware of pipes or redirects on UNIX, noting that any shell-aware characters, such as ampersands (&),
must be quoted.

If the second syntax is used, expression is evaluated after each page of input has been loaded and the
prepage subroutine has been executed.

When used inside an if copy block, the output for that copy only is changed. Note that this feature is
only supported in the laser driver. When using the pdf driver, any change to output for different copies
is ignored.

The "output$" variable can also be set in a code block for equivalent results.

Example:

if copy 2
output "|lp -daccounting -s"
end if

The above example would send the second copy of the form to the printer named "accounting".

Drivers: laser, pdf only for a job-wide specification outside of "if copy" blocks as PDF output cannot be
changed during printing.

UnForm Version 6

118

PAGE

Syntax

1. page rows

2. page cols, rows

Description

Syntax 1 specifies an input page length of no more than rows lines. If a form-feed character is
encountered first, then the page is considered complete also. This keyword is useful if the application
creates a form with line-feeds rather than form-feeds.

If syntax 2 is used, then each page worth of rows is divided into column groups of cols wide and treated
as virtual pages from left to right. For example, if an application prints mailing labels as 4-up labels
each 30 columns wide and 6 rows deep, then the command rows 30,6 would produce 4 pages, each 6
rows. This can be useful to convert n-up continuous label print jobs into laser label jobs using the
across and down commands.

If no rows or lpi keyword is specified, then n is assumed to be the rows per page.

Examples:

page 42 treats each 42 lines of input as a full page.

page 42
rows 66 treats each 42 lines input as a full page, but produces output scaled to 66 lines per page.

Drivers: all

UnForm Version 6

119

PAPER

Syntax

paper size

Description

The paper keyword overrides the "-paper" command line option. It tells UnForm the paper size to
instruct the printer to use, and also defines the page size from which UnForm calculates column and row
widths.

Common sizes for laser and PDF output include the following, plus any sizes defined in the [paper]
section of the ufparam.txt file (or ufparam.txc if defined).

Value Size
Letter 8.5 x 11 inches
Legal 8.5 x 14 inches
Ledger 11 x 17 inches
Executive 7.25 x 10.5 inches
A4 210 x 297 mm
A3 297 x 420 mm

For Zebra printers, indicated by the "-p zebran" command line option, the size is given as a single word
made up of the width in inches, a letter "x", and the height in inches. For example, a 3-inch by 5.25-
inch label would be specified by paper 3x5.25.

If you specify the "custom" paper size for laser output, UnForm will use the defined size for scaling and
will issue the proper custom paper command to the printer, but you may still have to modify the custom
paper setting via the printer's control panel to avoid prompts to load custom paper into the printer.

Drivers: all

UnForm Version 6

120

PORTRAIT, RPORTRAIT

Syntax

portrait or rportrait

Description

This keyword ensures that UnForm will print pages oriented in portrait (vertical) fashion. If, while
analyzing the report text, UnForm detects a PCL control sequence to turn on landscape mode, then
landscape will be the default orientation. Use this keyword to guarantee that the orientation will be
vertical.

The rportrait command turns on reverse portrait mode.

Note that portrait is supported inside if copy blocks, allowing different copies to be in different
orientations.

See also the landscape keyword.

Drivers: laser, pdf (rportrait is laser only)

UnForm Version 6

121

PRECOPY, PREDEVICE, PREJOB, PREPAGE

POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE

Syntax

precopy | postcopy | prejob | postjob | prepage | postpage {
code block
}

Note: the opening brace "{" needs to be on the same line as the keyword. The closing brace may
follow the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the form or report. They represent
six different subroutines that UnForm executes at specific points during processing. The code block can
be an arbitrary number of Business Basic statements; the total number of statements in all code blocks
can be about 6,000.

• prejob executes after the rule set has been read, and after the first page is read, but before any

printing takes place. Use this code to open files, define string templates, create user-defined
functions, and initialize job variables.

• postjob executes after the last page has been printed. Use this to close out your logic, such as
adding totals to log reports. There is no need to close files, since UnForm will RELEASE Business
Basic.

• predevice executes just after a device has been opened. With the laser driver, the output device can
be changed with the output command or by modifying the output$ variable in a prepage or precopy
code block. Whenever a new device is opened for any given copy, this code block is executed. The
programmer can then store information from the page that causes the device to be opened, such as a
customer code or fax information.

• postdevice executes just after the output device has been closed. Use this code block to perform
processing with prior output device, once UnForm has closed the device. For example, if the output
device changed when the customer number changed, then one or more pages for a given customer
would be in the output file and could be sent as a group to a fax product.

• prepage executes after each page is read, but before any printing takes place. Use this to gather data
associated with any page, or to modify the content of the text if you need such modifications to
apply to all copies.

• postpage executes after the last copy of each page has printed.

• precopy executes before each copy is printed. Use this to modify copy text content, to skip specific
copies, or to modify a copy's output device.

UnForm Version 6

122

• postcopy executes after each copy is printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable
assignments, and more. Program to your heart's content. UnForm will add extensive error handling
code within your code, and report syntax errors to the error log file or a trailer page.

Note that the merge command, while not executable code, is honored within a code block. The merged
data must be valid code block syntax.

For more details about programming code blocks, see the Programming Code Blocks chapter.

Important Note for BBx Developers

As UnForm 6 provides its own ProvideX-based run-time engine, it is important to note that code blocks
now operate under a ProvideX interpreter. UnForm includes lexical substitution for nearly all BBx
syntax; however, in order to read BBx data files, you must use the new bbxread() function, or develop
your own method of accessing the files via a native BBx execution in a pipe or one that uses a socket or
other means of communication. The bbxread() function is provided expressly for this purpose, and
allows for reading of records or record-based string templates with a file-name and a key.

Here is an example of using bbxread:

prepage{
ky$=get(65,5,6)
dim rec$:"id:c(5*=10),*:c(1*=10),…,fax:c(15*=10)"
bbxread("/usr/data/CUSTOMER",ky$,rec$,errcode)
if errcode=-1 then faxnum$=rec.fax$
}

In order to use the bbxread function, you must specify the bbpath value in the uf60d.ini file.

Example:

This example shows how to use various routines to make copy 2 of a form be a conditionally faxed
invoice, which is logged to another printer for verification.

prejob {
cust=unt; open(cust)"custfile.dat"
dim cust$:"id:c(5),name:c(30),*:c(100),faxnum:c(12)"
}

prepage {
if trim(get(10,2,30))="Acme Systems" comp$="01" else comp$="02"

UnForm Version 6

123

dim cust$:fattr(cust$)
read record (cust,key=comp$+get(10,5,6),err=next)cust$
}

precopy {
if copy=2 if cvs(cust.faxnum$,3)>"" output$="|fx -n "+ \
cust.faxnum$, log$=log$+cust.name$+$0d0a$ else skip=1
}

postjob {
if log$="" goto endjob
log=unt; open(log)">lp -dprinter"
print (log)"Fax Verification Log"
print (log)log$,chr(12),
close(log)
endjob:
}

Drivers: all, but predevice and postdevice are only supported by laser and pdf drivers.

UnForm Version 6

124

PROTECT

Syntax

protect [print] [,annotate] [,extract] [,modify]

Description

Without the protect command, UnForm generates a standard PDF document that can be opened,
viewed, printed, and modified by a user. This suffices for most business documents, but if an
application requires protection of the PDF contents, then this command can be used. It adds encryption
and protection to a PDF document.

By default, only viewing access is provided to users. Additional access can be granted by including the
following options:

print adds the ability to print the document.

annotate adds the ability to add text annotations and fill in form fields.

extract adds the ability to copy text or graphics from the document for pasting into other applications.

modify adds the ability to modify document contents.

Drivers: PDF only

UnForm Version 6

125

ROWS

Syntax

rows n

Description

This keyword specifies the number of output rows to use for the form or report. The placement of each
line is calculated to accommodate this many rows within the printable area of the paper. For example,
with letter paper, the printable area is about 10.5 inches; rows 66 will cause each line to be 10.5/66
inches high. If present, this value will override any calculation based on the lpi keyword.

The number of rows (n) can be any value up to 255. It will default to 66 if no rows, lpi, or page
keywords are present.

Note there is an important distinction between the page and rows commands. Rows refers to output
scaling, whereas page defines the number of text lines to read per page from the input stream. However,
if a page command is used, and a rows command is not, then the rows defaults to the value of the page
command.

Examples:

rows 80 will set the line height to accommodate 80 rows per page.

Drivers: all

UnForm Version 6

126

SHADE, CSHADE

Syntax

1. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color]
[,rgb rrggbb]

2. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent, skip, times
[,extend] [,color] [,rgb rrggbb]

3. shade "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color] [,rgb rrggbb]

If cshade is used, then cols and rows are interpreted to be the opposite corner of the shade region, and
columns and rows are calculated by UnForm.

Description

The region indicated by col, row, cols, and rows will be shaded, using the percent as the percent-gray
value. The region parameters can be specified as decimal values to 1/100 character. The region is
based on the full character cell, starting at the upper left corner of the cell. This differs from the box
keyword, which measures from the center point of a cell. The percent can be any value from 0 to 100,
where 0 is white (useful for erasing regions), and 100 is black. The default shade value is 5% (which
renders as 10% in PCL5 devices). PCL5 printers actually support only eight levels of gray, generally:
2%, 10%, 20%, 35%, 55%, 80%, 99%, and 100%. Given values less than these are rounded up to the
next supported value.

For compatibility with Version 1 rule files, Version 2 and above will convert shade values of 1, 2, 3, and
4 to 2%, 20%, 55%, and 100%, respectively.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

Syntax 2 provides for repeating regions to be easily specified. The skip parameter is a number
indicating the number of blank lines that follow the shade region. The times parameter is the number of
times to repeat the shade/blank pattern. UnForm will generate multiple rows of shading until either the
number of repetitions is met or the end of the page is found. For example, shade 1,21,80,2,1,2,8 would
produce 8 shaded regions, each 80 columns by 2 rows with shade grade level 1. Two blank lines would
separate the shade regions. These two parameters are ignored if the first parameter is a text string, as in
syntax 3.

If syntax 3 is used, then the shading is drawn relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no shaded regions, or several.
column and row are 0-based, in these formats, and can be negative if required. The search for text or

UnForm Version 6

127

regexpr can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'.
To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

All formats support the extend option. This simply expands the shade region by ½ character in all
directions, making it easy to fill in a box that is placed at the mid-point of each character position
surrounding the shade region.

Note that the box keyword also supports shading, and may be more convenient to use if an outlined
shaded region is desired.

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name a
RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and
bb is blue (00-FF).

You can improve the look of shade regions on laser printers, especially at medium shade levels and 600
or higher dpi settings, by using the gs command.

Examples:

shade 41,3,40,6,2 will fill the indicated region with a medium (20%) shade.

shade 10.5,3.01,40,4.98,25 will shade the indicated region with 25% gray.

shade "No. Item/Desc",0,0,79,1,10,extend will shade from the position the noted text is found, for 79
columns and 1 line. The shaded region will then be extended ½ column and row in each direction. 10%
gray will be used.

shade 1,14,80,2,1,2,12 will produce a repeated pattern of 80 columns wide, 2 lines high, light shading,
followed by two blank lines. The pattern will be repeated 12 times, occupying a total of 48 lines.

Drivers: all, zebra only supports 0% or 100%.

UnForm Version 6

128

SHIFT

Syntax

shift n

Description

The text in the report is shifted n characters to the right (or left, if n is negative). If a report starts in
column 1, but doesn't extend all the way to the right edge of the page, it is possible to shift the data to
the right to allow for box drawing around text elements on the left margin.

The placement of relative shading, drawing, and attributes is determined before any shift.

See vshift also, for shifting text vertically.

Example:

shift 1 will shift all text 1 character to the right.

Drivers: all

UnForm Version 6

129

SUBJECT

Syntax

subject "subjectstring" | {expression}

Description

If this command is present, then PDF document creation adds a subject subjectstring, or the result of
expression, to the document content. This value is available in the general properties display dialog in
the Adobe Acrobat Reader.

Drivers: PDF only

UnForm Version 6

130

SYMSET

Syntax

symset "symbolset"

Description

The symset keyword overrides the default symbol set setting found in the [defaults] section of the
ufparam.txt file. If there is no [defaults] section, then the symbol set 10U is used. Symbol set values for
the LaserJet are always integers followed by an uppercase letter. Be sure to quote the symbolset value to
maintain the uppercase letter (unquoted values in rule sets get converted to lowercase by UnForm's rule
file parser).

Symbol sets are used to display specific international character sets or symbols. See your LaserJet
documentation for symbol set codes supported by your printer.

If you plan to use the pdf driver in addition to the laser driver, you should specify your symbol sets as 9J
if you intend to use special characters in the ASCII 128 to 255 ranges.

Drivers: laser only

UnForm Version 6

131

TEXT

Syntax

1. text col|{numexpr}, row|{numexpr}, "text" | @name | $name | {expression} [,fontname] [,font
fontcode] [,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,rotate 90 | 180 |
270][,fixed | proportional | prop] [,color] [,rgb rrggbb] [,justification, cols ncols|icols ncols|ccols endcol]
[,wrap] [,fit] [,spacing spacing] [,weight w|weightname] [,style style|stylename]

2. text "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr}, { "text" |
@name | $name | {expression} } [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic]
[,underline] [,light] [,shade percent] [,rotate 90 | 180 | 270][,fixed | proportional | prop] [,color] [,rgb
rrggbb] [,justification] [,cols ncols|icols ncols|ccols endcol], [eraseoffset cols, erasecols cols] [,getoffset
cols, getcols cols] [,wrap] [,fit] [,spacing spacing] [,weight w|weightname] [,style style|stylename]

Description

The text indicated in quotes will be printed at the column and row indicated by col and row. The
column and row can be specified to 1/100 character. The position specified becomes the baseline left
edge for the first character. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If text begins with "@", such as @company, then the substitution file is searched. In the example
above, if a line company=ABC Company was found, the text "ABC Company" is used. The
substitution file defaults to "subst", but may be specified on the command line with the "-s" option.

If text begins with "$", then the operating system environment is searched for the indicated variable and
its value is used. For example, $USER would use the value stored in the environment variable "USER".

If text should be a literal value that starts with @ or $, then use \@ or \$, respectively.

If braces surround text, then it is taken to be an expression to be evaluated after each page of input has
been loaded and the prepage subroutine has been executed. The expression can be any valid Business
Basic statement that would appear on the right side of an assignment statement and produces a string
data type result. Some UnForm supplied functions and data can be useful, such as TEXT$[], which
contains the text of the page in an array, and GET(col,row,length), a function that returns data from the
TEXT$ array. For example, {"Copy 2, generated on "+date(0)} would generate text similar to this:
"Copy 2, generated on 03/31/99". See the Programming Code Blocks chapter for more information
about programming expressions.

If text contains line-feed characters (CHR(10) or $0A$), or the mnemonic character string "\n", then
UnForm will break the text into multiple lines and space them according to the spacing value. For
example, if the point size is 12, and spacing is set to 1.5, then line spacing is set to 18 points. The

UnForm Version 6

132

default spacing is calculated from the number of rows per page, so multi-line text data will match the
vertical placement of single line text data.

If syntax 2 is used, then UnForm will search for occurrences of text or the regular expression regexpr.
In this case, col and row become 0-based offsets from each location where matches are found. In
addition, the erasecols cols and eraseoffset cols can be used to remove match text. The search for text or
regexpr can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'.
To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "!~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Font Names and Numbers
fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all
PCL5 compatible printers. Alternately, a specific fontcode supported by your printer can be specified
by its font number. For example, if your printer supports True Type Arial, specify "font 16602".
Bitmap fonts (as opposed to scaleable fonts) may be specified, but proper use depends on the form's or
report's cpi value matching that of the font. Bitmap fonts have low fontcode values, like 0 for Line
Printer, or 4 for Helvetica. fontname and fontcode values can also be specified from the "ufparam.txt"
file.

Note that font 15002 is configured by default (in ufparam.txt) as a reference to the default MICR soft
font, and can be used (with 'fixed, 8' options) to print MICR encoded text lines in cases where the micr
command can't be used, such as with deposit slips, unusual bank account numbers, or non-standard
check sizes.

Symbol Sets
symset can be any symbol set supported by your printer. The default symbol set is "10U", using the PC-
8 character set. Other examples include 19U for Windows ANSI or 0Y for Postnet Bar Code. You can
also specify symbol sets by name from the "ufparam.txt" file. Only symbol set 9J is supported by the
pdf driver.

To include non-printable characters, such as control codes or 8-bit characters from a specific symbol set,
include the character's numeric (ASCII) value in angle brackets. For example, to include a copyright
symbol from the Desktop (7J) symbol set, use something like this: "<165>2000 Synergetic Data
Systems Inc.".

Point and Pitch Size
size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a
fixed font. The values range from about 4 to 999.75 with a default of 12. PCL printers generally round
this value to the nearest or smallest ¼ point. Note that for proportional fonts, the larger the number, the
larger the size printed. Fixed fonts, such as Courier, are the opposite. If you specify the "fit" option,
then the size value represents the largest acceptable size.

UnForm Version 6

133

Fit and Wrap Options
The "fit" option will scan text for line breaks and decrease the size value as necessary to ensure that all
lines will fit in the number of specified ncols or through endcol. The smallest point size that will be
used is 4, and the largest pitch that will be used is 30.

The "wrap" option will scan text and insert line breaks as needed to ensure no line at the specified size
will exceed the specified ncols. If no spaces exist in word that exceeds the line width, UnForm will
print the word in its entirety, exceeding the allocated space.

The "fit" and "wrap" options are mutually exclusive, and in either case, if no ncols or endcol value is
specified with the "cols" option, then ncols defaults to the page width in columns minus column.

Attribute Styles
The attribute words "bold", "italic", "underline", and "light" will apply the indicated attribute(s) to the
text.

Shading
percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.
Note that the gs command can be used to improve laser printer shading.

Rotation
The "rotate" option will cause the text to be rotated around the baseline left edge at 90, 180, or 270
degrees. PCL5 supports rotation only in these increments.

Fixed and Proportional Spacing
Specify "fixed" or "proportional" (or "prop") to override the default of fixed for Courier (or any fontcode
below 4100), and proportional for all else. For example, if a mono-spaced font, such as the MICR soft
font, has a font code higher than 4100, then the "fixed" option is required in order to ensure the proper
font is selected, rather than a default proportional font. Proportional vs. fixed carries a very high
priority when a printer chooses a font, and if the desired font is not specified with the correct spacing, a
different font will be chosen by the printer.

Color
Color can be specified as "white", "cyan", "magenta", "yellow", "blue", "green", "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb", where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF).

Justification
justification can be one of the following words: "left", "center", "right", "decimal". UnForm will
remove leading and trailing spaces from the text and justify it within the column specification. Decimal
justification will use a "." character unless a "decimal=character" line is placed in the ufparam.txt file
under the [defaults] section.

For justification, you must also specify ncols or endcol with the "cols", "icols", or "ccols" option, so that
UnForm can determine the right edge of the justification region.

UnForm Version 6

134

Weight and Style
Some laser printer fonts must be specified with given weight or style in order to be selected by the
printer. For example, the font Clarendon Condensed is only available if the condensed style is specified,
by adding "style 4" or "condensed" to the font command. Style and weight options and codes can be
found in the ufparam.txt file. Note that fonts are expressly designed for certain weights and styles, and
simply specifying an unsupported value does not produce the desired result. In fact, it may result in
selection of a different font entirely. Check your printer's documentation or control panel prints for
supported fonts.

Get Text From Input Stream
If "getoffset" and "getcols" are specified in a syntax 2 command, then the value printed is taken from the
data stream at the offset and length specified from each occurrence (any text value supplied is ignored).
Further, "eraseoffset" and "erasecols" can be used to remove any data stream text from the point of
occurrence as well.

Barcode Note
The text command can be used to print a human-readable version of a barcode value, which can be
useful in cases where the human readable value differs from the supplied value, such as UPC-E, or when
a check digit value is needed.

Text in this syntax: "bcdsss|value" to print the human readable barcode value for symbology sss and
barcode text value, "ck1sss|value" to print check digit 1, or "ck2sss|value" to print check digit 2. See the
barcode command for symbology values.

Special Symbol Fonts
There is a difference between PDF and laser output for special symbols. In the laser printer
environment, you need to select a symbol set and font that contains the special characters you want, but
in the PDF environment, you need only select the font (font 4141 for Dingbat and 16686 for Symbol).
Once a symbol set or font is identified, use the appropriate decimal value of text to print the character
you want. The easiest way to do this is with angle bracket notation in a literal, like "<182>", or with the
CHR function in an expression, like {CHR(182)}.

On many LaserJet printers, the available symbol sets and fonts differ from those specified in UnForm's
ufparam.txt file, and the only way to know for sure what is available is to do a font list print on the
printer. This should show you the proper symbol set and font number to use for your printer.

UnForm Version 6

135

Examples:

text 10,2,"SOLD TO" prints the text SOLD TO at the indicated position.

text 120,3,$LOGNAME prints user's login name at column 120, line 3.

text 1.25,63.25,{"Printed on "+date(0)}, cgtimes, 6, italic would place a small (6 point), italic note
about the date near the lower left corner of a page.

text "TOTAL:",-1,0,"Total:",cgtimes,12,bold,eraseoffset 0, erasecols 6 changes words TOTAL: to
Total: in CGTimes, 12 point, after backing up 1 column from where TOTAL: is found. It also erases the
word TOTAL: to avoid overprinting.

text 67,21,"bcd125|00010000654",univers,12 will print the UPC-E human readable barcode value.

text 20,62,{terms$},cgtimes,10,cols 40,wrap,spacing 1 will print a paragraph of text contained in
terms$ between column 20 and 59, in CGtimes 10 point text, word-wrapping as necessary, using a
nominal line height matching the 10 point text.

text {pos("Item"=text$[20])},21,"Number",cgtimes,12 will print the word "Number" on line 21, in
the same column where the word "Item" is found in line 20.

text 20.5,20,{mcut(10,20,12,40,"","y","y")},cgtimes,12,right will cut text from the data stream, at
column 10, row 20, for 12 columns, 40 rows, retaining line breaks, and print it as a column of 40 rows at
column 20.5, row 20. The column will be printed in the font CGtimes, 12 point size, right justified.

text 1,60,{mcut(1,60,200,5,"","","")},univers,10,wrap,cols 60 will cut a large message block from
the data stream, at column 1, row 60, for 200 columns, 5 rows, removing line breaks. It will then print it
at column 1, row 60, at 10 point size and word wrapping to make it fit within 60 columns.

Drivers: all. pdf driver fonts map to Courier, Helvetica, or Times-Roman, and support only symbol set
9J (Windows ANSI characters). Zebra fonts are limited in scalability, and the font codes are letters or
numbers that identify internal font codes specified in the ZPL documentation. Zebra shading is limited
to 0% or 100%. Zebra doesn't support colors or justification. Wrap and fit options are only available
on pcl and pdf drivers. Light and underline options are are only supported by the pcl driver.

UnForm Version 6

136

TITLE

Syntax

title "titlestring" | {expression}

Description

If this command is present, then PDF document creation adds a title titlestring, or the result of
expression, to the document content. This value is available in the general properties display dialog in
the Adobe Acrobat Reader.

Drivers: PDF only

UnForm Version 6

137

TRAY

Syntax

tray paper-source

Description

The tray keyword can be used to specify the paper source for any copy or for the print job. If, for
example, you have two input trays, one with letterhead stock and one with plain stock, you can specify
which paper stock to use for any form or copy of a form.

The paper-source is printer dependent. Typically, tray 1 is an upper tray source, tray 2 is a manual feed
source, and tray 4 is a lower tray paper source. These will likely not coincide with physical tray
numbers labeled on the printer itself, unfortunately. To determine the proper tray values, see your
printer's documentation for the paper source command.

Drivers: laser only

UnForm Version 6

138

UNDERLINE

See the bold keyword.

UnForm Version 6

139

UNITS

Syntax

units dpi | char

Description

As UnForm parses a rule set, column and row specifications are normally interpreted as decimal column
and row numbers that align enhancement elements such as boxes and shade regions with characters in
the source data. If you need to specify absolute dot positions, however, you can change the units to dpi.
From that point in the rule set, until a units char is found, row and column values are interpreted as
integer dot positions. Note that the dpi keyword has a direct impact on dpi units, though no impact on
char units.

For example, the following will print two text phrases at column 1 inch, row 1.5 inch.

units dpi
text 300,450,"Hello, world"
dpi 600
text 600,900,"Over printing hello world"
units char

Drivers: laser, PDF

UnForm Version 6

140

VLINE

Syntax

vline "text" [,erase] [,extend] [,thickness]

Description

Any vertical occurrence of the text indicated, of at least the length indicated, will be replaced with a
vertical line. The text must be composed of a single character repeated any number of times. There can
be multiple vline keywords in a rule set, if needed.

This keyword is useful if the application already produces boxes and lines with standard characters. See
also the hline keyword.

As with all box drawing, UnForm will consider line end-points to be at the center position of a
character, which may impact how lines intersect. Lines are drawn one dot (1/300th inch) thick.

If the "erase" option is used, then no line is drawn. Instead, the vertical text values are simply removed
from the output.

If the "extend" option is used, the lines are extended ½ characters up and down. The thickness
parameter specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format
'@left,top,right,bottom'. To use a literal "@" character in text, it is necessary to specify "\@".

Example:

vline "|" will search the report for pipe characters. All such characters found will be replaced with
vertical line draw (box) characters.

Drivers: all

UnForm Version 6

141

VSHIFT

Syntax

vshift n

Description

The vshift keyword shifts text vertically down (or up, if n is negative) the indicated number of lines.
The shifting is done before placement of any fixed shading or boxes. Lines shifted out of the printing
region (line 1 through the page specification, or 255 if not specified) are not printed. See the shift
keyword, also, for horizontal shifting.

The placement of relative shading, drawing, and attributes is determined before any shift.

Example:

vshift 1 shifts all text down 1 line, providing room for a box definition at the top of the page.

Drivers: all

UnForm Version 6

142

WORKING WITH MACROS

Using macros can increase the speed and efficiency of printing your enhanced forms and documents by
storing fixed raster graphics (e.g. logos) on the printer instead of transmitting these graphics on every
page being printed. With the graphics stored on the printer, only 12 to 14 bytes are transmitted to the
printer to select the macro to print. The time savings for printing are most noticeable when your system
can't communicate to your printer at a high speed. For parallel or local network connections, macro
usage doesn't often make too much difference. However, if you use serial connections or wide area
network printing with low- or shared-bandwidth, then implementing macros can help performance. The
more graphics used in enhancing forms, the more print transmission time you can save by using macros.

The PCL5 specification defines two types of macros: temporary and permanent. Temporary macros are
downloaded at the start of a print job, and can be executed by the printer until it is reset at the end of the
job. Permanent macros remain in printer memory until the printer power is turned off. A number from
1 to 32767 always identifies macros.

To access permanent macros, simply add macro n (n=macro #) to the rule set. To instruct UnForm to
utilize temporary macros, add the macros on command to the rule set. UnForm will then generate
temporary macros for any fixed elements of the job, download them at the start of the job, and execute
them as the job is printed.

If you print large batches of forms at one time, and use a serial or low-bandwidth network connection,
temporary macros can produce considerable time savings by reducing the amount of data transmitted to
the form. For example, if a logo image is 20,000 bytes, and line drawing and shading add another 5,000
bytes, a 50 page form will save about 49 x 25,000 bytes, or about 1.2MB. At typical serial throughput,
this could save as much as 10 minutes of print time. High-speed printer connections (parallel or local
network) only produce minimal time savings, which is sometimes offset by the extra overhead incurred
by UnForm to manage the macros in memory.

UnForm also provides the ability to generate permanent macro files. Permanent macros can be
downloaded when the printer is turned on, and then UnForm can execute them without the overhead of
downloading them at the start of a job. To utilize this enhanced functionality, you must modify the rule
file and create a command line script to load the graphics into the printer.

To use this capability, you should split a rule set into two rule sets. One will be used to generate the
permanent macros (there can be a macro for each copy defined in the rule set); the other will be used as
before, but will replace the elements placed in the macros with macro n commands.

The rule set used to generate the macro can contain these commands that are in fixed positions: image,
attach, box, shade, and text. It can also contain if copy blocks. It should not contain any other
commands or any of the named commands if they incorporate relative positioning. Detect commands
are ignored; you will use the "-r ruleset" command line option instead. The remaining commands
should be left in the original rule set, and macro n commands added based upon the macro numbers
assigned in the command described below.

UnForm Version 6

143

Next, you need to generate macro files for each copy that is used in the rule set. To do this, use this
command line:

uf60c –makemacro macro-number –f rulefile –r macro-rule-set –macrocopy copy –o output-file

UnForm will generate a permanent macro in output-file, numbered as macro-number. This is the same
number you would then specify in the regular rule set, as macro macro-number. On UNIX, the output
can be piped directly to the spooler, either by removing the –o option or by using a quoted pipe as the
output file: –o "|lp –o raw –d printername".

UnForm Version 6

144

REGULAR EXPRESSIONS

Regular expressions are supported in many of UnForm's keywords, and can be used to great advantage
in detect statements and relative enhancements. Regular expressions are similar to, but much more
powerful than, MS-DOS or UNIX wildcards.

A regular expression is used to match patterns in text. By using special characters, called meta
characters, UnForm can be instructed to search for patterns, such as dates or codes, and use them in
processing. Below is a description of the various meta characters and how to use them.

• The simplest regular expression contains no meta characters. It just matches itself. John will match

any occurrence of the text "John".

• Brackets can be used to match any of a group of values: [Jj]ohn will match both "John" and "john".

• If a range of letters or numbers is valid in a position, then the range can be indicated in a similar
manner: [A-Za-z]ohn will match any letter, upper or lower case, followed by the letters "ohn".

• If single character positions are not enough, then groups of options can be used with parentheses and
vertical bars, like this: (John|Jack|Jill) Smith, which matches any of the first names, along with
"Smith".

• If any character will do in a position, use a dot: Jo.n will match "Jo", followed by any single
character, followed by "n".

• To repeat any pattern, including a dot, use an asterisk (*) for 0 or more repetitions, or + for 1 or
more repetitions: J.*n will match a "J", followed by 0 or more characters, followed by "n". Jo+n
would match a "J" followed by one or more "o"s, followed by "n".

• You can include multiple meta characters and patterns in the expression. For example, to search for
3 digits followed by 2 letters: [0-9][0-9][0-9][A-Z][A-Z].

• To disable the special meaning of any of the meta characters, prefix it with a backslash. For
example, a phone number might include parentheses; to include them in the expression, they must be
disabled: \(...\)-...-.....

• The meta characters are: ., *, +, (,), |, [,], ^, and $.

UnForm Version 6

145

SAMPLE RULE FILES

UnForm is supplied with several sample report text files and associated rule sets. A description of each
report and rule set follows. Each of the sample reports is in the UnForm directory, named "samplen.txt."
All example rule sets can be found in the files simple.rul and advanced.rul in the UnForm directory.

The simple.rul file contains a series of examples that use the sample invoice text file, sample1.txt.
Beginning with the rule set simple1, and incrementally advancing in capabilities through simple4, this
rule file is designed to help a new user learn fundamental UnForm concepts. To try these out, use this
command, varying the rule set name (-r argument) simple1 with one of the four samples, simple1,
simple2, simple3, or simple4:

uf60c –i sample1.txt –f simple.rul –r simple1 –o output-device

The advanced.rul file contains rule sets that show a variety of topics, and is designed to show advanced
concepts. To produce these samples on your own laser printer or to a PDF file, you can use the
following command, substituting the proper sample text file:

uf60c –i sample-file –f advanced.rul –o output-device

For the output device, you can use a device name, like LPT1 or /dev/lp0, a file name, or a quoted pipe
command to a spooler. For example, to print the first sample to a spooler, use something like this:

uf60c –i sample1.txt –f advanced.rul –o "|lp –dhp –oraw"

To produce PDF versions of these files, change the output device to a PDF file name, and add "-p pdf"
to the command line:

uf60c –i sample1.txt –f advanced.rul –p pdf –o invoice_sample.pdf.

Change "-o invoice_sample.pdf" to "-o client:invoice_sample.pdf" to store the output on the client's
system.

A few of the samples don't support detection capabilities, and they must be specified on the command
line with a "-r ruleset" option. If necessary, the documentation will state this requirement.

UnForm Version 6

146

SIMPLE1 - INVOICE RULE SET (SIMPLE.RUL)

This is the first example of an invoice rule set, found in simple.rul. To produce this example:

uf60c –i sample1.txt –f simple.rul –p pdf –o client:simple1.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple1]

Detect statements are used to identify this form from any other report that the application might send to
the printer through UnForm. Unlike most form packages, UnForm doesn't dedicate a printer name to a
particular form (though it can be configured to do so). Instead, it reads the first page of data, then
compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that
• a date (mm/dd/yy format) followed by 2 spaces, followed by 7 more characters will appear at

column 61, row 5
• 6 characters will appear at column 9, row 11
• a date, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~../../.. " # invoice date and #
detect 9,11,"~......" # customer code
detect 10,21,"~../../.." # ord date and cust code

The following lines define that the dimensions of the page are 80 columns by 66 rows. All positioning
will be based on 80 columns and 66 rows appearing within the printed margins of the page.

cols 80 # max output columns
rows 66 # max output rows

The header section draws a box around the entire form with a cbox command, then adds a logo and
some header text. The" \n" character sequence represents a line break, so you can print a column of
text easily. All the text commands are using the univers font, which is standard in all supported laser
printers and which maps to Helvetica in PDF output.

header section
cbox .5,.5,80.5,66.5,5
image 1,1,12,6,"sdsilogo.pcl"
text 15,2,"Company Name",univers,14,bold
text 15,3,"Company Address\nCompany City, St Zipcode\nCompany Phone",univers,12,bold
text 15,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold
text 70,2,"INVOICE",univers,16,bold

UnForm Version 6

147

The upper right of the form contains a box with grid lines and some title text, placed around the existing
text supplied from the input stream (in this example, the file sample1.txt). The cbox command draws an
outer box using the primary dimensions, and then adds internal horizontal lines at rows 6 and 8, and
internal vertical lines at columns 69 and 78. The second row simply duplicates the bottom row, but
adds 20% shading between rows 6 and 8.

Additional heading and box sections are drawn in a similar manner, for the remainder of the form. All
the drawing simply adds details on top of, or around, the input data stream.

invoice # section
cbox 60,4,80.5,8,crows=6 8::20,ccols=69 78
text 61,7,"Date",univers,italic,10
text 70,7,"Invoice #",univers,italic,10
text 79,7,"Pg",univers,italic,10

bill to / ship to section
cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20
text 2,11,"Sold To",cgtimes,italic,10
text 45,11,"Ship To",cgtimes,italic,10

ribbon section
cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box
cbox 29,18.5,65,21.5
cbox 42,18.5,56,21.5
text 1,19,"Order\nNumber",univers,italic,10
text 10,19,"Order\nDate",univers,italic,10
text 19,19,"Cust.\nNumber",univers,italic,10
text 26,19,"Sls\nPrs",univers,italic,10
text 30,19,"Purchase\nOrder No.",univers,italic,10
text 43,19,"\nShip Via",univers,italic,10
text 57,19,"Ship\nDate",univers,italic,10
text 66,19,"\nTerms",univers,10,italic

detail section
cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 69
text 1,23,"Qty\nOrd",univers,italic,10
text 6,23,"Qty\nShip",univers,italic,10
text 11,23,"Qty\nBkord",univers,10,italic
text 17,23,"\nItem & Description",univers,italic,10
text 52,23,"\nU/M",univers,italic,10
text 56,23,"Unit\nPrice",univers,italic,10
text 70,23,"Extended\nPrice",univers,italic,10

footer section
cbox 57,57,80.5,65,crows=59 63,ccols=69::20
text 58,58,"Sales Amt",univers,11
text 58,61,"Sales Tax",univers,11
text 58,62,"Freight",univers,11
text 58,64.25,"TOTAL",univers,bold,14

UnForm Version 6

148

SIMPLE2 – INVOICE RULE SET (SIMPLE.RUL)

This is a somewhat more advanced rule set than simple1, demonstrating how to add fonting,
justification, and text movement to the job. Additional notes are supplied to highlight these concepts.
To prevent simple1's detection code from selecting the job, add a –r option to the command line:

uf60c –i sample1.txt –f simple.rul –r simple2 –p pdf –o client:simple2.pdf

[simple2]
to use this rule set, you need to FORCE the rule set with the -r option
or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding
fonting and justification.

It also cuts and pastes the invoice #/date/pg fields which allows
more room for company name and address to be centered

Also notice first use of relative expression in a text command to fix
a problem with fonting a series of rows. Put a # in front of this
command to see the problem that occurs. See memo section.

detect 61,5,"~../../.. " # invoice date and #
detect 9,11,"~......" # customer code
detect 10,21,"~../../.." # ord date and cust code

cols 80 # max output columns
rows 66 # max output rows

The header section has changed to use center and right justification. Note the use of cols=79 in each
text command, which tells UnForm the bounds of the justification region. For example, the text
"Company Name" is centered in the region starting at column 1, for 79 columns.

header section
cbox .5,.5,80.5,66.5,5
image 1,1,12,6,"sdsilogo.pcl"
text 1,2,"Company Name",univers,14,bold,center,cols=79
text 1,3,"Company Address\nCompany City, St Zipcode\nCompany
Phone",univers,12,bold,center,cols=79
text 1,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold,center,cols=79
text 1,2,"INVOICE",univers,16,bold,right,cols=79

The Invoice number section is re-formatted here, by first drawing a new, vertically-oriented grid and
heading section, then by using text commands with expressions that use the cut() function. The
expression is indicated by the curly braces, such as {cut(61,5,8,"")}, which directs UnForm to resolve
the function as the job processes each page. In the line starting with "text 75,5", the data from the input
stream at column 61, row 5, for 8 characters is cut and replaced with nothing (""), and it becomes the
value printed at column 75, row 5.

UnForm Version 6

149

Further down, in the bill to/ship to section, is an example of the mcut() function, which cuts multiple
lines and replaces them with "", retaining line breaks and trimming each line of leading and trailing
spaces.

invoice # section
cbox 67,4,80.5,10,1,crows=6 8,ccols=74::20
text 68,5,"Date",univers,italic,10
text 68,7,"Invoice",univers,italic,10
text 68,9,"Page #",univers,italic,10
cut data from old position and place in new
text 75,5,{cut(61,5,8,"")},cgtimes,bold,10
text 75,7,{cut(71,5,7,"")},cgtimes,bold,10
text 75,9,{cut(79,5,2,"")},cgtimes,bold,10

bill to / ship to section
cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20
text 2,12,"Sold To",cgtimes,italic,10,center,cols=5
cfont 8,11,40,11,cgtimes,bold,10,left
cfont 8,12,40,15,cgtimes,bold,10 # sold to address
text 45,12,"Ship To",cgtimes,italic,10,center,cols=5
cfont 51,11,80,11,cgtimes,bold,10,left
text 51,12,{mcut(51,12,30,4,"","Y","Y")},cgtimes,bold,10

ribbon section
cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box
cbox 29,18.5,65,21.5
cbox 42,18.5,56,21.5
text 1,19,"Order\nNumber",univers,italic,10,center,cols=8
text 10,19,"Order\nDate",univers,italic,10,center,cols=8
text 19,19,"Cust.\nNumber",univers,italic,10,center,cols=6
text 26,19,"Sls\nPrs",univers,italic,10,center,cols=3
text 30,19,"Purchase\nOrder No.",univers,italic,10,center,cols=12
text 43,19,"\nShip Via",univers,italic,10,center,cols=13
text 57,19,"Ship\nDate",univers,italic,10,center,cols=8
text 66,19,"\nTerms",univers,italic,10,center,cols=14

This section changes the fonts of the input data stream in the invoice ribbon section. For example, the
first cfont command changes the data in column 1, row 21 through column 8, row 21, to cgtimes, bold,
10 point, centered text. Note how the font command applies to the incoming data stream, which differs
from the text command, which adds additional output to the job. Font commands therefore work with
integer positions, as they modify the character-base data stream as it passes through to the output.

cfont 1,21,8,21,cgtimes,bold,10,center # order #
cfont 10,21,17,21,cgtimes,bold,10,center # order date
cfont 19,21,24,21,cgtimes,bold,10,center # cust #
cfont 26,21,28,21,cgtimes,bold,10,left # sls prs code
cfont 26,22,64,22,cgtimes,bold,10,left # sls prs name
cfont 30,21,41,21,cgtimes,bold,10,center # po #
cfont 43,21,55,21,cgtimes,bold,10,center # ship via
cfont 57,21,64,21,cgtimes,bold,10,center # ship date
cfont 66,21,80,22,cgtimes,10,center # terms

detail section
cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 67
text 1,23,"Qty\nOrd",univers,italic,10,right,cols=4

UnForm Version 6

150

text 6,23,"Qty\nShip",univers,italic,10,right,cols=4
text 11,23,"Qty\nBkord",univers,10,italic,right,cols=4
text 17,23,"\nItem & Description",univers,italic,10
text 52,23,"\nU/M",univers,italic,10,center,cols=3
text 56,23,"Unit\nPrice",univers,italic,10,right,cols=11
text 68,23,"Extended\nPrice",univers,italic,10,right,cols=12

This section performs two distinct fonting functions. First, the detail item columns are fonted. Note that
you can't simply font the entire detail section in a proportional font, as the spacing between columns
would be lost. Instead, each column is fonted individually.

However, the data stream for the invoice also contains memo lines in the middle of the detail item lines,
and those memo lines should not be broken into individual columns.

 Therefore, an additional font command is added after the column fonting, which will override any font
characteristics defined for any given data position in a prior font command. This memo section fonting
uses a technique that will scan the page for a pattern (in this example, 4 spaces in the region outlined by
column 1, row 25 through column 4, row 56), and change font characteristics relative to those locations
found. In this example, wherever the 4 spaces are found, fonting will occur 17 columns to the right, 0
rows down, for 60 columns and 1 row. These are the memo lines found in the midst of the item detail
lines.

cfont 1,25,4,56,cgtimes,10,bold,right # qty ord
cfont 6,25,9,56,cgtimes,10,bold,right # qty shipped
cfont 11,25,15,56,cgtimes,10,bold,right # qty b/o
cfont 17,25,50,56,cgtimes,10,left # item # & desc
cfont 52,25,54,56,cgtimes,10,bold,center # u/m
cfont 56,25,66,56,cgtimes,10,bold,right # unit price
cfont 68,25,79,56,cgtimes,10,bold,right # extended

memo section
font " @1,25,4,56",17,0,60,1,cgtimes,10,left

footer section
cbox 57,57,80.5,65,crows=59 63,ccols=67::20
text 58,58,"Sales Amt",univers,11
cfont 58,60,66,60,univers,11,left
text 58,61,"Sales Tax",univers,11
text 58,62,"Freight",univers,11
text 58,64.25,"TOTAL",univers,bold,14
cfont 68,58,79,65,cgtimes,bold,right,14 # totals

UnForm Version 6

151

SIMPLE3 – INVOICE RULE SET (SIMPLE.RUL)

This rule set adds copy handling, a watermark, and a barcode. To produce this sample, use this
command:

uf60c –i sample1.txt –f simple.rul –r simple3 –p pdf –o client:simple3.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple3]
to use this rule set, you need to FORCE the rule set with the -r option
or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding
copies, watermark, and a barcode.

dsn_sample "sample1.txt"
detect 61,5,"~../../.. " # invoice date and #
detect 9,11,"~......" # customer code
detect 10,21,"~../../.." # ord date and cust code

cols 80 # max output columns
rows 66 # max output rows

This rule set produces two copies of each page, with each copy sequentially produced as each page is
read from the data stream. The pcopies command indicates this page-oriented copy production. There
is also a copies command, which produces job-oriented copies for laser jobs. Note that PDF output
always is produced as page-oriented copies, whether copies or pcopies is used.

When copies are produced, all rule set content that is not bracketed within 'if copy' blocks is produced
on all copies. The majority of this rule set is outside of such blocks, so the majority will be applied to
both copies. Near the bottom of the rule set is some code that will apply distinctly to each copy.

copies
pcopies 2

header section
cbox .5,.5,80.5,66.5,5
image 1,1,12,6,"sdsilogo.pcl"
text 1,2,"Company Name",univers,14,bold,center,cols=79
text 1,3,"Company Address\nCompany City, St Zipcode\nCompany
Phone",univers,12,bold,center,cols=79
text 1,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold,center,cols=79
text 1,2,"INVOICE",univers,16,bold,right,cols=79

invoice # section
cbox 67,4,80.5,10,1,crows=6 8,ccols=74::20
text 68,5,"Date",univers,italic,10
text 68,7,"Invoice",univers,italic,10
text 68,9,"Page #",univers,italic,10
cut data from old position and place in new

UnForm Version 6

152

text 75,5,{cut(61,5,8,"")},cgtimes,bold,10
text 75,7,{cut(71,5,7,"")},cgtimes,bold,10
text 75,9,{cut(79,5,2,"")},cgtimes,bold,10

bill to / ship to section
cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20
text 2,12,"Sold To",cgtimes,italic,10,center,cols=5
cfont 8,11,40,11,cgtimes,bold,10,left
cfont 8,12,40,15,cgtimes,bold,10 # sold to address
text 45,12,"Ship To",cgtimes,italic,10,center,cols=5
cfont 51,11,80,11,cgtimes,bold,10,left
text 51,12,{mcut(51,12,30,4,"","Y","Y")},cgtimes,bold,10

ribbon section
cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box
cbox 29,18.5,65,21.5
cbox 42,18.5,56,21.5
text 1,19,"Order\nNumber",univers,italic,10,center,cols=8
text 10,19,"Order\nDate",univers,italic,10,center,cols=8
text 19,19,"Cust.\nNumber",univers,italic,10,center,cols=6
text 26,19,"Sls\nPrs",univers,italic,10,center,cols=3
text 30,19,"Purchase\nOrder No.",univers,italic,10,center,cols=12
text 43,19,"\nShip Via",univers,italic,10,center,cols=13
text 57,19,"Ship\nDate",univers,italic,10,center,cols=8
text 66,19,"\nTerms",univers,italic,10,center,cols=14

cfont 1,21,8,21,cgtimes,bold,10,center # order #
cfont 10,21,17,21,cgtimes,bold,10,center # order date
cfont 19,21,24,21,cgtimes,bold,10,center # cust #
cfont 26,21,28,21,cgtimes,bold,10,left # sls prs code
cfont 26,22,64,22,cgtimes,bold,10,left # sls prs name
cfont 30,21,41,21,cgtimes,bold,10,center # po #
cfont 43,21,55,21,cgtimes,bold,10,center # ship via
cfont 57,21,64,21,cgtimes,bold,10,center # ship date
cfont 66,21,80,22,cgtimes,10,center # terms

detail section
cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 67
text 1,23,"Qty\nOrd",univers,italic,10,right,cols=4
text 6,23,"Qty\nShip",univers,italic,10,right,cols=4
text 11,23,"Qty\nBkord",univers,10,italic,right,cols=4
text 17,23,"\nItem & Description",univers,italic,10
text 52,23,"\nU/M",univers,italic,10,center,cols=3
text 56,23,"Unit\nPrice",univers,italic,10,right,cols=11
text 68,23,"Extended\nPrice",univers,italic,10,right,cols=12

cfont 1,25,4,56,cgtimes,10,bold,right # qty ord
cfont 6,25,9,56,cgtimes,10,bold,right # qty shipped
cfont 11,25,15,56,cgtimes,10,bold,right # qty b/o
cfont 17,25,50,56,cgtimes,10,left # item # & desc
cfont 52,25,54,56,cgtimes,10,bold,center # u/m
cfont 56,25,66,56,cgtimes,10,bold,right # unit price
cfont 68,25,79,56,cgtimes,10,bold,right # extended

memo section
font " @1,25,4,56",17,0,60,1,cgtimes,10,left

UnForm Version 6

153

This text line adds a large text watermark on line 56, centered horizontally. The text is printed in
cgtimes, 120 point, with 10% shading applied.
.
watermark
text 1,56,"INVOICE",cgtimes,120,shade=10,center,cols=80,fit

footer section
cbox 57,57,80.5,65,crows=59 63,ccols=67::20
text 58,58,"Sales Amt",univers,11
cfont 58,60,66,60,univers,11,left
text 58,61,"Sales Tax",univers,11
text 58,62,"Freight",univers,11
text 58,64.25,"TOTAL",univers,bold,14
cfont 68,58,79,65,cgtimes,bold,right,14 # totals

The barcode command can be used to add barcodes in many symbologies. It is similar to other
commands, in that you provide a column, row, and value. In addition, you specify a symbology (400 is
Code 3 of 9), a point size or pixel height (14.0, being a decimal rather than integer value, is treated as
point size), and a bar spacing value in pixels. Like most commands, you can use expressions in the
value element of the command. In this example, the data stream data from column 9, row 11, for 6
characters is used on each page, using the get() function within an expression.

text 2,58,"Customer code as 3 of 9 barcode",univers,italic,10
barcode 2,58.67,{get(9,11,6)},400,14.0,4

The following lines produce different output for each of the two copies. Copy 1 is labeled with a text
command to say it is the "Customer Copy", while copy 2 is labeled as "Accounting Copy". Any
commands outside of 'if copy' blocks are applied to all copies.

copy name section
if copy 1
 text 1,65.5,"Customer Copy",univers,12,bold,center,cols=80
end if
if copy 2
 text 1,65.5,"Accounting Copy",univers,12,bold,center,cols=80
end if

UnForm Version 6

154

SIMPLE4 – INVOICE RULE SET (SIMPLE.RUL)

This rule set demonstrates the use of constants, graphical shading, colors, and expressions to produce
explanatory notes in the document. To produce this sample, use this command:

uf60c –i sample1.txt –f simple.rul –r simple4 –p pdf –o client:simple4.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple4]
to use this rule set, you need to FORCE the rule set with the -r option
or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding
constants, graphical shading, increases the resolution,
and adds explanatory text commands for cust # and ship to #.

Also adds a copy for a packing slip with no prices.

dsn_sample "sample1.txt"
detect 61,5,"~../../.. " # invoice date and #
detect 9,11,"~......" # customer code
detect 10,21,"~../../.." # ord date and cust code

Constants are simple text names that are replaced by values later in the rule set. They can be used to
simplify maintenance of the rule set, or to make it easier to read. In this example, a series of constants
is defined using the const command, and you will find the names referenced throughout the balance of
the rule set.

const MAXCOLS=80 # max cols to output
const MAXRCOLS=79 # MAXCOLS-1
const LEFTCOL=.5 # use 1 if empty
const RIGHTCOL=80.5 # use LEFTCOL for symmetry
const MAXROWS=66 # max rows to output

cols MAXCOLS
rows MAXROWS

copies
const CUSTOMER_COPY=1
const FILE_COPY=2
const PACK_COPY=3
pcopies 3

The dpi setting applies to laser output only, and instructs the printer to produce output at 600 dpi,
providing a typically crisper, more professional look. In addition, the gs on command turns on
graphical shading mode, so that shade regions and shaded text are rendered as graphical data rather
than using pcl's internal, typically coarse, shade macros.

UnForm Version 6

155

dpi 600
gs on # turn on graphical shading

enhancement constants
const HSHADE=30
const ISHADE=20
const DSHADE=10
const HFONT=univers,11
const IFONT=univers,italic,10
const DFONT=cgtimes,10
const DBFONT=DFONT,bold

header section
cbox LEFTCOL,.5,RIGHTCOL,{MAXROWS+.5},5
image 1,1,12,6,"sdsilogo.pcl"
text 1,2,"Company Name",HFONT,14,bold,center,cols=MAXRCOLS
text 1,3,"Company Address\nCompany City, St Zipcode\nCompany
Phone",HFONT,12,bold,center,cols=MAXRCOLS
text 1,6,"Web: www.myweb.com\nEmail:
sales@myweb.com",HFONT,bold,center,cols=MAXRCOLS
text 1,2,"INVOICE",HFONT,16,bold,right,cols=MAXRCOLS

invoice # section
cbox 67,4,RIGHTCOL,10,1,crows=6 8,ccols=74::ISHADE
text 68,5,"Date",IFONT
text 68,7,"Invoice",IFONT
text 68,9,"Page #",IFONT
cut data from old position and place in new
text 75,5,{cut(61,5,8,"")},DBFONT
text 75,7,{cut(71,5,7,"")},DBFONT
text 75,9,{cut(79,5,2,"")},DBFONT

The cbox command shown here uses constants defined above, plus shows the use of color options, which
are supported by PDF and color laser output. In this example, the interior is colored in cyan, and the
lines are colored in blue. Alternately, RGB hex triplets (such as 800000 for dark red) can be specified
using the rgb, scolor rgb, or lcolor rgb options.

bill to / ship to section
cerase 1,11,MAXCOLS,11 # erase cust#,ship# used later in text commands
cbox LEFTCOL,11,RIGHTCOL,18.5,5,cyan,lcolor=blue,ccols=7::ISHADE 43.5 50::ISHADE
text 2,12,"Sold To",IFONT,center,cols=5
cfont 8,11,40,11,DBFONT,left
cfont 8,12,40,15,DBFONT # sold to address

This text command shows an example of how to use an expression to construct a message using a
combination of hard-coded text and information from the data stream. In this example, the phrase
"Your customer code is" is concatenated with the data at column 9, row 11, for 6 characters, on each
page, and the result is printed at column 9, row 18, using the specifications provided by the constant
IFONT, defined earlier in the rule set.

text 8,18,{"Your customer code is "+get(9,11,6)+"."},IFONT

text 45,12,"Ship To",IFONT,center,cols=5
cfont 51,11,80,11,DBFONT,left
text 51,12,{mcut(51,12,30,4,"","Y","Y")},DBFONT

UnForm Version 6

156

text 51,18,{"Your ship to code is "+get(55,11,6)+"."},IFONT

ribbon section
cbox LEFTCOL,18.5,RIGHTCOL,22.5,5,lcolor=blue,crows=20.5::ISHADE:cyan,ccols=9 18 25
65
special internal grid in ribbon box
cbox 29,18.5,65,21.5
cbox 42,18.5,56,21.5
text 1,19,"Order\nNumber",IFONT,center,cols=8
text 10,19,"Order\nDate",IFONT,center,cols=8
text 19,19,"Cust.\nNumber",IFONT,center,cols=6
text 26,19,"Sls\nPrs",IFONT,center,cols=3
text 30,19,"Purchase\nOrder No.",IFONT,center,cols=12
text 43,19,"\nShip Via",IFONT,center,cols=13
text 57,19,"Ship\nDate",IFONT,center,cols=8
text 66,19,"\nTerms",IFONT,center,cols=14

cfont 1,21,8,21,DBFONT,center # order #
cfont 10,21,17,21,DBFONT,center # order date
cfont 19,21,24,21,DBFONT,center # cust #
cfont 26,21,28,21,DBFONT,left # sls prs code
cfont 26,22,64,22,DBFONT,left # sls prs name
cfont 30,21,41,21,DBFONT,center # po #
cfont 43,21,55,21,DBFONT,center # ship via
cfont 57,21,64,21,DBFONT,center # ship date
cfont 66,21,80,22,DBFONT,center # terms

detail section
if copy PACK_COPY
 erase "~\.[0-9][0-9]@62,25,79,56",-6,0,11,1
endif
cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24.5::DSHADE,ccols=5 10 16 51 55 67
text 1,23,"Qty\nOrd",IFONT,right,cols=4
text 6,23,"Qty\nShip",IFONT,right,cols=4
text 11,23,"Qty\nBkord",IFONT,right,cols=4
text 17,23,"\nItem & Description",IFONT
text 52,23,"\nU/M",IFONT,center,cols=3
text 56,23,"Unit\nPrice",IFONT,right,cols=11
text 68,23,"Extended\nPrice",IFONT,right,cols=12

cfont 1,25,4,56,DBFONT,right # qty ord
cfont 6,25,9,56,DBFONT,right # qty shipped
cfont 11,25,15,56,DBFONT,right # qty b/o
cfont 17,25,50,56,DFONT,left # item # & desc
cfont 52,25,54,56,DBFONT,center # u/m
cfont 56,25,66,56,DBFONT,right # unit price
cfont 68,25,79,56,DBFONT,right # extended

memo section
font " @1,25,4,56",17,0,60,1,DFONT,left

watermark
if copy CUSTOMER_COPY,FILE_COPY
 text 1,56,"INVOICE",DFONT,120,shade=DSHADE,center,cols=MAXCOLS,fit
endif
if copy PACK_COPY
 text 1,56,"PACK SLIP",DFONT,120,shade=DSHADE,center,cols=MAXCOLS,fit
endif

footer section

UnForm Version 6

157

cbox 57,57,RIGHTCOL,65,lcolor=red,crows=59 63,ccols=67::HSHADE
text 58,58,"Sales Amt",HFONT
cfont 58,60,66,60,HFONT,left
text 58,61,"Sales Tax",HFONT
text 58,62,"Freight",HFONT
text 58,64.25,"TOTAL",HFONT,bold,14
cfont 68,58,79,65,DBFONT,right,14 # totals

text 2,58,"Customer code as 3 of 9 barcode",IFONT
barcode 2,58.67,{get(9,11,6)},400,14.0,4

Note the use of constants to make this section easier to read.

copy name section
if copy CUSTOMER_COPY
 text 1,65.5,"Customer Copy",HFONT,12,bold,center,cols=MAXCOLS
end if
if copy FILE_COPY
 text 1,65.5,"Accounting Copy",HFONT,12,bold,center,cols=MAXCOLS
end if
if copy PACK_COPY
 text 1,65.5,"Packing Slip",HFONT,12,bold,center,cols=MAXCOLS
end if

This text line demonstrates the use of multi-line text forced to fit within a certain number of columns.
UnForm scans each of the two lines (delimited by the \n character sequence, or it could contain data
with line-feed or carriage-return line-feed delimiters) to determine the width, beginning with the point
size 12 specified in the command. The size is reduced until both lines will fit within the 20 columns
specified with the cols option. Once the correct point size is determined, the lines are spaced normally
for that height. For example, if the size required is 8.25 points, then the lines will be spaced 8.25 points
apart. If spacing had been set to 1.5, then the lines would be spaced 12.33 points apart.

text 2,62,"This sample message text, which contains\nline breaks, is sized to fit
in 20 columns.",cols 20,cgtimes,12,fit,spacing 1

UnForm Version 6

158

INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL)

This sample is an invoice that is intended for a pre-printed form. The data generated by the application
doesn't include any headings or simulated line drawing like a plain-paper invoice might. In this case,
UnForm must simulate the entire pre-printed invoice form.

uf60c –i sample1.txt –f advanced.rul –p pdf -o client:invoice.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[Invoice]

Detect statements are used to distinguish this form from any other report that the application might send
to the printer through UnForm. Unlike most form packages, UnForm doesn't dedicate a printer name to
a particular form (though it can be configured to do so). Instead, it reads the first page of data, then
compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that
• a date (mm/dd/yy format) followed by 2 spaces, followed by 7 more characters will appear at

column 61, row 5
• 6 characters will appear at column 9, row 11
• a date, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~../../.. " # invoice date and #
detect 9,11,"~......" # customer code
detect 10,21,"~../../.." # ord date and cust code

The following lines define several constants that are used elsewhere in the rule set. Wherever the
constant names appear in a command, the value is substituted. Constants are not variables and are not
interpreted while the job is processed. They are simply literal placeholders used while UnForm reads
rule set lines.

set up document constants
const MAXCOLS=80 # max cols to output
const MAXRCOLS=79 # MAXCOLS-1
const LEFTCOL=.5 # use 1 if empty
const RIGHTCOL=80.5 # use LEFTCOL for symmetry
const MAXROWS=66 # max rows to output

The following lines define the page size and orientation. The dpi command sets the printer to 600 dots
per inch. The rows and cols commands set the dimension for positioning and scaling. All positioning
will be based on 80 columns and 66 rows appearing within the printed margins of the page. The gs on

UnForm Version 6

159

command triggers the use of graphical shading, which improves the look of shade regions over the
native pcl shading of most laser printers, especially at higher dpi settings and shade percentages. In
addition, UnForm will generate two copies of the job, with each page producing two copies as
processed (collated).

portrait
dpi 600
gs on # graphical shading
cols MAXCOLS # max output columns
rows MAXROWS # max output rows

to print more copies, increase value and add copy titles in prejob
pcopies 2 # max # of copies

If this rule set is used to produce a PDF document, then the title of "Sample Invoice" will be added to
the PDF file. For laser output, the title command is ignored.

title "Invoice Sample" # view in PDF properties

The prejob code block is executed once at the beginning of the job, after the first page of data has been
read and the rule set parsed. This example is simply setting a variable form_title$ to a literal value
INVOICE. This variable is used later in the rule set.

The prepage code block is executed once per page, just after UnForm has read the text for the page, but
before any copies of that page have been printed. Within a prepage code block, you can insert any valid
Business Basic code (though you need to be careful not to insert any UnForm commands.) This code
initializes a variable shipzip$ to null, then looks for a regular expression pattern of 5 digits on line 15.
If the pattern is found, it sets shipzip$ to the zip code. After the code block is closed, a barcode
command is used to place a postnet barcode below the shipping address. The barcode command uses
the syntax "{shipzip$}", indicating the expression shipzip$ should be used to generate the data to
barcode.

Once the prepage code block creates shipzip$, it then scans a range of rows looking for special memo
format lines. It marks these lines with the characters "mL" in the first two columns. Later in the rule
set, you'll see how these markers are used to treat memo lines differently than standard invoice lines.

The order of execution is controlled by UnForm. There is actually no need to place the barcode
command below the prepage code block, as UnForm will properly execute the code block before any
form commands are executed at run-time.

prejob {
 # set up variables needed by merged routines below
 # if form title changes per page,
 # set up in prepage routine below

UnForm Version 6

160

 form_title$="INVOICE"
}

prepage {
 # find zip code in city,state,zip line for bar code
 shipzip$=""
 # regular expression of 5 digits on line 15
 x=mask(text$[15],"[0-9][0-9][0-9][0-9][0-9]")
 if x>0 then shipzip$=get(x,15,5)

 # mark memo lines for special handling in detail section below
 # memo start in column 28 with all spaces before
 for i=25 to 56
 if len(text$[i])>27 and trim(text$[i](1,27))="" then \
 text$[i](1,2)="mL"
 next i
}

The pdf driver supports the ability to email the PDF file created using the email command. The
commented # email line below provides an example of the command. It requires four arguments, each
of which can be a literal string value or a string expression enclosed in braces. In order for the email
command to work, the mailcall.ini file must be properly configured for your system.

When run in PDF mode, and if mailcall.ini is configured properly,
and if the system can communicate with the mail server, then the
next line would send the PDF invoice as an attachment to an email.
email "someone@somewhere.com","me@mycompany.com", \
{"A test invoice "+cvs(get(71,5,7),3)}, \
"Attached is a sample invoice\n"

The next group of commands creates a page header with box and text commands. The box commands
are given as the cbox variant, which accepts two pairs of numbers as opposite corners of the box. Some
of the commands are stored in a different rule set, called "Mrg Form Header". This rule set is also
located in the advanced.rul file. The lines in that rule set are merged in here as if they were part of this
rule set.

Note that some of the text commands, and also a barcode command, use an expression rather than a
literal. An expression is an executable value assignment enclosed in braces. For example, one text
command uses an expression {cut(61,5,8,"")},which cuts out the text at column 61, row 5, for 8
columns, returning the result, while setting those positions to "". The result is printing at position 75,5
what was at position 61,5.

heading section
const HFONT=univers,12 # headings
cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box
merge "Mrg Form Header" # merge std hdr rules

UnForm Version 6

161

right top ribbon
const HFONT=univers,11,italic # headings
const DFONT=cgtimes,11,bold # data

draw info box with internal grid and shading
horizontal lines at 6 and 8
vertical line at 74 with shading between 67 and 74
cbox 67,4,RIGHTCOL,10,5,crows=6 8,ccols=74::20
text 68,5,"Date",HFONT
text 68,7,"Invoice",HFONT
text 68,9,"Page #",HFONT
cut data from old position and place in new
text 75,5,{cut(61,5,8,"")},DFONT
text 75,7,{cut(71,5,7,"")},DFONT
text 75,9,{cut(79,5,2,"")},DFONT

sold to section
cbox LEFTCOL,10,41,18.5,5
cbox LEFTCOL,10,41,11.25,0,10
text 8,10.75,"SOLD TO",HFONT,bold
cfont 8,12,40,15,DFONT # sold to address
if copy 1
 barcode 8,16,{shipzip$},900,9.0,2
end if
text 2,18,{"Your customer code is "+cut(9,11,6,"")+"."},8,cgtimes

ship to section
cbox 41,10,RIGHTCOL,18.5,5
cbox 41,10,RIGHTCOL,11.25,0,10
text 48,10.75,"SHIP TO",HFONT,bold
cut ship to address and place in new position
text 48,12,{mcut(51,12,30,4,"","Y","Y")},DFONT
text 43,18,{"Your ship to code is "+cut(55,11,6,"")+"."},8,cgtimes

This section draws order detail boxes and headings. The first cbox command draws a grid, using the
internal crows and ccols options. In addition to the boxes and headings, the font used for the data from
the input stream is changed using a series of cfont commands, one for each section.

ribbon section
const L1=19
const L2=20
draw info box with internal grid and shading
horizontal line at 20.5 with shading between 18.5 and 20.5
vertical lines at 9, 18, 25, and 65
cbox LEFTCOL,18.5,RIGHTCOL,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box
cbox 29,18.5,65,21.5

UnForm Version 6

162

cbox 42,18.5,56,21.5
ribbon headings
text 1,L1,"Order",HFONT,right,cols=8
text 1,L2,"Number",HFONT,right,cols=8
text 10,L1,"Order",HFONT,center,cols=8
text 10,L2,"Date",HFONT,center,cols=8
text 19,L1,"Cust.",HFONT
text 19,L2,"Number",HFONT
text 26,L1,"Sls",HFONT
text 26,L2,"Prs",HFONT
text 30,L1,"Purchase",HFONT
text 30,L2,"Order No.",HFONT
text 43,L2,"Ship Via",HFONT
text 57,L1,"Ship",HFONT,center,cols=8
text 57,L2,"Date",HFONT,center,cols=8
text 66,L2,"Terms",HFONT
ribbon data
cfont 1,21,8,21,DFONT,right # order #
cfont 10,21,17,21,DFONT,center # order date
cfont 19,21,24,21,DFONT # cust #
cfont 26,21,28,21,DFONT # sls prs code
cfont 26,22,64,22,DFONT # sls prs name
cfont 30,21,41,21,DFONT # po #
cfont 43,21,55,21,DFONT # ship via
cfont 57,21,64,21,DFONT,center # ship date
cfont 66,21,MAXCOLS,22,DFONT # terms

This section of lines controls the formatting of the invoice detail lines. A grid is drawn around the
column headers and detail lines. The column headers are shaded. Item detail lines are fonted using a
series of font commands that look for the pattern "~\.[0-9][0-9][0-9][0-9]" which is a period followed by
4 digits. Wherever that occurs, font changes are made relative to that position. Similarly, the memo
lines identified by the prepage code block and marked with the text marker "mL" are fonted with a
different column structure. In addition to the font command, an erase command is used to remove the
text markers.

detail section
detail headings
const L1=23
const L2=24
draw info box with internal grid and shading
horizontal line at 24.5 with shading between 22.5 and 24.5
vertical lines at 5, 10, 16, 51, 55, and 67
cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24.5::10, \
 ccols=5 10 16 51 55 67
text 1,L1,"Qty",HFONT,right,cols=4
text 1,L2,"Ord",HFONT,right,cols=4
text 6,L1,"Qty",HFONT,right,cols=4
text 6,L2,"Ship",HFONT,right,cols=4
text 11,L1,"Qty",HFONT,right,cols=5

UnForm Version 6

163

text 11,L2,"Bkord",HFONT,right,cols=5
text 20,L2,"Item & Description",HFONT
text 52,L2,"U/M",HFONT,center,cols=3
text 56,L1,"Unit",HFONT,right,cols=11
text 56,L2,"Price",HFONT,right,cols=11
text 68,L1,"Extended",HFONT,right,cols=12
text 68,L2,"Price",HFONT,right,cols=12
detail data
Modify fonts for lines. As comments may be present in the same rows,
use a pattern to locate the .nnnn in the price column,
which indicates a part number line.
Use a prepage routine to find the comments and change their font.
font "~\.[0-9][0-9][0-9][0-9]",-61,0,4,1,DFONT,right # qty ord
font "~\.[0-9][0-9][0-9][0-9]",-56,0,4,1,DFONT,right # qty shipped
font "~\.[0-9][0-9][0-9][0-9]",-50,0,4,1,DFONT,right # qty b/o
font "~\.[0-9][0-9][0-9][0-9]",-42,0,30,2,DFONT # item # & desc
font "~\.[0-9][0-9][0-9][0-9]",-10,0,3,1,DFONT,center # u/m
font "~\.[0-9][0-9][0-9][0-9]",-6,0,11,1,DFONT,right # unit price
font "~\.[0-9][0-9][0-9][0-9]",6,0,12,1,DFONT,right # ext price

handle memo lines
inserted 'mL' in prepage above
font "mL@1,25,2,56",10,0,63,1,HFONT
erase "mL@1,25,2,56",0,0,2,1

Watermark text is placed in the middle of the detail lines. This text is centered between column 1 and
MAXCOLS, is rendered at 120 points, and is printed at 20% gray shading.

watermark - large font with light shading
text 1,52,{form_title$},cgtimes,120,shade 20,center,cols=MAXCOLS

The totals section is formatted like the other sections, with a grid, text headings, and font changes that
apply to the input stream text.

totals section
draw info box with internal grid and shading
horizontal lines at 59 and 63
vertical line at 69 with shading between 58 and 69
cbox 58,57,RIGHTCOL,65,5,ccols=69::20,crows=59 63
text 59,58,"Sales Amt",HFONT
text 59,61,"Sales Tax",HFONT
text 59,62,"Freight",HFONT
text 59,64.25,"TOTAL",HFONT,bold,14
cfont 59,60,68,60,HFONT # disc hdr
cfont 70,58,MAXRCOLS,65,DFONT,14,decimal # totals

These text lines simply demonstrate some of UnForm's paragraph features. The first text command
forces the longest line in the paragraph to fit within the number of defined columns. The maximum

UnForm Version 6

164

point size is 12, but that may be adjusted down to accommodate the longest line. Lines are delimited by
the \n character sequence, or by a CHR(10) within an expression. Line spacing is determined by the
final point size, and may be adjusted with the spacing option. For example, if the rendered size is 8
point, then the spacing of 1 will result in 9 lines per inch (9 x 8=72), while spacing of 1.5 would result
in 6 lines per inch (9/1.5=6).

The second example will force use the defined point size to render the text, but any lines wider than the
specified columns will be word-wrapped.

The third example shows how to use a specified ASCII value in a text command. The ASCII value 174,
when printed using the symbol set 9J, is a trademark symbol. This technique can be used to print Latin
characters and special symbols. The symbol set determines what any given character value prints as.
The 9J symbol set is the default. See the –testpr command line option for viewing printed tables of
different symbol sets.

footer section
These lines show fitting and wrapping of text
text 2,60,"This sample message text, which contains\nline breaks, \
 is sized to fit in 20 columns.",cols 20,cgtimes,12, \
 fit,spacing 1

text 28,60,"This sample message text is word wrapped to not exceed \
 20 columns, while retaining the specified 12 point size.",\
 cgtimes,cols 20,12,wrap,spacing 1

text 2,64,"This sample was generated by UnForm<174>.",7,cgtimes, \
 symset 9J,blue

This set of commands places the phrase "Customer Copy" on copy 1, and "Remittance Copy" on copy 2.
The text is placed at row 65.5, and is centered within the columns defined at column 1 and the constant
MAXCOLS, which represents the whole page width.

copy name section
const ROW=65.5
if copy 1
 text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS
end if
if copy 2
 text 1,ROW,"Accounting Copy",HFONT,bold,center,cols=MAXCOLS
end if

UnForm Version 6

165

STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB
(ADVANCED.RUL)

In this sample, a two-page, plain paper statement is printed. The two pages contain two slightly
different formats, with the second page containing detail lines and a customer aging, and the first page
containing some more detail lines and the phrase "CONTINUED" at the bottom. In the same statement
print run, some statements may contain a single page, others two or more pages.

The trick here is to get UnForm to produce two formats based on the content of each page. In order to
accomplish this, we define the job to produce multiple copies, and assign certain copies to certain
formats. Using a precopy{} code block, we can then control the printing of the different formats.

uf60c –i sample2.txt –f advanced.rul –p pdf –o client:statement.pdf

This statement header identifies this rule set.

[Statement]

The word STATEMENT appears at column 34, row 2, and a date appears at column 65, row 7. To
further clarify, a date format is matched at position 65, 7.

detect 34,2,"STATEMENT"
detect 65,7,"~../../.." # statement date

The page dimensions are 66 rows and 75 columns. The text input to UnForm doesn't contain any form-
feeds to indicate the end of a page, so the command "page 66" tells UnForm to consider each 66 lines to
be a page.

Pcopies 4 is used to tell UnForm to print 4 copies of each page, with copies following each other in
sequence for each page (collated). You will find later that UnForm doesn't actually print all copies of
each page, but instead simply prints selected copies, depending on the format required. As each page is
processed, if the page contains aging totals, UnForm prints 2 copies of that format, and if it does not
contain aging totals, then UnForm prints 2 copies of the second format.

set up document constants
const MAXCOLS=75 # max cols to output
const MAXRCOLS=74 # MAXCOLS-1
const LEFTCOL=1 # use 1 if empty
const RIGHTCOL=75 # MAXCOLS for symmetry
const MAXROWS=66 # max rows to output

portrait

UnForm Version 6

166

dpi 300
gs on # graphical shading
cols MAXCOLS # max output columns
rows MAXROWS # max output rows
page MAXROWS # no form-feeds used

to print more copies, increase value and add copy titles in prejob
Copy 1,2 Statement with aging totals
Copy 3,4 Statement w/o aging totals
pcopies 4 # max # of copies

If this rule set is used to produce a PDF document, then the title "Statement Sample" will be added to
the PDF file. For laser output, the title command is ignored.

title "Statement Sample" # view in PDF properties

The prejob command defines a string variable form_title$, assigning it the value "STATEMENT". This
variable is used later in the rule set for a page heading and also in a watermark.

prejob {
 # set up variables needed by merged routines below
 # if form title changes per page,
 # set up in prepage routine below
 form_title$="STATEMENT"
}

The prepage code block performs 2 functions. It checks the input data for the word "CONTINUED" at
position 66, 64. If that word is present, then a variable continued$ is assigned to the phrase
"Continued"; otherwise it is set to null. In addition, at three individual lines (16, 62, and 64), there may
be single ! characters used as character-mode vertical lines in the input data. Elsewhere in the rule set
is a 'vline "!!", erase' command, which erases instances of 2 or more ! characters vertically on the page.
This code takes care of the single-row instances.

prepage {
 # get continued if it exists
 continued$=get(66,64,9)
 if continued$="CONTINUED" then continued$="Continued" \
 else continued$=""

remove single ! from line draw regions
 x=pos("!"=text$[16]; \
 while x>0; text$[16](x,1)="",x=pos("!"=text$[16]);wend

 x=pos("!"=text$[62]; \
 while x>0; text$[62](x,1)="",x=pos("!"=text$[62]);wend

UnForm Version 6

167

 x=pos("!"=text$[64]; \
 while x>0; text$[64](x,1)="",x=pos("!"=text$[64]);wend

}

The precopy code block is executed as each of the 4 copies are about to be printed. The logic here
indicates the copies 1 and 2 are for pages that do not contain the word "CONTINUED" (remember the
prepage code block?), and copies 3 and 4 do contain that word. By setting the variable skip to a non-
zero value, the copy being processed is skipped. Only 1 of the 2 formats is printed, depending on the
content of the page.

precopy {
 if copy=1 or copy=2 then if continued$="Continued" then skip=1
 if copy=3 or copy=4 then if continued$<>"Continued" then skip=1
}

The following lines remove most of the existing character-mode line drawing elements from the input
data. The hline and vline commands scan for places where at least the indicated number of characters,
horizontally or vertically, occur on the page. The erase option removes them rather than replacing
them with graphical lines.

#remove existing lines
hline "--",erase
hline "==",erase
vline "!!",erase
cerase 1,1,1,MAXROWS # erase all 1st column
cerase MAXCOLS,1,MAXCOLS,MAXROWS # erase all last column

The following lines draw the page headings. Some of the commands are stored in another rule set,
"Mrg Form Header", which is merged as the rule set is parsed. The headings already exist, and are
moved and fonted with text commands using expressions, such as {cut(66,5,4,"")}.

heading section
const HFONT=univers,12 # headings
cerase 1,1,MAXCOLS,10
cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box
merge "Mrg Form Header" # merge std hdr rules

right top ribbon section
const HFONT=univers,11,italic # headings
const DFONT=cgtimes,11,bold # data
draw info box with internal grid and shading
horizontal line at 6
vertical line at 68 with shading between 63 and 68

UnForm Version 6

168

cbox 63,5,MAXCOLS,9,5,crows=7,ccols=68::20
text 64,6,{cut(66,5,4,"")},HFONT # page #
text 64,8,{cut(59,7,4,"")},HFONT # date
text 69,6,{trim(cut(71,5,3,""))},DFONT # page #
text 69,8,{trim(cut(65,7,8,""))},DFONT # date

customer section
draw info box with internal grid and shading
vertical line at 10 with shading between 1 and 10
cbox LEFTCOL,10,MAXCOLS,15,5,ccols=10::10
text 2,11,{cut(2,10,2,"")},HFONT # to
text 4,13,{trim(cut(15,10,10,""))},DFONT # cust code
cfont 12,11,MAXCOLS,14,DFONT # address

The detail section contains several columns of information. There are fewer detail lines on pages with
the aging data, so the grid drawing is made specific to particular formats with "if copy 1,2" and "if copy
3,4" sections. Then two groups of font changes are used, first for the column headings and then for the
data columns.

detail section
detail headings
draw info box with internal grid and shading
horizontal line at 6
vertical line at 68 with shading between 63 and 68
if copy 1,2
 cbox LEFTCOL,15,MAXCOLS,56,5,crows=17::20, \
 ccols=10 18 27 39 48 60 63
end if
if copy 3,4
 cbox LEFTCOL,15,MAXCOLS,61,5,crows=17::20, \
 ccols=10 18 27 39 48 60 63
end if
const ROW=16
cfont 2,ROW,9,ROW,HFONT,center # date
cfont 11,ROW,17,ROW,HFONT # inv #
cfont 19,ROW,26,ROW,HFONT,center # due date
cfont 28,ROW,38,ROW,HFONT,right # due amt
cfont 40,ROW,47,ROW,HFONT,center # pmt date
cfont 49,ROW,59,ROW,HFONT,right # pmt amt
cfont 61,ROW,62,ROW,HFONT,center # type
cfont 64,ROW,MAXRCOLS,ROW,HFONT,right # balance
detail data
const DFONT=cgtimes,11 # data
cfont 2,18,9,60,DFONT,center # date
cfont 11,18,17,60,DFONT # inv #
cfont 19,18,26,60,DFONT,center # due date
cfont 28,18,38,60,DFONT,right # due amt
cfont 40,18,47,60,DFONT,center # pmt date

UnForm Version 6

169

cfont 49,18,59,60,DFONT,right # pmt amt
cfont 61,18,62,60,DFONT,center # type
cfont 64,18,MAXRCOLS,60,DFONT,right,BOLD # balance

A watermark prints the form title as large, lightly shaded text. Its position depends upon the format,
hence the use of if copy blocks.

watermark - large font with light shading and rotation
if copy 1,2
 text 39,56,{form_title$},cgtimes,75,shade 20,center, \
 cols=MAXCOLS,rotate 90
end if
if copy 3,4
 text 44,61,{form_title$},cgtimes,85,shade 20,center, \
 cols=MAXCOLS,rotate 90
end if

The footer section differs considerably between the two formats. Copies 1 and 2 are associated with
pages that have aging data, so you see the fonting of the aging columns defined there. Copies 3 and 4
are printed when the word "CONTINUED" appears, and that word is printed below, though as the value
stored in continued$ ("Continued").

footer section
remarks
if copy 1,2
 cbox LEFTCOL,56,RIGHTCOL,61,5
 cfont 2,57,MAXRCOLS,60,HFONT
endif
totals
const DFONT=cgtimes,11,bold # data
if copy 1,2
 cbox LEFTCOL,61,RIGHTCOL,64.5,5,crows=63::20, \
 CCOLS=14 26 38 50 62
 const ROW=62
 cfont 1,ROW,13,ROW,HFONT,right # current
 cfont 15,ROW,25,ROW,HFONT,right # 1-15
 cfont 27,ROW,37,ROW,HFONT,right # 16-30
 cfont 39,ROW,49,ROW,HFONT,right # 31-45
 cfont 51,ROW,61,ROW,HFONT,right # over 45
 cfont 63,ROW,MAXRCOLS,ROW,HFONT,right,bold,12 # total due
 const ROW=64
 cfont 1,ROW,13,ROW,DFONT,right # current
 cfont 15,ROW,25,ROW,DFONT,right # 1-15
 cfont 27,ROW,37,ROW,DFONT,right # 16-30
 cfont 39,ROW,49,ROW,DFONT,right # 31-45
 cfont 51,ROW,61,ROW,DFONT,right # over 45
 cfont 63,ROW,MAXRCOLS,ROW,DFONT,right,bold,12 # total due

UnForm Version 6

170

endif

if copy 3,4
 cerase 1,62,MAXCOLS,66
 text 1,65,{Continued$},HFONT,right,cols=MAXRCOLS
endif

Finally, within the two formats are two physical copies. Each of these copies is either for the customer
to keep or for the customer to return with their payment. Copy 1, the first page of format 1, and copy 3,
the first page of format 2, get the "Customer Copy" footer. The others get the "Remittance Copy" footer.

copy name section
const ROW=65.5
if copy 1,3
 text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS
end if
if copy 2,4
 text 1,ROW,"Remittance Copy",HFONT,bold,center,cols=MAXCOLS
end if

UnForm Version 6

171

AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL)

In this third example, an aging report is enhanced to be more readable. This shows the use of relative
enhancements, which are those applied relative to the occurrence of text or regular expressions
anywhere on the page.

uf60c –i sample3.txt –f advanced.rul –p pdf –o client:aging.pdf

This statement header identifies this rule set.

[AgingReport]

The only detect statement required is this one, looking for the report title at column 50, row 2.

detect 50,2,"Detail Aging Report"

These constants are used throughout the rule set.

set up document constants
const MAXCOLS=131 # max cols to output
const MAXRCOLS=130 # MAXCOLS-1
const LEFTCOL=.5 # use 1 if empty
const RIGHTCOL=131.5 # LEFTCOL for symmetry
const MAXROWS=66 # max rows to output

This report should print in landscape orientation, rather than the default portrait. UnForm will scale
the columns and rows to 131 by 66.

landscape
dpi 1200
gs on # graphical shading
cols MAXCOLS # max output cols
rows MAXROWS # max output rows

pcopies 1 # max # of copies

The title "Aging Sample" will appear in PDF document properties. It is ignored for laser output.

title "Aging Sample" # view in PDF properties

UnForm Version 6

172

The following prejob code demonstrates the use of sdOffice™ to mine data from this report and export it
to Microsoft Excel®. SdOffice can be running anywhere on your network on a system with Excel. The
code relies on your setting two variables correctly. First, the sdo$ variable should be set to the path to
the sdOffice client program sdofc_e.bb. In addition, the value of gbl("$sdhost") needs to be set to the
address or hostname of the system running sdOffice. An optional way of doing this is to define an
environment variable prior to running UnForm, called SDHOST. If you use that alternative, then
comment out the x$=gbl("$sdhost") line.

The code here contains enough error handling to ignore the code if sdOffice isn't present or fails to
execute.

prejob {
 # set up sdOffice export to Excel
 # set to path to your sdoffice *.pv programs
 sdo$="/u0/sdofc/sdofc_e.pv"

 # You can set the environment variable SDHOST, or use this
 # stbl function to define the sdOffice server address
 x$=gbl("$sdhost","bcj")

 # initialize excel
 call sdo$,err=prejob_done,"newbook","",errmsg$
 if errmsg$>"" then goto prejob_done
 sdofc_init=1
 call sdo$,"show","",""
 call sdo$,"setdelim |","",""
 call sdo$,"writerow ID|Name|Phone|Over 60|Total","",""
 call sdo$,"format row=1,font=Arial,size=12,bold","",""
prejob_done:
}

The prepage code block starts with code that exports data to Excel, but only if the prejob code block
successfully initializes the sdOffice connection. In addition to that code, it also sets two numeric
variables, colw and scol, based upon positions and widths of report column headers. These values are
used later in the rule set for fonting and line drawing.

prepage{
 # if prejob hasn't initialized sdoffice, skip this code
 if sdofc_init<>1 then goto sdofc_complete

 for row=1 to 66
 ln$=text$[row]

 # customer heading row contain phone numbers
 x=mask(ln$,"\(...-...-....\)")

UnForm Version 6

173

 while x
 custid$=mid(ln$,1,6)
 custname$=trim(mid(ln$,8,30))
 custphone$=trim(mid(ln$,38,14))
 x=0
 wend

 # totals - 50 plus spaces followed by digit-.-digit-digit
 x=mask(ln$,"^"+fill(50)+".*[0-9]\.[0-9][0-9]")
 while x
 amount60=cnum(mid(ln$,87,11))
 amount90=cnum(mid(ln$,98,11))
 amount120=cnum(mid(ln$,109,11))
 over60=amount60+amount90+amount120
 total=cnum(mid(ln$,120,11))

 export$=custid$+"|"+custname$+"|"+custphone$+"|"
 export$=export$+str(over60)+"|"+str(total)
 call sdo$,"writerow "+export$,"",""
 x=0
 wend

 next row
sdofc_complete:

 # Now for some tricky code.
 # Agings can have different headings and column widths
 # To use version 5 features allowing variable columns and rows,
 # the following code will calculate starting positions
 # and column widths. It assumes a consistency in column widths,
 # 1 char negative, and 1 blank space between each column
 hd1$=text$[7] # temp heading line with agings
 x=pos("Type"=hd1$)
 xhd1$=trim(hd1$(x+4)) # remove all except agings
 x=pos(" "=xhd1$)
 x$=xhd1$(1,x-1) # get first column header
 xhd1$=trim(xhd1$(x))
 x=pos(x$=hd1$) # find true position
 x1=x+len(x$)-1 # get end of first column
 # now find end of 2nd column
 x=pos(" "=xhd1$)
 x$=xhd1$(1,x-1) # get second column header
 x=pos(x$=hd1$)
 x2=x+len(x$)-1 # get end of second column
 # now calculate mask width less space between columns
 colw=x2-x1-1
 # now calculate start of first field
 scol=x1-colw+2
}

UnForm Version 6

174

The postjob code block performs some closing formatting control if the job is exporting data to Excel. If
sdOffice is not being used, based upon the attempt to initialize it in the prejob code block, then this code
is skipped.

postjob{
 # if prejob hasn't initialized sdoffice, skip this code
 if sdofc_init<>1 then goto sdofc_complete2

 call sdo$,"leaveopen","",""
 call sdo$,"format autofit","",""
 call sdo$,"format col=1,numberformat=@","",""
 call sdo$,"format col=4,numberformat=""###,##0.00""","",""
 call sdo$,"format col=5,numberformat=""###,##0.00"",bold","",""

 call sdo$,"insertrow 1","",""
 call sdo$,"mergecells range=A1:E1","",""
 call sdo$,"writecell range=A1,value="+22+ \
 "Over 60 Aging Values as of "+date(0)+22,"",""
 call sdo$,"format range=A1:E1,center,size=15,bold","",""
sdofc_complete2:
}

Here, finally, are the commands to enhance the formatting of the report. The initial commands use text
commands with cut expressions to move the report header data around and change the fonting.

heading section
const BLFONT=univers,10,bold,italic
const BSFONT=univers,9,bold,italic
cbox .5,.5,RIGHTCOL,5,5,30
line 1
text 2,1.25,{trim(cut(1,1,10,""))},BSFONT # date
text 1,1.25,{trim(cut(20,1,100,""))},BLFONT,center, \
 cols=MAXRCOLS # comp name
text 1,1.25,{trim(cut(121,1,15,""))},BSFONT,right, \
 cols=MAXRCOLS # page #
line 2
text 2,2.35,{trim(cut(1,2,10,""))},BSFONT # time
text 1,2.35,{trim(cut(20,2,100,""))},BLFONT,center, \
 cols=MAXRCOLS # rpt title
line 3
text 1,3.45,{trim(cut(20,3,100,""))},BSFONT,center, \
 cols=MAXRCOLS # sub heading
line 4
text 1,4.45,{trim(cut(20,4,100,""))},BSFONT,center, \
 cols=MAXRCOLS # sub heading

UnForm Version 6

175

This section formats the column headings. The left portion is drawn with text commands, while the
aging columns are fonted with font commands, which use the positions from the values calculated in the
prepage code block.

detail heading section
const HFONT=univers,10,italic
cbox LEFTCOL,5.25,RIGHTCOL,7.5,1,20
line 1
cerase 1,6,MAXCOLS,6
text 1,6,"Customer # & Name",HFONT
text 38,6,"Phone #",HFONT,center,cols=14
text 54,6,"Contact",HFONT

line 2
cerase 1,7,49,7
text 3,7,"Invoice #",HFONT
text 12,7,"Due Date",HFONT,center,cols=8
text 21,7,"P/O #",HFONT
text 32,7,"Order #",HFONT
text 39,7,"Terms",HFONT,center,cols=5
text 45,7,"Type",HFONT,center,cols=4
using variables from prepage, enhance aging headings
font {scol},7,{colw-1},1,HFONT,right
font {scol+1*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+2*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+3*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+4*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+5*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+6*(colw+1)},7,{colw},1,HFONT,right,bold

The report body is enhanced using UnForm's ability to scan for patterns and anchor enhancements to
those patterns. The first series of font commands scan for two spaces in the region from column 1, row
9 through column 2, row 66 (defined as the constant MAXROWS above). At each point in that search
region, if the two spaces are found, a font command is issued relative to the location. This changes the
font of the input data at that location.

The second series of font commands looks for customer heading line types, by searching for any alpha
or digit character in the region 1,9 though 2,66. A different set of font commands is then issued for
those positions.

detail data section
const BDFONT=cgtimes,10,bold
const DFONT=cgtimes,10
invoice line
font " @1,9,2,MAXROWS",2,0,8,1,DFONT
font " @1,9,2,MAXROWS",11,0,8,1,DFONT,center
font " @1,9,2,MAXROWS",20,0,10,1,DFONT

UnForm Version 6

176

font " @1,9,2,MAXROWS",31,0,7,1,DFONT
font " @1,9,2,MAXROWS",38,0,5,1,DFONT,center
font " @1,9,2,MAXROWS",44,0,4,1,DFONT,center
using variables from prepage, enhance agings
font " @1,9,2,MAXROWS",{scol},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+1*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+2*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+3*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+4*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+5*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+6*(colw+1)},0,{colw+1},1,BDFONT,decimal

cust line
font "~[A-Z0-9]@1,9,2,MAXROWS",0,0,6,1,BDFONT
font "~[A-Z0-9]@1,9,2,MAXROWS",7,0,28,1,BDFONT
font "~[A-Z0-9]@1,9,2,MAXROWS",37,0,14,1,BDFONT,center
font "~[A-Z0-9]@1,9,2,MAXROWS",53,0,36,1,BDFONT
shade "~[A-Z0-9]@1,9,2,MAXROWS",0,-.15,{RIGHTCOL-1.5},1,20

The following commands look for sequences of dashes, which indicate sub total lines. Wherever a
sequence of 50 dashes occurs, a box is drawn and input data is bolded. In addition, the original dashes
are removed with the hline command.

customer totals
hline "---",erase
example of UnForm command with continuation to next line
box "--", \
 -1,.25,{RIGHTCOL-53},1.25
bold "--",0,1,120,1

Finally, grand total lines are treated with special fonting and a box.

grand totals
const DFONT=cgtimes,11,bold
sample of box command with increased thickness and double lines
box "Grand Total:",-9.5,-1.25,MAXRCOLS,2.25,5,30,dbl 9
font "Grand Total:",0,0,12,1,BDFONT,13
font "Grand Total:",{scol-10},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+1*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+2*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+3*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+4*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+5*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+6*(colw+1)},0,{colw+1},1,DFONT,decimal

UnForm Version 6

177

LABELS – TEXT LABELS TO LASER LABELS (ADVANCED.RUL)

UnForm is capable reading rows of input, parsing those rows into logical pages, and reproducing the
output with different dimensions. A typical situation that can take advantage of this is if your
application is designed to print mailing labels on continuous label stock on dot matrix printers. The
labels can be 1-up, 2-up, or any other dimensions. As long as each label has a consistent number of
rows and columns, UnForm can parse each label and treat each label as a logical page with the across
and down commands. To use this sample, you must add "-r labels" to the command line.

uf60c –i sample4.txt –f advanced.rul –r labels –p pdf –o client:labels.pdf

This statement header identifies the rule set. The name is used in the –r command line option.

[labels]

Each label "page" is 35 columns and 6 rows of input text. If each line is 106 to 140 characters wide,
then four labels are parsed from the columns. When the output is produced, each label will be 30
columns by 6 rows. The labels will be arranged 3 rows across and 10 down the page. UnForm will
actually print 3x30=90 columns and 10x6=60 rows on each physical page.

Most laser label stock has ½ inch top and bottom margins. The margin command adds 75 dots (¼ inch)
to the standard UnForm top and bottom margins, which default to ¼ inch.

In this sample, the text of the labels is printed from lines 1 to 4. By using the vshift 1 command,
UnForm will move the text to lines 2 through 5. The shift command moves the text to the right.

page 35,6
rows 6
cols 30
across 3
down 10
font 1,1,40,6,cgtimes,12
margin 0,0,75,75
vshift 1
shift 2
manual feed tray is usually 2
tray 2

The barcode command supports both 5 and 9-digit formats of the postnet barcode. To get either to
print, the prepage code block sets one or the other variable (zip$ or zip9$), and both commands are
issued. A null value is not barcoded. The prepage code extracts the zip code from line 3 or 4 of the
label. It then determines the length and sets zip$ or zip9$ appropriately.

UnForm Version 6

178

barcode 2,6,{zip$},900,11.0,2
barcode 2,6,{zip9$},905,11.0,2

prepage{
get zip code from line 3 or 4
zip$="",zip9$="",zipline$=""
if trim(text$[4])>"" then zipline$=trim(text$[4])
if zipline$="" then if trim(text$[3])>"" then zipline$=trim(text$[3])
while zipline$>""
 x=mask(zipline$,"[0-9][0-9][0-9][0-9][0-9]")
 if x>0 zip$=zipline$(x)
 zipline$=""
wend
remove possible hyphen and validate length
x=pos("-"=zip$); if x=6 then zip$=zip$(1,5)+zip$(7)
if len(zip$)<>5 and len(zip$)<>9 then zip$=""
if len(zip$)=9 then zip9$=zip$,zip$=""
}

UnForm Version 6

179

132X4 – MULTI-UP, SCALED REPORTING (ADVANCED.RUL)

This sample rule set will work with any 132 column by 66 row report. To use it, you must add "-r
132x4" to the command line. The report uses the across and down commands to scale the report to print
four logical pages to a physical page.

uf60c –i sample3.txt –f advanced.rul –r 132x4 –p pdf –o client:132x4.pdf

The rule set header identifies the name.

[132x4]

The page dimensions are defined as 132 columns by 66 rows. UnForm will scale each page to fit 2
across and 2 down on a physical page (264 columns and 132 rows). The report is printed in landscape
orientation. A box is drawn around each page, and the hline command will convert all occurrences of 3
or more dashes to horizontal lines.

cols 132
rows 66
across 2
down 2
landscape
cbox .5,.5,132.5,66.5
hline "---"

UnForm Version 6

180

ZEBRA LABEL – ZEBRA® LABEL PRINTER EXAMPLE (ADVANCED.RUL)

UnForm offers an optional Zebra printer driver, which produces ZPLII code. Within the limits of the
ZPL language, UnForm produces enhanced forms for Zebra printers in much the same way it does for
laser printers. Some key differences are: fonts are identified differently and are limited in scalability,
shading is either 100% (black) or 0% (white), and the barcode command is more extensive and capable
than the laser printer barcode command.

When executing a Zebra run, it is critical to tell UnForm how large the labels are. This is done with a
special syntax on the "-page" command line option. Also, UnForm needs to know what print density is
used by the printer. This is determined by the "-p zebran" option, where n is either 6, 8, or 12 dots per
millimeter. You may need to adjust this sample command line to match your Zebra printer, as it
assumes an 8 dpmm printer and 3.25 by 5.5 inch label stock.

uf60c –i samplez.txt –f advanced.rul –p zebra8 –paper 3.25x5.5 –o zebra-device

This label is scaled to 40 columns and 35 rows.

[zebra label]
detect 0,1,"Zebra Barcode"
cols 40
rows 35

The prepage code block gets the PO number, setting it into a variable po$, and removing the PO
number from the text with a set() function.

prepage{
po$=""
po$=cvs(get(2,16,10),3)
trash$=set(2,16,10,"")
}

The From and To sections draw boxes, change fonts, and re-allocate the lines of text from row 10 to row
14 with a series of text commands followed by an erase command.

From section
box 1,1,39,8,3
text 2,2,"From:",font A
font 2,3,35,6,font 0,9

To section
box 1,9.75,39,10.5,5
#text 2,10.6,"To:",font 0
text 3,11,{get(2,11,30)},font 0,12

UnForm Version 6

181

text 3,12.25,{get(2,12,30)},font 0,12
text 3,13.5,{get(2,13,30)},font 0,12
text 3,14.75,{get(2,14,30)},font 0,12
text 3,16,{get(2,15,10)},font 0,12
erase 2,11,30,5

This group of commands prints three different barcodes on the label. First, a postnet code is printed
from the zip code located at column 2, row 15, for up to 10 characters. Then a UPS maxicode barcode
is printed with SDSI's address. Last, a "3 of 9" barcode is printed using the variable po$, derived in the
prepage{} code block above.

bar codes
barcode 10,18.25,{trim(get(2,15,10))},Z,33

text 2,24,"Maxicode",font 0,10
barcode 2,25,{"999840956820000" + $0a$ + "SDSI"+ $0a$ + "2195 Talon
Drive" + $0a$ + "Latrobe, CA 95682"},D

box 17,25,22,12,3
text 18,25.75,"Our PO No (in code 39):",font A,21
barcode 20,28,{po$},3,120,2,text above

UnForm Version 6

182

PDF OUTLINE SAMPLE (ADVANCED.RUL)

UnForm supports PDF outlines (or bookmarks) when using the pdf driver. Outlines can be multiple
levels, and each outline tree can be different levels deep. UnForm assumes each outline branch points to
a page. To control the text shown in the outline, you set the variable outline$ in a prepage or precopy
code block. This variable is parsed as each page is printed. Multi-level entries are created by delimiting
the text of the levels with a vertical bar (|) within the contents of the variable.

The file sample5.txt contains the contents of a 14-page report featuring two sort and subtotal levels, as
well as grand totals and a recap page. The outline tree for this report will be based on the salesperson
(outer sort) and class code (inner sort), along with specific page entries for the report total and recap
page. As there are no detect statements, you need to specify the –r option on the command line, as
shown.

uf60c –i sample5.txt –f advanced.rul –r outline –p pdf –o client:outline.pdf

[outline]

Set the page dimensions and turn on the outline feature with the outline keyword. The default outline
title for each page is simply "Page n", but a code block can override the outline text by setting the
variable outline$.

cols 132
rows 66
outline

The prepage code block looks on each page for the following cases, in order:
• A 3-digit salesperson number at the first column on line 7
• A salesperson subtotal heading on line 8
• A report total heading on line 8
• A recap page heading on line 2
For the first two types of pages, a two level outline entry is created (level 1|level 2 structure). For the
report total and recap pages, a single level outline entry is created.

prepage{
default outline setting matches prior page
outline$=lastoutline$

if line 7 starts with 3 digits, set 2-level outline slsp+class
if mask(get(1,7,3),"[0-9][0-9][0-9]") then \
 outline$="Slsp "+get(1,7,3)+"|Class "+get(13,7,2)

if line 8 contains this, it is a salesperson subtotal
if pos("SALESPERSON: "=text$[8])>0 then \
 outline$="Slsp "+get(14,8,3)+"|Totals"

UnForm Version 6

183

if line 8 contains this, it is a report title
if pos("*Report"=text$[8])>0 then \
 outline$="Report Total"

if line 2 contains this, it is the recap page
if pos("RECAP PAGE"=text$[2])>0 then \
 outline$="Recap Page"

lastoutline$=outline$

}

UnForm Version 6

184

PROGRAMMING CODE BLOCKS

The prejob, predevice, prepage, and precopy subroutines (and their associated postxxx routines) open the
world of Business Basic programming to the report and form designs. With a full programming
language at your disposal, it is possible to customize and manipulate the forms, and to interact with
other applications and devices, or with the operating system.

An experienced BBx or ProvideX programmer (ProvideX is the actual dialect used, with lexical
compatibility added for most BBx syntax) typically performs the programming of these subroutines.
However, programmers experienced in other languages, particularly other dialects of Basic, can easily
learn the fundamentals of Business Basic and perform these programming tasks. Several of the sample
forms include some programming, and there is a complete reference guide available from the ProvideX
web site: www.pvx.com. In this manual, we have provided some basic (no pun intended) information
that will assist developers experienced in other programming environments.

UnForm Version 6

185

BASIC SYNTAX

Statements
A statement consists of a single verb and any arguments or parameters suitable for that verb. Multiple
statements can be placed on a single line by separating them with a semicolon (;). Statements can be
preceded by a label, which consists of a label name followed by a colon. Label names must follow the
same naming conventions as numeric variables.

Variables
There are two types of variables in Business Basic: string and numeric. Variables that end in a "$"
character are treated as string variables. They can hold any amount of text data, limited only by system
memory. Numeric variables can contain any number or integer. UnForm sets precision to 10, so that up
to 10 digits to the right of the decimal are maintained accurately.

Variable names can be up to 31 letters, digits, and underscore characters, and must start with a letter.

work$, account01$, and cust_name$ are valid string variables.
cust-name$ is invalid.
amount, period_12, and six are valid numeric variables.

Arrays can be defined for both string and numeric variables. Arrays must be defined to a fixed number
of elements with a DIM statement, and array elements can then be referenced as variables. Arrays can
contain up to three dimensions.

dim amount[12] defines a 13-element array, a[0] … a[12].
dim x$[1:6,1:20] defines a 2-dimensional string array. The first dimension ranges from 1 to 6, the
second from 1 to 20. x$[2,20] would be a valid element in this array.

The dim statement can also be used to initialize strings to a specified length. Dim a$(12), for example,
will set a$ to 12 spaces.

There are special string constructs available in ProvideX. These are called string templates or
composite strings. Details about these constructs can be found in the language manual for ProvideX,
available from www.pvx.com.

Functions
Many functions are available in Business Basic. Most will be familiar to a Basic programmer.
Functions consist of a word, an opening parenthesis, one or more arguments, and a closing parenthesis.
The function returns a string or numeric result, which is typically used as part of an expression, or in an
assignment. Wherever a string or numeric value can be used, a string or numeric function can be used.
In addition to internal Business Basic functions, UnForm also provides some functions that perform
tasks typical to print stream environment in which it runs.

UnForm Version 6

186

String and numeric representation
Strings are made up of concatenated bytes. They can be represented as literals inside double quotes,
such as "Name:", or as hexadecimal strings inside "$" delimiters, such as $1B45$ for Escape-E. They
can also be made up of combinations of literals, hex strings, string variables, and functions that return
string values. These values are combined using the "+" operator to concatenate each string together.
For example, a string containing quotes could be constructed one of these ways: chr(34)+"some
text"+chr(34); or 22+"some text"+22, or quote$+"some text"+quote$. Since chr(34) and 22 both
represent a quote character, and it would be possible for the variable quote$ to contain the same, all
these expressions can represent the same string.

Substrings can be derived from a string variable with the syntax stringvar(start [,length]). For example,
if account$ is "01-567", then account$(4,3) would return the value "567". Substrings references with
positions that aren't in the string result in errors, so care must be used. To avoid the possible errors, the
mid() function can be used.

Numbers can be represented as integers or decimal numbers, or, like strings, can be represented as
expressions containing literal numbers, numeric variables, and numeric functions. With numbers, there
are more operators available to produce the expressions. A literal number is just a series of digits, with
an optional decimal point and an optional leading minus sign. 1995.99 and -100.433 are valid numbers.
Other punctuation, such as thousands separators or currency symbols, are invalid in a number though
they can be added when a number is formatted as a string for output.

Operators
Business Basic has the following standard operators:

+ concatenate strings or add numbers, depending on context
- subtraction
* multiplication
/ division
^ exponentiation
= testing for equality, or assignment, depending on context
> testing for greater than
>= testing for greater than or equal to
< testing for less than
<= testing for less than or equal to
<> testing for inequality
() controlling precedence
and combining expressions with logical "and" in conditions
or combining expressions with "or" in conditions

If Then Else
The structure of IF…THEN…ELSE statements is simple and unblocked. The IF must be followed by
an expression to test. The expression can be simple or complex, and must resolve to a single boolean or

UnForm Version 6

187

numeric result. For numeric results, a 0 is considered false, and anything else is considered true. Once
resolved, if true the THEN clause is executed, otherwise the ELSE clause, if present, is executed.

Both the THEN clause and the ELSE clause can contain any statements, including nested IF statements.
A closing END_IF after a THEN or ELSE clause will terminate the conditional nature of statements
following it.

Here are some examples of IF statements:

if amount < 0 then text$="Credit Balance"
if x$="A" then desc$="Acme Rental" else if x$="S" then desc$="Smith & Sons" else desc$="N/A"
if testmode then dummy$=set(1,1,10,"Test Mode") end_if; goto exitsub

While Wend Loops
One of Business Basic's looping structures is the WHILE..WEND loop. At the top of the loop is a while
condition statement, where the condition is evaluated like an IF clause. As long as the condition is true,
or returns a non-zero value, the statements up until the closing wend statement are repeated. To escape
the loop, you can use the EXITTO label verb, or set variables such that the condition is false before
executing the wend verb.

Here is a simple WHILE…WEND syntax that substitutes (") with (') in a string:

x=pos(22=work$)
while x > 0

work$(x,1)="'"
x=pos(22=work$)

wend

For Next Loops
Another commonly used loop structure is the FOR…NEXT loop. A FOR statement identifies a
variable, a start value, an end value, and an optional step value. The variable is set to the start value; the
loop statements are executed until a NEXT statement is encountered; the variable is incremented by the
step value; and, until the end value is exceeded, the loop statements are repeated. To exit the loop
before the end value is reached, use the EXITTO label verb. Here is an example that would perform the
same substitution shown above (though more slowly):

for i=1 to len(work$)
 if work$(i,1)=$22$ then work$(i,1)="'"
next i

File Handling
Business Basic has very powerful facilities for handling files. Not only are there intrinsic keyed file
types, but also text files and pipes can be used.

UnForm Version 6

188

If the application with which UnForm is integrated is written in ProvideX, then full native access to the
data files is available. If the application is written in BBx, then the bbxread() function can be used to
obtain record data via an instance of BBx.

If UnForm is working with a non-Business Basic application (e.g. C, Cobol, Informix, Oracle, etc.),
there are additional means to obtain data, via ODBC on Windows or pipes on UNIX.

Opening Files

File access is performed through an open file channel. The OPEN statement opens the file on a numeric
channel in preparation for later file access. Open(99)"customers.dat" opens the named file on channel
99. Channel numbers can range from 1 to 32767, though the operating system will typically impose a
limit on the number of simultaneous channels that can be opened. Channel numbers must be unique.
Once opened, that channel number is no longer available until closed. To avoid conflicts with channel
numbers, it is common to use a special function that returns an available channel number, UNT. Here is
a typical syntax:

cust=unt
open(cust)"customers.dat"

After that, file access verbs can use the cust variable to access the "customers.dat" file.

To open a pipe channel, you could do the following:

faxlist=unt
open(faxlist)"|sqlexec 'select cust,faxnum from customers'"
read(faxlist)line1$

labelprt=unt
open(labelprt)">lp –dlabels"
print(labelprt)"To: "+name$
print(labelprt)" "+address1$

Reading Files

There are two verbs used for reading channels: READ, and READ RECORD. The READ verb
understands line and field separators, whereas the READ RECORD verb reads blocks of a specified size
or whole records, in the case of intrinsic keyed file types. The READ verbs accept several options,
including "key=string", "ind=index", "err=linelabel", "end=linelabel", and others. Full details can be
found in the language reference manuals. A special syntax of "err=next" is used by UnForm to simply
drop through to the next statement if an error occurs.

To read from an intrinsic keyed file (ProvideX files only), you might use one of these:

read(cust,key=custkey$,err=next)*,name$,*,*,*,*,faxnum$

UnForm Version 6

189

read record(cust,key=custkey$,err=next)custrec$
name$=custrec$(7,30),faxnum$=custrec$(112,10)

To read from a pipe or a text file, you may not use a key= clause, so you just read sequentially through
the file:

read(faxlist,end=done)cust$,faxnum$

Writing files

You probably would not want to write to your application files, but you may well want to write to
external devices or log files. Writing is performed with these verbs: WRITE or WRITE RECORD and
PRINT. Each uses a channel number and arguments to print. PRINT and WRITE terminate their values
with a line-feed character, unless a comma follows the last argument. WRITE RECORD will write a
single string variable without any termination so it is suitable for binary or blocked output.

print (logfile)"Customer: "+custname$+" printed on "+date(0,tim:"%D-%M-%Y:%Hz:%mz")
dim block$(128); block$(1)=custname$,block$(31)=str(amount:"000000.00"); write record(log)block$

UnForm Version 6

190

INTERNAL VARIABLES

In addition to your own variables, UnForm provides a list of variables that you can use, or in many
cases, set to a desired value.

across$ Can be set to values described in the across command. Available only in prepage and
precopy.

bin$ Can be set to values described in the bin command. Available only in prepage and
precopy.

cols$ Can be set to values described in the cols command. Available only in prepage and
precopy.

copies

pcopies

Can be set to the number of copies to generate for a page. You can change this value
to dynamically adjust the number of copies. If the number you specify is higher than
the number specified by the rule set, then that highest defined copy's text and
enhancements will be repeated until your specified copies are complete. This value is
reset after each page to the rule set default, so you can't set it in the prejob routine. If
you set pcopies, that is also honored like the pcopies command.

copy Contains the current copy number in precopy. Generally you shouldn't modify this
value. If you need to skip printing of a copy, use the skip variable instead.

crosshair$ Can be set to "Y" or "y" to enable crosshair grid printing over the output (laser and
PDF output only).

down$ Can be set to values described in the down command. Available only in prepage and
precopy.

driver$ Stores the current driver as "laser", "PDF", or "zebra". The win and winpvw drivers
are considered variants of PDF, and driver$ is set to "PDF" when used. This variable
should not be changed.

duplex$ Can be set to values described in the duplex command. Available only in prepage and
precopy.

gs$ Can be set to the values described in the gs command. Available only in prepage and
precopy.

margin$ Can be set to values described in the margin command. Available only in prepage and
precopy.

orientation$ Can be set to "landscape", "portrait", "rlandscape", or "rportrait". It can also be set to a
literal digit: "0"=portrait, "1"=landscape, "2"=reverse portrait, or "3"=reverse
landscape.

outline$ Can be set to an outline string used when the PDF outline feature is turned on, by use
of the outline command. Multiple levels of outlines can be defined by delimiting
levels with vertical bars, such as outline$="Customer type "+get(1,6,4)+"|Page

UnForm Version 6

191

"+str(pagenum). This example would produce a 2-level outline structure with a
customer type code being the top level, and page numbers as child levels.

output$ In laser output, this can be changed in prejob, prepage, or precopy, and is tracked by
copy. Set it to the device or file name desired for output on the server. If it changes
for a given copy in the middle of a laser job, UnForm will close the prior output
channel and reopen the new one. This can be used to send a copy to a different printer,
or to a fax device. You can set the value to any printer alias known to UnForm (in the
unform.cnf file), any file, or a pipe or redirect, such as ">vfx -n "+faxnum$. When
using a UNIX redirect or pipe, be sure to add quote characters (CHR(34)) around any
data that might contain ampersands (&) or other shell-aware characters.

For PDF output, you can set this value in the prejob code block to override any –o
command line setting. Setting this value in any other code block is ignored.

pagenum Can be referenced as the current page number. The value should not be changed.

paper$ Can be set to values described in the paper command. Available only in prepage and
precopy.

rows$ Can be set to values described in the rows command. Available only in prepage and
precopy.

skip Can be set to a non-zero value in prepage or precopy, to skip printing of that page or
copy, respectively.

text$[all] Stores the text for the page as a one-dimensional array. For example, text$[2] is the
second line of text on the page. In prejob, it contains the content of the first page. In
prepage and precopy, it contains the content of each page in sequence. You can use
the array directly in code, or you can use the built in get(), mget(), set(), cut(), and
mcut() functions to retrieve or manipulate its contents.

tray$ Can be set to values described in the tray command. Available only in prepage and
precopy.

uf.xxx$ A string template or composite string that can provide access to many attributes of the
UnForm environment and command line.

uf.cols Columns for the current page.

uf.copies Copies defined for the job.

uf.dfrule$ Default rule file from the environment.

uf.driver$ Driver for the current job.

uf.emattach$ Command-line –emattach value.

uf.emfrom$ Command line –emfrom value.

uf.emlogin$ Command line –emlogin value.

uf.emmsgtxt$ Command line –emmsgtxt value.

UnForm Version 6

192

uf.emoh$ Command line –emoh value.

uf.empswd$ Command line –empswd value.

uf.emsubject$ Command line –emsubject value.

uf.emto$ Command line –emto value.

uf.errfile$ Command line –e file value (dynamically determined by the
server).

uf.home$ Home directory of the UnForm server.

uf.inputfile$ Command line –i file value (dynamically determined by the
server).

uf.job Current job number.

uf.maxdatacols Maximum column in the current page.

uf.maxdatarows Maximum row in the current page.

uf.outputfile$ Command line –o file value. For server-based output, this is the
–o option sent by the client. For client-based output, this is
dynamically determined by the server.

uf.page Number of input lines per page. Do not confuse this with the
pagenum variable, which holds the current page number.

uf.paper$ Paper size name.

uf.pcopies Pcopies defined for the job.

uf.pdfauthor$ Command line –pdfauthor value.

uf.pdfkeywords$ Command line –pdfkeywords value.

uf.pdfprotect$ Command line –pdfprotect value.

uf.pdfsubject$ Command line –pdfsubject value.

uf.pdftitle$ Command line –pdftitle value.

uf.prm$ Command line –prm value.

uf.rows Rows for the current page.

uf.rulefile$ Command line –f rule file value.

uf.ruleset$ Selected rule set for the current job.

uf.shift Horizontal shift value.

uf.subjob Set to 1 (can be treated as a boolean) if this is a sub-job executed
by the jobexec() function.

uf.subst_file$ Command line –s file value.

uf.vshift Vertical shift value.

UnForm Version 6

193

uf.warn$ Job warning messages, delimited by line-feeds. For example, to
add your own message: uf.warn$=uf.warn$+"My
message"+chr(10).

UnForm Version 6

194

INTERNAL FUNCTIONS

In addition to the intrinsic functions available in the run-time Business Basic engine, the most common
of which are documented later in this chapter, UnForm provides a set of functions specific to its
operating environment. Some functions are macros that perform an action, rather than return a value.

bbxread(file$,key$,rec$,errcode) Executes an instance of BBx, configured with the
bbpath=path line in uf60d.ini, and obtains the record
specified by key$ in file$. If an error occurs in the BBx
instance, it is returned in errcode. An errcode value of –1
indicates no error occurred. The variable rec$ can be
DIMed as a string template, but be sure to use '=10' to
define field separators, as the default separator in the
ProvideX engine is a hex 8A rather than the BBx default
hex 0A. If it is not defined as a template, the raw record
data is returned and may be parsed.

Here is an example:

prepage{
ky$=get(65,5,6)
dim rec$:"id:c(5*=10), *:c(1*=10), …,
fax:c(9*=10)"
bbxread("/u/data/CUSTOMER",ky$,rec$,ec)
if ec=-1 then faxnum$=rec.fax$
}

cnum(expression) Returns a number from a text string, after stripping
formatting characters such as commas and dollar signs.
Parentheses and minus signs indicate negative numbers.
Use this function, rather than the intinsic num() function, to
convert text to numbers if the text can contain punctuation.

cut(col,row,cols,value$) Returns the value text at position col, row, for cols columns,
after setting the specified position to value$. If value$ is
null ("") or spaces, cut() effectively erases the text. This is
useful for moving data in text commands, such as text
10,60,{cut(10,59,10,"")}, which would cut text from 10,59
and move it to 10,60.

email(to$, from$, subject$, body$,
attach$, cc$, bcc$, otherheaders$,
login$, password$)

Sends an email, assuming emailing is properly configured
in the mailcall.ini file, using the information supplied. The
arguments are positional but need not all be supplied. For
example, email(trim(get(81,1,40)), info@acme.com,

UnForm Version 6

195

"Please review", messagebody$) will send a plain
message to the address stored at column 81, row 1, for 40
characters in the current page. No attachment, carbon copy,
etc. information will be used. As the arguments are
positional, if you need to supply a login and password for
the mail server to perform authentication, then all the
arguments must be supplied, even if simply null (""). Note
that this email function is different from the email
command, in that the job itself is not sent, and multiple
emails can be sent during the job stream within code blocks.
This is useful, particularly in combination with the jobstore
and jobexec functions, to develop batch email jobs.

env(name$) Returns the value of the operating system environment
variable in name$, or in a literal quoted string. Returns null
("") if the variable does not exist.

err=next May be used for any err=label option in any function or
statement. Forces UnForm's error trapping to ignore an
error. You may, of course, name your own err=label if
desired.

exec(expression) Executes a barcode, bold, box, erase, font, image, italic,
light, micr, move, shade, text, or underline command from
within the code block. Expression must be a single string
value that contains the text of such a command, such as
exec("box "+str(col)+","+str(row)+",30,2.5"). You can
use the exec() function to add enhancements to a print job
within the code block. The function can be used in either
prepage{} or precopy{} blocks. Remember that some
commands need quoted parameters to work properly. For
example, if you exec() a text command, be sure to add
quote characters around the text to be printed, using one of
three methods: double any internal quotes, use an
expression that uses 22 for quotes, or use an expression
that uses CHR(34) for quotes. For example, exec("text
10,10," + chr(34) + message$ + chr(34) + ",cgtimes,10"),
or exec("text " + str(col) + "," + str(row) + ",""Quoted
Text"",univers,12").

get(col,row,cols) Returns text from the text$[all] array, without substring or
array out-of-bounds errors.

jobclose(id$…) Closes and erases the temporary storage file associated with
id$. Open jobs are all automatically closed at the end of the
primary job.

jobexec(id$,output$,driver$,argstring$
)

Executes a sub-UnForm job using the parameters given.
The id$ identifies a job with one or more pages previously
stored with the jobstore() function. The output$ value

UnForm Version 6

196

defines where the sub-job's output should go. This can be a
file name, like "/archive/"+invoice$+".pdf", a device name,
like "//printsrv/hp4000", or a pipe/redirect, like ">lp –
dhp4000 –oraw". The driver$ argument can be set to one of
the –p drivers supported by UnForm, such as laser or PDF.
The argstring$ contains any additional command line
parameters you wish to add to the sub-job command line.
You can use any parameter supported by the uf60c client,
though the -i, -o, and -p options are specified using the
other three function arguments.

A rule set can check uf.subjob, as "if uf.subjob" or "if
uf.subjob=1", to test if an instance is running from a
jobexec() function.

jobfile(id$) Returns the temporary text file associated with id$.
jobstore(id$) Stores the content of the current page in a temporary file,

identified by id$. The value in id$ is user-defined, and each
unique value stores content in a different temporary file.
The other job-related functions use the id$ value to select
which file to use. For example, you could store a whole job
with an id$ of "job", and individual documents in jobs
identified by their document number. Each would be stored
separately and could be jobexec'd separately.

left(str$,length) Returns the leftmost length characters from str$, padding
with spaces on the right to enforce length. Note also the
mid() and right() functions.

lower(expression) Returns text in lowercase.

mcut(col,row,cols,rows,value$,lf$,trim$) Returns multiple lines of text, optionally with line-feed
delimiters and/or trimmed of spaces. The lf$ argument can
be set to "Y" or "y" to add a line-feed character between
each line; likewise, the trim$ argument can be set to "Y" or
"y" to cause each line to be trimmed before returned. In
addition, mcut() assigns each line in the cut region to
value$. Use null ("") or spaces to erase the source text.

mget(col,row,cols,rows,lf$,trim$) Returns multiple lines of text into a single string, optionally
with a line-feed delimiter and/or trimmed of spaces. This
function is useful in conjunction with multi-line
functionality of the text command. The lf$ argument can be
set to "Y" or "y" to add a line-feed character between each
line; likewise, the trim$ argument can be set to "Y" or "y"
to cause each line to be trimmed before returned.

mid(arg1$,arg2,arg3) Safely returns a substring without generating an error 47 if
the value in arg1$ isn't long enough to accommodate
position arg2 and length arg3. Note also the left() and

UnForm Version 6

197

right() functions.

parse(str$,n,delimter$) Returns the nth element of the string str$, when parsed by
the delimiter specified. For example, parse("one,two",2,",")
would return "two". If the delimiter is null, then any white
space delimiter is used.

parseq(str$,n,delimiter$) This is the same as parse(), except that honors quoted
values in the string str$, ignoring delimiters contained in
them.

proper(expression) Returns text in Proper Case.

right(str$,length) Returns the rightmost length characters from str$, padding
with spaces on the left to enforce length. Note also the
left() and mid() functions.

set(col,row,cols,value$) Returns value$, after it places value$ in the text$[all] array
at the position indicated.

sub(str$,old$,new$) Returns a string where all occurrences of old$ in str$ are
replaced with new$.

trim(expression) Returns expression after trimming spaces from the left and
right side.

upper(expression) Returns text in UPPERCASE.

When using variables and line labels, you should avoid using any values that begin with "UF".
UnForm reserves all such variables and labels for its use. You may use a backslash (\) at the end of a
line to continue the statement on the next line. Lines prefixed with "#" are not added to the code.

Two data elements from the command line can be referenced in code blocks using the stbl() function
(use gbl() in ProvideX environments). The –s sub-file option will generate stbl values as "@name". For
example, if the substitution file contains the line 'company=Smith Produce', then stbl("@company") will
return "Smith Produce". Further, the –prm command line option will directly create stbl values.

UnForm Version 6

198

VERBS AND FUNCTIONS

The following list is a summary of verbs and functions that are commonly used in UnForm applications.
Note that all functions accept an ",err=linelabel" or "err=next" argument, and all verbs accept the same
after any parameters, to branch if an error occurs. Optional arguments are shown inside braces {}.

ASC(string) Returns the ASCII numeric value (0-255) of the first

character of string.
ATH(string) Returns a binary equivalent of a human readable hex string.

ATH("1B") returns an escape character.
BIN(integer,length) Returns a binary integer representation of the specified

length. The inverse function of this is the DEC() function.
BREAK Breaks out of a loop structure. Equivalent to EXITTO

linelabel if linelabel is the line after the closing WEND or
NEXT.

CHR(integer) Returns a character string whose ASCII value is integer,
between 0 and 255. CHR(27) returns an escape character.

CONTINUE Executes the next iteration of a loop structure. Equivalent
to GOTO linelabel, if linelabel is the closing WEND or
NEXT.

CVS(string,arg) Returns a converted string according to the cumulative
value of the integer arg. Values: 1=strip leading spaces,
2=strip trailing spaces, 4=uppercase, 8=lowercase, 16=non-
printable characters to spaces, 32=multiple spaces to single
spaces. CVS(a$,3) trims both leading and trailing spaces.

DATE(julian {,time} {:mask})
DTE(julian {,time} {:mask})

returns a human readable date and/or time, based on the
julian date (see the JUL() function), a decimal time (hour
and fraction of hour – 12.5=12:30PM), and a format mask.
The mask can contain combinations of placeholder
characters and modifiers. The placeholders are %M=month,
%D=day, %Y=year, %H=hour (24 hour clock), %h=hour
(12 hour clock), %m=minute, %s=second, %p=AM/PM.
Modifiers include z=zero fill, s=short text, l=long text.
Examples on June 30, 1999 at 1:30 in the afternoon: date(0)
returns "06/30/99", date(0:"%Ml %D, %Yl") returns "June
30, 1999", date(0,tim:"%hz:mz %p") returns "01:30 PM".

DEC(string) Returns the decimal conversion of the binary integer in
string. The counterpart to the BIN() function. To treat
string as an unsigned integer, you should use the form
DEC(00+string).

DIM string(length {,char}) Returns a string of length size, of spaces or the specified
char character.

DIM name[dim1{,dim2{,dim3}}] Creates a numeric or string array variable. Dimensions can

UnForm Version 6

199

be simple integers, indicating an index range of 0..dim, or
two integers separated by a colon, like 1:12.

DIR("") Returns the current disk directory. On Windows,
DIR(driveletter) will return the current directory for the
specified disk drive.

EPT(number) Returns the 10's exponent value of number. EPT(100)=3,
EPT(12)=2.

ERASE filename Erases a file. Obviously, care should be taken to only erase
temporary work files.

EXITTO linelabel Exits a loop structure (current level only, in nested
structures) and jumps to the specified linelabel.

FBIN(number)
I3E(number)

Returns a 64-bit IEEE number in natural left to right
ordering.

FDEC(string)
I3E(string)

Returns the decimal value of a 64-bit IEEE number.

FID(channel) Returns a file identification string for the file opened on
channel. For devices, just the device name is returned. For
files, the first byte indicates the file type (00=indexed,
01=serial, 02=keyed, 03=text, 04=program,
05=directory, 06=mkeyed, etc.) You can verify a file
is a plain text file like this: test$=fid(filechan); if
test$(1,1)=$03$ then x$="text file".

FILL(integer{,string})
DIM(integer{,string})

Returns a string if integer length, made up of successive
iterations of string, or spaces if no string is provided.
FILL(7,"abc") will return "abcabca".

FIN(channel) Returns additional file information not found in the FID()
function. A common use of this function is to determine file
size, which is stored as a binary integer in the first four
bytes. To get the length of a file: x$=fid(filechannel);
length=dec(00+x$(1,4)). Additional potentially useful
information can be found as well. See the language
reference manual for more details.

FOR numvar=start TO end {STEP
increment}

Initiates a loop, using a numeric variable initialized to start
the first pass through the loop, incrementing by 1 or the
specified increment, which can be negative, until the
variable exceeds (or goes below in the case of a negative
increment) end. The statements following this command,
until a NEXT numvar statement, are executed. The loop
can be broken from with the BREAK or EXITTO verbs.

FPT(number) Returns the fractional portion of a number. FPT(100.66)
returns .66.

GOSUB linelabel Jumps to the specified linelabel. Statements will be
executed until a RETURN verb is encountered, and
execution will return to the statement after the GOSUB.

GOTO linelabel Jumps to the specified linelabel.

UnForm Version 6

200

HTA(hexstring) Returns a human readable hex string of hexstring.
HTA(CHR(2)) returns "02". HTA("0") returns "30".

IF test THEN statement(s) {ELSE
statement(s)} {END_IF or FI}

Conditionally executes statements. test must be a simple
expression that produces a boolean or numeric result
(0=false, non-0=true). Multiple statements can follow the
THEN or ELSE clause by separating them with semi-
colons. Statements following a END_IF are executed
without regard to the condition of the last IF test. Nested IF
statements are accepted without practical limit.

INT(number) Returns the integer portion of a number. INT(99.645)=99.
JUL(year,month,day) Returns the julian integer of the specified date elements.

The year should be specified, if possible, as a 4-digit year.
Otherwise the function will assume a century of 1900. The
complement of this function is the DATE() function.

LEN(string) Returns the length of the string.
LET var=value{,var=value…} Assigns variables to values. The variables can be numeric,

string, or array variables. The values can be any compatible
numeric or string expression. LET is implied when an
assignment is performed in context. "LET a=1" and "a=1"
are equivalent.

MASK(string{,regexpr})
MSK(string{,regexpr})

Returns the position where a regular expression pattern was
found in the string, or 0 If not found. If regexpr is not
specified, then the last regexpr used is re-used. This
provides a performance benefit for repeated uses of the
same regexpr. The length of the string matched is returned
by the TCB(16) function.

MAX(num{,num…}) Returns the largest number found in the list of nums.
MIN(num{,num…}) Returns the smallest number found in the list of nums.
MOD(num1,num2) Returns the remainder of dividing num1 by num2.

MOD(4,3)=1, MOD(6,3)=0.
NUM(string) Returns the decimal value of a string, assuming the string is

a well-formatted value containing digits, a single optional
period (decimal point), and a single optional leading hyphen
(minus sign). Other punctuation or characters will return an
error. NUM("-12.5") returns 12.5. NUM("1,456") results
in an error.

ON integer GOTO|GOSUB
linelabel{,linelabel…}

Branches to one of the indicated line labels based on the
value of integer. If integer is 0 or less, branch to the first
label, 1 to the second, 2 to the third, and so on. The last
label is used for integer values greater than that of the last
label.

OPEN(integer{,err=linelabel|next}{,isz=i
nteger}) string

Opens the file named in string on channel integer. To open
a file in binary mode regardless of the file type, specify a
block size with the ",isz=integer" option.

POS(string1 relation string2 {,increment Scans string2 for a substring having the specified relation to

UnForm Version 6

201

{,occurrence}}) string1. POS("B"="ABC") returns 2. POS("B"<"ABC")
returns 3. The string can be searched in even character
increments: POS("02"="002002",2) will return 5, since the
second and third characters, though matching the search
string, are not located at an increment boundary. If the
string is not found, or the requested relation, increment, and
occurrence cause the string to not be found, the function
returns 0.

PRINT(channel) value {,value…}{,} Prints a series of values, numeric and/or string, to the file
channel specified. A line-feed character is added to the
channel unless the last character of the statement is a
comma.

READ{ RECORD}(channel {,options})
variable {,variable…}

Reads data from the specified channel into the specified
variables, looking for field terminator characters to delimit
variables. Field terminators include line-feeds, carriage
returns, and nulls. Valid options include "err=linelabel",
"end=linelabel", "siz=blocksize". "key=keystring",
"ind=index", and "dom=linelabel". For intrinsic keyed files,
use the key= or ind= options to read specific records. For
text files, use READ to process line-feed delimited files, but
be aware that carriage return characters act as field
separators. To read text files as binary files, use READ
RECORD with a "siz=" option.

REM Places a non-executing remark line in the code. In UnForm,
you can also use a # character.

RETRY Retries the statement that caused the last error branch to be
taken.

RETURN Returns from a GOSUB branch.
RND(integer) Returns a pseudo-random number. The random number

sequence can be re-seeded by providing a negative integer,
so it is common at startup (like in a prejob code block) to
seed the RND function with a variable number, such as
MOD(JUL(0,0,0)+INT(TIM*10000),32000). The integer
can be a number from –32767 to +32767. Positive numbers
return a random integer from 0 to integer-1. If integer is 0,
a random number between 0 and 1 is returned.

ROUND(number,precision) Returns number, rounded to precision.
ROUND(1.566,2)=1.57. ROUND(100.83,0) returns 101.

SCALL(string)
SYS(string)

Executes the operating system command in string. Returns
the result code provided by the operating system. Use this
function to interface with the operating system or external
commands. This is an alternative to opening a pipe to a
command.

SETERR linelabel Provides a generic error handler to catch errors not trapped
by err=linelabel branches in functions and verbs. UnForm

UnForm Version 6

202

also adds error handling code to code blocks, and reports
errors in a job error file (temp/jobno.err in the server
directory).

SGN(number) Returns a 1, 0, or –1, depending on the sign of number.
STBL(string1{,string2})
GBL(string1{,string2})

Returns and/or sets the global string table value named
string1. If string2 is present, then the string table is set to
string2. In both cases, the value is returned. If string1 has
not been set, STBL(string1) will result in an error (trappable
with err=linelabel, of course).

STR(number{:mask})
STR(string{:mask})

Converts a number to a string, optionally formatted with a
mask. The mask can contain any text, plus the following
placeholder characters: 0=zero filled digit, #=space filled
digit, "."=decimal point, ","=thousands separator, -, (,), and
CR for negative numbers. STR(99.91:"0000.00") returns
"0099.91". STR(19093.255:"###,##0.00") returns
"19,093.26".

STRING filename{,err=label}
SERIAL filename{,err=label}

Creates a text file of the name specified. Use either a string
variable or expression, or a quoted literal string.

Examples: STRING "/tmp/test.txt" or STRING
"/tmp/"+str(dec(info(3,0)))+".txt",err=next.

TCB(integer) Returns task control information. Commonly used integer
values include: 10=last operating system error code and
16=length of MASK() function match.

TIM Numeric variable that returns the decimal time of day, from
0.0 to 23.99.

UNT Numeric variable that returns the next available file channel
number.

WHILE condition…WEND Looping construct that performs statements between
WHILE and WEND statements as long as condition is true
or non-zero.

WRITE {RECORD} (chan,options)data Writes data to a file. Numerous options are available, some
depending on the type of file. See the full programming
documentation available on www.pvx.com for more details.

Lexical Substitutions

With the change in Version 6 to the ProvideX run-time engine, it is possible that some BBx syntax in
code blocks will be incompatible. For the most part, the lexical substitutions automatically performed
by UnForm will handle any differences, with the exception of direct I/O to BBx data files, which can be
handled with the bbxread() function. However, if any additional substitutions are required, they can be
entered into a user-defined text file called uflexsub.usr.

UnForm Version 6

203

The format for the lines in this file is simply bbxsyntax=pvxsyntax. An example is provided in
uflexsub.txt, which is a file that provides some standard syntax substitutions that the internal lex
capabilities do not support. You can add your own by simply creating uflexsub.usr and adding lines.

UnForm Version 6

204

ERROR CODES
When code is executed, any errors that are not handled by err=label branches are reported as warnings
on a job trailer page. High error code numbers are used to report errors in client-server communication.
Common error codes are shown in the following table.

Error Number Description
1 End of record error, which may occur on a buffered disk write operation if the data

is too long for the record buffer. This error is rare in UnForm jobs, but could occur
if output is being printed to a printer alias defined in the config.unf file.

2 End of file, which may indicate a disk full message, or a file that is too large for the
operating system to handle.

10 An invalid file name was given.
11 A missing key on a keyed read operation, or a duplicate key on a keyed write

operation with a DOM= option.
12 A missing file error on a file open operation, or a duplicate file error on a file

creation operation.
13 Normally a file permission error.
14 A file channel conflict or locking conflict error.
16 Out of resources, such as file handles. If this error occurs, it is often due to opening

too many files. This can easily occur if files are opened but not closed in a loop or
call construct.

18 Normally a file or directory permission error.
20 Syntax error. Common causes include mismatched parentheses, incorrect spelling

of verbs or functions, or missing or incorrect function arguments.
21 Missing statement, as referenced in an ERR=label, or a goto or gosub branch.
23 Missing GBL/STBL variable name.
26 String/Number mismatch, where a string variable or literal is used where a number

is expected, or visa versa.
27 Stack error, such as a return without a gosub, or a wend without a while.
28 For/Next error, such as executing a next without an associated for.
29 Mnemonic error. Mnemonics are pre-defined codes inside single quotes, such as

'FF' or 'LF'. Therefore, single quotes are not valid as string literal indicators; only
double quotes are.

30 Corrupt program, which indicates that UnForm itself is probably corrupted, unless
this error occurs on a call statement referencing an external program.

31 Out of memory.
33 Out of memory.
36 Mismatched arguments on a call statement.
40 Numeric overflow, normally caused by a divide by zero.
41 An integer overflow or range error. Some functions require integer arguments, so a

floating point number will cause this error. Also, some functions require integer
arguments to fall in a certain range, and this error will occur if the function is given
a value outside of the valid range.

42 Array subscript error.

UnForm Version 6

205

Error Number Description
43 Masking error.
46 String length error.
47 Substring error, such as a starting position of 0 or a length greater than the length of

the string.
997 The client's IP address is not in the server's list of valid addresses. To correct this

problem, the allow= line in the server's uf60d.ini file must be modified to match the
network addresses in use, and the uf60d server restarted.

998 The maximum number of concurrent jobs licensed was exceeded.
999 The server was unable to start the secondary process to handle the job within the

allotted time of 30 seconds. Possible causes include a sluggish server and network
problems, such as a DNS server timeout.

1024 The Windows uf60c.exe client can report this error if the network connection to the
server is too slow.

1057 The Windows uf60c.exe client can report this error if the server is not running or a
firewall is blocking the primary listening port.

UnForm Version 6

206

EMAIL INTEGRATION

UnForm includes a copy of the MailCall utility that enables emailing of attachments from within
UnForm. This is most often used to send PDF files. It can be used to email laser printer (PCL5) files, as
long as you know the email recipient has a compatible printer that supports any of the fonts used in your
documents. If you use CGTimes, Courier, and Univers fonts, then any PCL5 laser print device should
be able to properly print documents, as long as the user can copy the file directly to the printer.

The MailCall utility is used internally by both the email command, which emails a complete PDF-
formatted job, and the email() function, which can send email(s) in mid-job, possibly with attachments
resulting from sub-jobs managed by the jobxxx series of code block functions. These two features are
capable of handling most email requirements. However, within a code block, you can use the MailCall
program directly, for any degree of control required. For example, the MailCall utility provides logging
facilities that are helpful in debugging connection or communication problems. To implement logging,
direct calls to the MailCall program are required.

Generally, the only requirement to get email working is to configure the server= line in the mailcall.ini
file. This line needs to name the machine or IP address of the SMTP server that MailCall connects to.
Other configuration options serve as default values.

The remainder of this chapter discusses the utility in depth.

Configuration

To configure MailCall, you need to edit the mailcall.ini file, using any text editor. If you don't have a
mailcall.ini file, then you can rename mailcall.sds to be mailcall.ini. The following notes provide details
about each option.

The most important element of the configuration is to ensure the system that executes MailCall has
connectivity to your SMTP mail server. This may be an in-house system, or it may be hosted by your
Internet Service Provider. A fairly foolproof way to test this is to telnet to port 25 on the mail server
from your system (telnet hostname 25 from either UNIX or an MS-DOS Command Window). If you
get a non-error response, MailCall should work.

server=smtp-server
This contains a reference to the IP address or domain name of the SMTP email server. This is used by
the native socket interface, the mailcall.exe program, and the mailcall.pl program. If your mailer=
setting uses sendmail or mmdf, this value is not used.

port=port-number
When native sockets are used, the default SMTP port of 25 can be overridden by setting a port-number.
Normally, this should not be required.

UnForm Version 6

207

from=email-address
Defines a default 'from' address if none is supplied when sending email.

hostname=hostname
If the environment does not provide a system name that is valid for the SMTP server, you can specify a
value here. If no value is specified, then MailCall will determine the system hostname with the UNIX
"hostname" command, or on Windows with the INFO() function in Visual PRO/5 or the NID variable in
ProvideX. This element is only used by the native socket support.

login=username
password=password
If the SMTP server requires authentication, then you can define a default username and password with
these elements. It is also possible to specify a username and password within the CALL interface.
These values, if required, are supplied by the mail administrator, and must be supplied exactly as
specified or you will probably get an authentication error and be unable to send mail.

mailer=commandline

NOTE: When running MailCall under UnForm 6, there is no need to configure a mailer= line.

If MailCall will not use internal sockets, then this line configures how MailCall actually sends the mail.
If you are running under ProvideX or PRO/5 or Visual PRO/5 revision 2.2 or higher with a proper alias
line defined, MailCall will use internal sockets and this line does not need to be configured. When
required, BBx executes this command line via the SCALL() function. There must be a % character in
the command line, which MailCall substitutes with the email submission file at run-time.

If no mailer value is set (all lines are commented) and a mailer is required, then a default mailer line is
constructed, using "perl mailcall.pl % >mailcall.pl.log 2>mailcall.pl.err" on UNIX or "mailcall.exe %"
on Windows. The proper path to the mailer is automatically generated. In other words, if you have
Perl or are on Windows, there is generally no need to configure a mailer= line.

On Windows, commandline should be set to the full path for mailcall.exe plus the % argument, such as
'c:\mailcall\mailcall.exe %'. Be sure to use DOS-style backslashes rather than forward slashes.

On UNIX, you will probably want to use mailcall.pl. mailcall.pl should be in the same directory as the
MailCall program, and mailer should be set to the full path to mailcall.pl. The commandline should be
'perl /usr/mailcall/mailcall.pl % >/dev/null' (adjust the directory path as necessary). Perl, of course,
must be installed on your system for this to work. To enable logging, change the ">/dev/null" to
">pathname", and the conversation that mailcall.pl has with the SMTP server will be logged to that file.

If you use sendmail, the commandline '/usr/lib/sendmail –t <%' should work.

If you use mmdf, then the commandline 'echo $LOGNAME >%2; cat % >>%2; /usr/mmdf/bin/submit -
uxto,cc* <%2; rm %2' is used to submit email messages. The command line argument "-uxto,cc*"
instructs submit to scan for To: and Cc: headers for addresses.

UnForm Version 6

208

Note that mmdf doesn't support Bcc: headers, while the other three methods do.

timezone=zone
Internet mail must include a date and time header; a properly formatted time will include your time
zone. On Windows, the zone is added to the date and time header in the submission file. On UNIX, the
time zone is determined from the date command.

charset=charsetname
The default character set in Internet email is "us-ascii". With this setting, it is possible to override this
default for text elements of an email that includes attachments, including the body text itself.

Most configuration options have equivalent variables in the CALL string template. If you define values
in the template, they override the equivalent values in the configuration file.

Implementation
Implementing MailCall requires the use of code blocks to establish temporary output files and then the
execution of MailCall itself.

Here is a sample PDF rule file that can be used to email a PDF document. Since the pdf driver can only
be used to produce one PDF file at a time, there is only one file to worry about.

[mailpdf]
cols 80
rows 66

prejob{
set output file to a unique name using process ID
note the pdf driver only allows output changes in prejob
output$="/tmp/email"+str(dec(info(3,0)))+".pdf"
}

postdevice{
call uf.home$+"mailcall.bb",1,x$,""
x.to$="someone@somwhere.com"
x.subject$="PDF Report attached"
x.msgtxt$="Here is a sample PDF file.\n"
x.attach$=output$
x.from$="sdsi@synergetic-data.com"
call uf.home$+"mailcall.bb",0,x$,""
erase output$
}

UnForm Version 6

209

Here is a slightly more complex example, designed to email the second copy of a PCL document. PCL
allows output to be split in the middle of the job, so this technique would work in a batch run where a
document reference number is used to define the output name. This sample assumes the report will
contain the email address at column 1, row 1 of each document.

[mailpcl]
cols 80
rows 66
copies 2

prejob{
initialize mailer$ template
call uf.home$+"mailcall.bb",1,mailer$,""
}

precopy{
set copy 2 output to document number plus extension
if copy=2 then output$=get(70,6,6)+".pcl"
}

postdevice{
whenever the document number changes, this routine is executed
if copy<>2 then goto skip_mail
mailer.to$=trim(get(1,1,40))
mailer.subject$="Report attached"
mailer.msgtxt$="Here is the report you asked for. Copy it to your laser printer.\n"
mailer.attach$=output$
mailer.from$="sdsi@synergetic-data.com"
call uf.home$+"mailcall.bb",0,x$,""
erase output$
}

MailCall Reference

CALL uf.home$+"mailcall.bb", mode, dat$, errmsg$

You may call either mailcall.bb or mailcall.pv; both are identical files for use within UnForm.

Arguments:

mode is an integer value that controls how MailCall interprets or returns data in the dat$ argument. The
following are valid mode values:

 0 Send mail based on data in string template dat$
 1 Return a string template suitable for mode=0 in dat$

UnForm Version 6

210

 2 Return version information in dat$

For modes 0 and 1, dat$ is a string template in the format:

from:c(1*=0),to:c(1*=0),cc:c(1*=0),subject:c(1*=0),otherhead:c(1*,msgtxt:c(1*=0),attach:c(1*=0),statu
s:n(1*=0),forcebase64:n(1*=0),forcenotify:n(1*=0),bcc:c(1*=0),bodymime:c(1*=0),charset:c(1*=0),tim
eout:n(1*=0),statuspause:n(1*=0),dialog:n(1*=0),login:c(1*=0),password:c(1*=0),logfile:c(1*=0),timez
one:c(1*=0),charinterface:n(1*=0),logdata:n(1*=0)"

To provide for additions to this base template, you should always use a single CALL using mode=1,
which will return a usable template in dat$.

For mode 2, dat$ returns a printable string that describes the version and license status.

Here is a description of each template field:

dat.from$ contains the sender's email address. This value defaults to what is specified in the
"from=address" line in mailcall.ini

dat.to$ contains one or more email addresses delimited by commas. Note that if multiple addresses are
desired, it is more common to place additional addresses in the cc$ field. Each address should be
structured in one of two ways: name@domain or "text name" <name@domain>. It is important that if
any data is present other than the plain internet email address, that the Internet address be enclosed in
angled brackets <>.

dat.cc$ contains zero or more carbon copy addresses. Multiple addresses must be delimited with
commas. Address formats are the same as for dat.to$, above.

dat.bcc$ contains zero or more blind carbon copy addresses. Multiple addresses must be delimited with
commas. A blind carbon copy address receives a copy of the email, but the Bcc: header is removed
from the submission, so no other recipients know of the Bcc: recipients.

dat.subject$ contains a single line of subject text, describing the message content.

dat.otherhead$ contains additional mail headers, should they be necessary. The rfc822 specification
allows for user defined headers starting with the characters "X-", in the format of "X-name: value".
Each header line should be suffixed with a CRLF (or LF) delimiter ($0D0A$). There must be no blank
lines in this value, and all lines should have a proper header structure of 'name <colon (:)> <space>
value'.

dat.msgtxt$ is plain text for the message body. It may contain line breaks delimited with CRLF (or LF)
sequences. Lines should not exceed 900 characters without line breaks. You may also use UNIX-style
line break escapes (\n sequences) instead of binary CRLF characters.

dat.bodymime$ can be used to define an alternate body text (dat.msgtxt$) MIME type. The default is
"text/plain", but it is common to prepare message body text as HTML, in which case you can specify

UnForm Version 6

211

dat.bodymime$="text/html". This must be a well-known standard value (see the mime.typ file included
with MailCall), and should be of the text/* family.

dat.attach$ contains one or more file names to attach to the message, delimited with commas. If this
contains names, then MailCall will produce a MIME-encoded message, with the message body as plain
text, text-style files (MIME types such as text/plain or text/html) as quoted-printable attachments, and
other files as base64-encoded attachments.

dat.status, if set to 1 (or any positive value), will cause a status window to display as the email is
processed. This flag is honored when MailCall uses native sockets or the external mailcall.exe program.
When native sockets are used, the status window operates for both generation and SMTP server
submission. When the external Windows mailer is used, it only operates for submission. External
UNIX mailers do not support this flag.

For logging on UNIX installations, if you are using mailcall.pl, do this:

• Verify the setting of $log=1 in mailcall.pl near the top of the program
• Direct stdout to a file or the screen by modifying the mailer= line: something like "perl

/usr/mailcall/mailcall.pl % >/tmp/mailcall.log". or just "perl /usr/mailcall/mailcall.pl %".

dat.statuspause can be set to the number of seconds to pause before closing the status window after the
SMTP conversation is complete. This can help the user see the process completion without a quickly
flashing window. This flag is only honored when MailCall uses native sockets and the dat.status flag is
set.

dat.forcebase64, if set to 1 (or any non-zero value), will cause MailCall to always encode files with
base64-encoding. By default, files whose MIME type is text are encoded using quoted-printable
encoding.

dat.bodymime$, if set, will override the default text/plain MIME type used for the message body.

dat.charset$, if set, will override the charset default defined in the mailcall.ini configuration file, or the
default of "us-ascii", when no setting is defined. Character sets are associated with any text body or
attachment.

dat.login$, dat.password$, if set, and if the SMTP server requires authentication, are used for the
AUTH LOGIN authentication process. These values would be provided by the ISP or mail server
administrator, and must be provided exactly as specified. These values are honored when MailCall uses
native sockets or the mailcall.exe or mailcall.pl mailers.

dat.logfile$, if set to a pathname, will trigger detail logging of the SMTP conversation when MailCall is
using native sockets. The file will be erased and created each time MailCall is CALLed. Be careful not
to use pathnames that should not be erased.

UnForm Version 6

212

dat.timezone$, if set, will override the normal time zone value that is applied to the Date: header. The
default time zone comes from either the timezone= value in mailcall.ini (for Windows) or the UNIX
'date +%Z' command. Use this to set a relative GMT value, like "-0800" for PST.

dat.charinterface, if set to a non-zero value, will force character-mode for the dialog and status window
displays, even in a GUI environment. The status window display affected is only the internal version
used when native sockets are utilized, not the status window displayed by the mailcall.exe mailer.

dat.logdata, if set to a non-zero value, and if the dat.logfile$ is defined, and if a native socket is in use,
will cause the mail submission file data to be logged to the log file specified in dat.logfile$. The default
behavior is to only log SMTP conversation information and suppress the message data.

errmsg$ will contain the text of an error message, if one occurs.

UnForm Notes: When UnForm is running on a UNIX system, there is no usable terminal device
associated with it, even if run from the command line. Therefore, the user interface options (such as
dat.dialog=1) of MailCall are not available. This is not the case on a Windows installation, so long as
the server is running as an application rather than a service. Note however, that any user interface
presented occurs where the UnForm server is running, not necessarily where the client runs.

UnForm Version 6

213

HTML OUTPUT

UnForm provides an optional capability to produce HTML files from reports, using a processing engine
that is similar to that used for laser printer output. Using this capability, users can convert their standard
text-based reports into HTML documents, which are suitable for viewing with Web browsers such as
Netscape Navigator and Communicator, and Microsoft Internet Explorer.

Reports can be converted in real-time, as part of a CGI or ASP procedure that responds to a browser
request to generate a report, then format it as HTML. Alternatively, reports can be converted with a
periodic batch process, such as a nightly procedure that produces various reports, then converts them all
to HTML for viewing the next day.

Even without a rule set, UnForm can streamline text reports by producing plain text pages with
horizontal rules at the end of each page. These are constructed using HTML templates, so standard
company headers and footers can be applied even to reports that are not enhanced via a rule set.

UnForm Version 6

214

CREATING HTML

UnForm will create HTML output if you specify "-p html" on the command line. Given this parameter,
and with no "-f rulefile" parameter, UnForm will look for the "html.rul" file rather than the default
"unform.rul" file used for printer output.

By default, the HTML output is generated to standard output (on UNIX only), but it is normally
preferable to specify an output file, such as "-o /usr/internet/docs/reports/aging". UnForm can then build
the reports with varying styles in stages, and a browser can view interim results as soon as the first page
is generated. UnForm will add a ".htm" extension automatically to the output file. UnForm will also
create additional files depending on the style of the report. For example, if a table of contents is
generated as a separate document, then the base file (aging.htm in the above example) will be the table
of contents, and additional files will be generated for the pages of the report (aging.page.htm).

A sample command, therefore, might look like this:

unform -i aging.txt -o /usr/internet/docs/reports/aging -p html -f ourhtml.rul

As HTML structure is very different from that of laser printers PCL, HTML rule sets are very different
from printer rule sets. UnForm uses HTML table structures to format pages. These structures have a
defined hierarchy of rows, cells, and data, with attributes applied to either cells or data. HTML rule sets
follow this structure in that you define rows, then within rows you define cells, and then within cells you
define the attributes of the cell and text.

The HTML output that UnForm produces can be in one of several styles. The rule set options used to
trigger the style are shown in parentheses:

• The simplest form is that of one document with all the pages sequentially created as tables. If no

output file is specified (-o filename), this is what UnForm will produce regardless of any style
options you specify.

• The output can be produced in one file, with a table of contents at the top of the file (toc=y or toc=l,
multipage=n). As each page is generated and appended to the file, the table of contents is updated
and inserted at the top. The table of contents consists of descriptions linked to the individual pages.
The descriptions default to "Page number n", but can be created in page code blocks. Additionally,
the table of contents can be created as a vertical column (toc=y), or as a bullet list (toc=l).

• The output can be produced in multiple files (multipage=y), with the table of contents being the
primary one, with links to each page as a separate HTML document.

• The output can be produced as frames (frame=y), with the table of contents in one frame, and pages
in the other. The target pages can be stored in a single file, multi-page document, or with each page
in an individual file.

Note that all these options but the first require that a table of contents be maintained as each page is
generated. In order to construct an updated document as each page is generated, UnForm must generate
temporary files with which to build the HTML required. The filename specified by the "-o" option is re-

UnForm Version 6

215

created as each page is completed. Therefore, if standard output is generated rather than output files,
only the first style can be produced.

This interim generation of files means that the HTML output can be viewed as soon as the first page is
generated. This can be very helpful when large reports are being formatted in real-time.

UnForm Version 6

216

HTML CONFIGURATION

When generating HTML documents, UnForm uses several configuration elements to structure the
output. Most of these are created in UnForm's parameter file, which is named "ufparam.txt". Note that
you can create a custom parameter file for your site that will not be overwritten during an update of
UnForm by copying "ufparam.txt" to "ufparam.txc". Then make any changes to the custom version.

A section in the configuration file headed by "[html]" controls HTML configuration. It will look like
this:

[html]
page=page.htm
toc=toc.htm
both=both.htm
frame=frame.htm
pagenum=Page number
imagelib=
imageurl=
complete=Report Complete
incomplete=Report not complete (reload page to view again)

The following table describes each parameter:

Element Description
page=filename
toc=filename
both=filename
frame=filename

These elements point to HTML template files in
UnForm's home directory. These files are used by
UnForm based on the style of output being generated.

To create custom templates for your site, you should
copy each file to some other name, modify the file
names identified in these four elements, and edit the
templates for your needs.

See "HTML OUTPUT TEMPLATES", below, for more
information.

colwidth=text The default column cell width is text. This can be a
pixel value, such as "colwidth=9", or any other value
accepted by a <td width=value> tag in HTML. If no
value is specified, UnForm uses "2em", which indicates
2 half-characters, based on the average width of a
character in the default font. This value can also be
specified for individual reports using the colwidth
keyword in a rule set.

pagenum=text This text is used to generate the default table of contents'
values. A space and the page number follow the text.

imagelib=directory This points to a directory where image files are

UnForm Version 6

217

Element Description
physically stored on disk. If any column definition has
an option indicating it contains image file names, then
the files in the column are searched for first as named,
and then in this directory. If the image can be found,
then the image tag can be generated with width and
height parameters, which normally speeds up the page
rendering speed by the browser.

imageurl=url-prefix When image tags are generated in a column, the url-
prefix is placed in front of the file name. This allows the
Web server to map the name to a physical location on
the server.

complete=text
incomplete=text

One of these values is placed in the "$status" global
string at the end of each page, depending on whether the
job is complete or not. You can then place the value in
the HTML template files by embedding the tag
"[$status]" in the template.

UnForm Version 6

218

HTML OUTPUT TEMPLATES

As companies develop Internet and Intranet strategies, they should employ standard formatting
conventions to their HTML documents. HTML-formatted reports should likewise follow these
conventions, so UnForm supports the use of HTML template files.

UnForm looks for these files in the UnForm directory, each named in the parameter file "ufparam.txc"
or "ufparam.txt". UnForm is distributed with a standard parameter file and standard HTML template
files. To customize these for your site, copy "ufparam.txt" to "ufparam.txc", then copy the template files
to new names and reference those names in the new "ufparam.txc" file.

The names to use are specified in the "[html]" section of the parameter file, and are coded as
"toc=tocfilename", "page=pagefilename", "both=bothfilename", and "frame=framefilename". In each
of these files, place the text "[$toc]" where the table of contents should be placed, and "[$page]" where
the page table(s) need to be placed. In the case of a frame template, the two markers are used for
placement of URL links to the table of contents document and the page document(s), respectively.

UnForm determines which template files are used based on the style being used for the output. If there
are separate table of contents and page documents, then the tocfilename and pagefilename are both used.
If the table of contents and the pages are in the same document, then the bothfilename is used. This file
should contain both [$toc] and [$page] tags. If frame output is used, then the framefilename is used for
the primary document, and the tocfilename and pagefilename files are used for the target documents.

In addition to the required [$toc] and [$page] tags, you can also reference other pre-defined tags: [$title],
[$date], [$time], and [$status], as well as any global strings that you define in prepage{} or prejob{}
code blocks. These global strings, generated by the STBL() or GBL() functions, are embedded in the
document by placing the name in square brackets anywhere in the template.

One special note: If you wish to customize the date and time masks used by UnForm, set
DATEMASK$ and/or TIMEMASK$ in the prejob{} code block to the desired format based on the BBx
DATE() function.

The default HTML template for a page (page=filename) looks like this:

<html>
<head>
<title>[$title]</title>
</head>
<body bgcolor=#e0e0e0>
<h3><center>[$title]</center></h3>
<hr>
[$page]
<hr>
<center><small>
©1997 by Synergetic Data Systems Inc.

All rights reserved.

UnForm Version 6

219

</small></center>
</body>
</html>

The default template for an independent table of contents (toc=filename) looks like this:

<html>
<head>
<title>[$title]</title>
</head>
<body bgcolor=#e0e0e0>
<center>
<h3>Table of Contents</h3>
[$title]
</center>
<hr>
[$toc]
<p>[$status]
<hr>
<center><small>
©1997 by Synergetic Data Systems Inc.

All rights reserved.
</small></center>
</body>
</html>

The default template for a combined style (both=filename) looks like this:

<html>
<head>
<title>[$title]</title>
</head>
<body bgcolor=#e0e0e0>
<h3><center>[$title]</center></h3>
<center>[$toc]</center>
<hr>
[$page]
<hr>
<center><small>
Run on [$date] [$time]<p>
©1997 by Synergetic Data Systems Inc.

All rights reserved.
</small></center>
</body>
</html>

The default template for a frame style (frame=filename) looks like this:

<html>
<head><title>[$title]</title></head>
<frameset cols="25%,*">
 <frame name="toc" src="[$toc]">

UnForm Version 6

220

 <frame name="page" src="[$page]">
</frameset>
</html>

UnForm Version 6

221

HTML RULE SETS

Like PCL rule sets, HTML rule sets are stored in a text file. Each set is headed by a unique name in
square brackets:

[AgingReport]
keywords…

UnForm selects a rule set to use based on either the "-r ruleset" command line option, or detect
keywords in each rule set. Detect keywords cause UnForm to scan the first page of input, then search
for a match where all detect keyword(s) for a given rule set match the contents of the page.

Once a rule set is selected, UnForm begins processing each page of text using the rules specified. Each
page is first stripped of any PCL escape sequences so that just text remains, then the array of text rows is
converted to HTML based on the rules. This HTML is then placed in the output according to the style
of output defined by the rule set.

If no rule set is selected, then UnForm will process each page as plain text, using HTML <pre> and
</pre> tags, with horizontal rules between pages (where form-feeds occur in the input).

The following keywords are identical in use and function with printer rule sets:
• cols
• const
• detect
• page
• rows

The hline and vline keywords are identical, except that they always perform an erase of the horizontal
and vertical lines found.

Keywords unique to HTML generation are defined on the following pages.

UnForm Version 6

222

BORDER

Syntax

border=value

Description

The tables generated by UnForm for each page will normally have borders, and will therefore set the
table border option to 1: <table border=1 ...>. If you would prefer a different border setting, define it
with this keyword.

See also the otheropt and width keywords.

UnForm Version 6

223

COLDEF

Syntax

1. [coldef | ccoldef] col, cols, options

{ code block }

2. coldef "text | ~regexpr", coloffset, cols, options
{ code block }

3. coldef "text | ~regexpr", coloffset, "to-text | ~to-regexpr", to-coloffset options
{ code block }

Syntax 1 defines an absolute column region. coldef 30,21 for example, would define a column region
from column 30 for 21 columns (30-50). If the "ccoldef" syntax is used, then col is the starting column,
and cols is the ending column. ccoldef 30,50 would define the same region as above.

Syntax 2 defines a region based on a search for a starting point. For each text value or regexpr (regular
expression) found, the region will begin at the column coloffset from the point found, and extend for
cols columns. For example, coldef "Customer total",-1,52 will create the region from 1 column before
the occurrence of "Customer total", and extend the region for 52 columns.

Syntax 3 defines the region based on two searches, one to find the starting column, one to find the
ending column to the right of the starting point. In both cases, the column position is adjusted for the
offset. coldef "Current",-1,"30-Days",-1 would define a region starting one column before the word
"Current", extending to one column before the word "30-Days". If just the first string is found, then all
columns from there to the last are specified. If just the last string is found, then all columns from the
first through there are specified. For this reason, be sure that any absolute column regions are specified
first.

Description

Column definitions are used to define columns within a row definition. Each column definition
becomes a table cell (<td>…</td>), with each row in the column being separated by a line break (
).
There can be up to 255 column definitions within any given row definition. Any given column will be
formatted based on the first coldef keyword that applies to it. Columns not so defined will be displayed
as mono-spaced text, using the HTML <pre> and </pre> tags.

Each column definition can define attributes that will apply to the text and cell formatting, and
optionally can have a code block associated with it to add custom Business Basic coding to the data in
the column.

UnForm Version 6

224

Options are comma-separated lists of words and parameters. The options available in the column
definition include:

Option How it gets applied
bgcolor=#rgb,
bgcolor=color

Cell gets a bgcolor=value attribute to control the
background color. The color can be expressed as an
#rrggbb hexadecimal value or as a color name supported
by the target browser, such as red, blue, white, etc..

blink Text gets <blink> attribute.
bold Text gets attribute.
bottom, top, middle Cell gets "valign=value" attribute to control vertical

justification. The default is "top".
center, left, right Cell gets "align=value" attribute to control horizontal

justification. The default is "left".
color=#rgb,
color=color

Text gets attribute. The color can be
expressed as a #rrggbb hexadecimal value or as a color
name supported by the target browser, such as red, blue,
white, etc..

font=font Text gets attribute. Several modern
browsers support this, though the font typeface selected
may not be available on all clients.

hdr=html text The top of the column gets the html text, followed by a line
break
 tag. Use this option to replace top of page
column headers with "in cell" column headers.

hdron=hdron text
hdroff=hdroff text
hdrtd=hdrtd text

The column header, if defined with hdr, gets these values
in its <td hdrtd>hdron hdr value hdroff</td> structure. Be
sure to turn off any hdron text HTML tags in hdroff text.

italic Text gets <i> attribute.
image Text is assumed to be file names that are image files, and

gets treated as an tag. The ufparam.txc|t file values
for imagelib and imageurl are used for image processing.
The imagelib value is used to locate files on the web
server's file system in order to calculate width and height
values (.gif and .jpg files only.) The imageurl value is
prefixed to the report data when constructing the <img
src="image URL">.

ltrim, rtrim, trim These three mutually exclusive options will cause UnForm
to left, right, or left and right trim the text of the column
when generating the HTML cell text. By default, any
spaces in the data for the cell remain in the output. Use of
this option may save some disk storage space and
document transmission time.

noencode If this option is present, then the text is not encoded for
HTML markup entities. This should only be used if you
know that the text contains valid HTML coding.

UnForm Version 6

225

Option How it gets applied
otheropt=options The table cell gets additional attributes not otherwise

specified by the other options.
size=n Text gets attribute. Size ranges from 1 to 7,

with 3 being considered a "normal" size.
suppress If this word is present, then column data gets set to null.
underline Text gets <u> attribute.

Code blocks are optional definitions associated with any given column definition. With a code block, it
is possible to manipulate the text of each row in the column. A typical use of this capability might be to
convert the plain text to hyperlinks, so that a column of part numbers could be linked to pages in a
catalog, for example. Code blocks begin just after the opening brace "{", can extend as many lines as
required, and end with a closing brace "}".

The code block is executed for each row of the column. As the code starts, the following variables can
be used:

Variable Description
attr.align$
attr.bgcolor$
attr.blink
attr.bold
attr.color$
attr.font$
attr.italic
attr.otheropt$
attr.size$
attr.underline
attr.valign$

The attr$ variable is a string template that defines the
attributes to apply to the text or cell. These values match
those defined above in the Options. Numeric values can be
set to 0 (false) or 1 (true). String values can be set to any
valid value for that attribute.

colofs The column offset from the left edge of the text. If the
column region is from column 21 through 40, then colofs
will be 21. This should be treated as a read-only value.

cols The number of columns in the region. Read only.
row The row number within the current region, from 1 through

the last row in the region. With each execution of the
subroutine, the row will increase by 1. Read only.

row$ The text of the current row within the region. This can be
manipulated by the code.

rowofs The position of the current row, relative to the whole page.
If you need to refer to data in some other column of the
current row, use rowofs. Read-only.

UnForm Version 6

226

Functions available for your use, in addition to any intrinsic Business Basic functions, include:

Function Description
get(col,row,cols) Returns text from the page, given the column, row, and

cols parameters.
htmencode(text$) Returns text$ after converting HTML entities into

displayable versions.
set(col,row,cols,text
$)

Sets text$ into the page at the given column, row, and
columns.

urlencode(text$) Returns text$ after URL encoding to make it suitable for
inclusion in a hyperlink.

UnForm Version 6

227

COLWIDTH

Syntax

colwidth=text

Description

When UnForm generates a table for each page of a document, it defines a standard column cell width so
that text that lines up vertically in the report will remain lined up in the HTML version. UnForm
generates an initial single row of individual cells, using text as the cell width, as used in the HTML tag
"<td width=text>".

If a text value, such as a pixel count or other valid HTML cell width is specified, then UnForm will use
that value when defining the initial column cell sizes for each page.

UnForm Version 6

228

FRAME

Syntax

frame=y | yes | n | no

Description

The frame keyword can be used in conjunction with the multipage keyword to control the presentation
of the report. Without these options, UnForm will produce a single file (named with the output
keyword or –o command line option, or to stdout), containing an HTML table for each page of output
from the source file. With the multipage keyword, UnForm will produce unique files for each page of
output, plus a table of contents page (whose format is controlled by the toc keyword). If frame is set to
"y" or "yes", then an additional frame file is created for the browser to view the table of contents
constantly while viewing the report pages.

The output filename generated is for the frame file if frame is set to "y" or "yes", and the table of
contents file if frame is not present or is set to any other value.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 6

229

HDRON, HDROFF, HDRTD

Syntax

hdron=value
hdroff=value
hdrtd=value

Description

When a coldef hdr=text option is present, UnForm will add text to the top of the column, in a separate
cell. In order to make a column-heading stand out, it may be desirable to give it attributes that are
distinct from the column text. These keywords define HTML text attributes to add before and after any
column header. hdrtd applies <td value> to the cell tag, while hdron and hdroff apply to the heading
text. Values for individual row groups can be specified in the rowdef or coldef keywords.

For example, hdron=<small> and hdroff=</small> would make column headings small and
bold.

Be sure to close any tags in the hdron value with corresponding tags in the hdroff variable.

UnForm Version 6

230

LOAD

Syntax

load filename

Description

The load keyword is used to load a secondary text file into the rule file at parsing time, at the position of
the load keyword. This provides the ability to maintain separate text files for the definitions, grouped in
any manner desired. For example, a common set of options for all reports could be defined in a second
file, and each report could reference that file.

UnForm will try to open the file first as named, then in the UnForm directory if it is not found. Note
that the prefix setting, if present, in UnForm's config.unf file can be used to affect file searching.

Example:

[Report1]
load "stdoptions.txt"

UnForm Version 6

231

MULTIPAGE

Syntax

multipage=y | yes

Description

If multipage is set to "y" or "yes", UnForm will generate a different document file for each page of
output. The pages will be named filename.pagenum.htm, with pagenum being the sequential page
number of the report.

A table of contents will automatically be generated as well, with each link in the table of contents
referencing the proper document name. The table of contents file will be named one of two names:
filename.toc.htm if a frame structure is being generated, or filename.htm if not. When no frame is
generated, then the table of contents document becomes the base document for the output.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 6

232

NULLROW

Syntax

nullrow=y | yes

Description

If this value is set to "y" or "yes", UnForm will print undefined row sets as mono-spaced text, using
HTML <pre> and </pre> tags. By default, UnForm will suppress any rows that have not been allocated
with rowdef keywords.

UnForm Version 6

233

OUTPUT

Syntax

output "filename"

Description

If no "-o filename" is specified on the command line, UnForm will use the file filename specified here.
Use this keyword to specify a default output location for any given report.

UnForm automatically adds a ".htm" extension to filename.

UnForm Version 6

234

OTHEROPT

Syntax

otheropt "table-options"

Description

When UnForm generates a table for each page of the document, it establishes border and width options
for the table tag: <table border=border width=width>. If additional options are desired, specify them
with this keyword. If present, the table tag is generated like this:

<table border=border width=width table-options>

See also the border and width keywords.

UnForm Version 6

235

PAGESEP

Syntax

pagesep "html code"

Description

If a single document is generated for all pages of output (multipage is not set to "y" or "yes"), then
UnForm will place a paragraph tag (<p>) between each page. If something other than a paragraph tag is
desired, then specify the HTML code in the pagesep keyword.

The pagesep value can contain global string values generated from code blocks by referencing the string
value name inside square brackets.

For example: pagesep "<p><hr>[pagehdr]" would generate a paragraph tag plus a horizontal rule,
followed by the value in the global string "pagehdr", defined with the STBL() function in a prepage{} or
prejob{} code block.

UnForm Version 6

236

PREJOB, PREPAGE, POSTJOB, POSTPAGE

Syntax

prejob | postjob | prepage | postpage {
code block
}

Note: the opening brace "{" needs to be on the same line as the keyword. The closing brace may
follow the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the document generation process.
They represent four different subroutines that UnForm executes at specific points during processing.
The code block can be an arbitrary number of Business Basic statements; the total number of statements
in all code blocks can be about 6,000 (or less, depending on program size limits imposed by the run-time
environment).

• prejob executes after the rule set has been read, and after the first page is read, but before any

printing takes place. Use this code to open files or databases, prepare SQL statements or string
templates, create user-defined functions, and initialize job variables.

• postjob executes after the last page has been printed. Use this to close out your logic, such as
adding totals to log reports. There is no need to close files, since UnForm will RELEASE Business
Basic.

• prepage executes after each page is read, but before any printing takes place. Use this to gather data
associated with any page, or to modify the content of the text if you need such modifications to
apply to all copies.

• postpage executes after the last copy of each page has printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable
assignments, and more. Program to your heart's content. UnForm will add extensive error handling
code within your code, and report syntax errors to the error log file or a trailer page.
You may use the following variables and functions in your code block:

• text$[all] is a one-dimensional array of the text for the page. For example, text$[2] is the second

line of the page.

• mid(arg1$,arg2,arg3) (or fnmid$(arg1$,arg2,arg3)) is a function that safely returns a substring
without generating an error 47 if the value in arg1$ isn't long enough to accommodate position arg2
and length arg3.

UnForm Version 6

237

• get(col,row,length) (or fnget$(col,row,length)) is a function that safely returns text from the
text$[all] array, without substring or array out-of-bounds errors.

• set(col,row,length,value$) (or fnset$(col,row,length,value$)) is a function that places value$ in the
text$[all] array at the place indicated. It returns value$.

• err=next may be used for any err=label option in any function or statement, in order to force
UnForm's error trapping to ignore an error. You may, of course, name your own err=label if
desired.

When using variables and line labels, you should avoid using any values that begin with "UF_".
UnForm reserves all such variables and labels for its own use. You may use a backslash (\) at the end of
a line to continue the statement on the next line. Lines prefixed with "#" are not added to the code.

A discussion of programming in Business Basic is outside of the scope of this manual. If your needs
require programming, then it would be advisable to hire a professional Business Basic programmer,
acquire training for a technical member of your staff, or contract with SDSI for your needs.

Column definitions can also have code blocks, which are executed as each row of a column definition is
generated. See the coldef keyword for more information.

UnForm Version 6

238

ROWDEF

Syntax

1. [rowdef | crowdef] row, rows, options

{ code block }

2. rowdef "text | ~regexpr", rowoffset, rows, options
{ code block }

3. rowdef "text | ~regexpr", rowoffset, "to-text | ~to-regexpr", to-rowoffset options
{ code block }

Syntax 1 defines an absolute row region. rowdef 5,3 for example, would define a row region starting
with row 5, and extending 3 rows down (5-7). If the "crowdef" format is used, then row is the starting
row, and rows is the ending row. crowdef 5,7 would define the same region as rowdef 5,3.

Syntax 2 defines a region based on a search for a starting row that contains the text or matches the
regular expression. For each text value or regexpr found, the region will begin at the row rowoffset from
the point found, and extend for rows rows. For example, rowdef "Customer total",0,1 will create a
region from each row containing "Customer total" (0 offset is that row), and extending for 1 row (just
that row).

Syntax 3 defines the region based on two searches, one to find the first row, one to find the ending row
below the starting row. In both cases, the row used for the region is adjusted for the offset. rowdef
"Customer:",1,"Customer:",-1 would define a region between each occurrence of the text
"Customer:". If just the first string is found, then all rows from there to the last are specified. If just the
last string is found, then all rows from the first through there are specified. For this reason, be sure that
any absolute regions are specified first.

Under format 3, if the last string is not found, UnForm will continue that row definition on the page
following the first unallocated row at the time this row definition is evaluated on that page.

Description

Row definitions are used to define sets of rows for which a given group of column definitions would
apply. Each row definition defines a group of rows that will be presented within a single table row (<tr>
... </tr>). Under any given row definition, place the column definitions (coldef keywords) that will be
used to format the rows.

For example, an A/R Aging Report might contain a report heading, column headings, one or more
customer headings, and, under each customer heading, one or more detail lines. At the end of the detail
lines would be customer totals. This report would have five row definitions, for each type of row:
report heading, column heading, customer headings, detail lines, and totals. Each of these types of rows

UnForm Version 6

239

will have its own set of column groups (or in some cases, no column groups at all, allowing simple
mono-spaced presentation.)

There can be up to 255 row definitions within any rule set.

Each row definition can define attributes that will become defaults for the text and cell formatting of all
the column definitions. Additionally, row definitions can define an option called "suppress", which
causes UnForm to suppress the display of the row region. A comma separates each option.

Option How it gets applied
bgcolor=#rgb,
bgcolor=color

Cell gets a bgcolor=value attribute to control the
background color. The color can be expressed as an
#rrggbb hexadecimal value or as a color name supported
by the target browser, such as red, blue, white, etc..

blink Text gets <blink> attribute.
bold Text gets attribute.
bottom, top, middle Cell gets "valign=value" attribute to control vertical

justification. The default is "top".
center, left, right Cell gets "align=value" attribute to control horizontal

justification. The default is "left"
color=#rgb,
color=color

Text gets attribute. The color can be
expressed as an #rrggbb hexadecimal value or as a color
name supported by the target browser, such as red, blue,
white, etc..

font=font Text gets attribute. This is supported by
several modern browsers, though the font typeface selected
may not be available on all browser clients.

hdr=html text The top of the column gets the html text, followed by a line
break
 tag. Use this option to replace top of page
column headers with "in cell" column headers.

hdron=hdron text
hdroff=hdroff text
hdrtd=hdrtd text

The column header, if defined, gets placed in a cell with
<td> attributes specified hdrtd text, and text attributes
hdron text and hdroff text. Be sure to turn off any hdron
text HTML tags in hdroff text.

italic Text gets <i> attribute.
noencode If this option is present, then the text is not encoded for

HTML markup entities. This should only be used if you
know that the text contains valid HTML coding.

otheropt=options The table cell gets additional attributes not otherwise
specified by the other options.

size=n Text gets attribute. Sizes range from 1 to 7,
with 3 being considered a "normal" size.

suppress The rows are not displayed.
tr Each row in the row group gets a <tr> tag, ensuring that

column definitions, even if they contain data values of

UnForm Version 6

240

Option How it gets applied
varying height, will remain horizontally contiguous. If the
cells contain only text, this is generally not required, but if
some cells contain images, this keyword will likely be
required.

underline Text gets <u> attribute.

UnForm Version 6

241

TITLE

Syntax

title "title text"

Description

The title for any report can be defined in the rule set with this keyword. Once defined, anywhere in
HTML output templates that the tag "[$title]" is placed, this text will be substituted.

UnForm Version 6

242

TOC

Syntax

toc=y | yes | li | list | sh | short

Description

If this keyword is set to "y" or "yes", UnForm will generate a simple table of contents by constructing
hyperlinks to each page generated. The hyperlinks are placed either at the top of the document, in a
separate main document, or in a document referred to as the table of contents in a frame.

The following templates use a table of contents. Templates refer to files in the UnForm directory, and
are referenced in the parameter file under the "[html]" section: "both=" and "toc=". In each case, the
placement of the table of contents is based on the placement of the tag "[$toc]" within the template file.

The text displayed for each hyperlink is generated from the "pagenum=" item of the "[html]" section of
the parameter file (ufparam.txc or ufparam.txt.) This text can also be generated by Business Basic code
in the prepage{} or postpage{} code blocks, by setting the string variable "toc$" to the value desired.

If the keyword is set to "li" or "list", then the hyperlinks are created within an HTML unordered list
(...), and will normally be displayed as a bullet list.

If the keyword is set to "s", "sh", or "short", then the table of contents links consist of just the pagenum
descriptor followed by each page number, with no line breaks or bullets. In this case, any code that sets
the value of toc$ is ignored.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 6

243

WIDTH

Syntax

width=value

Description

The tables generated by UnForm for each page will normally occupy the entire width of the page, and
will therefore set the table width to 100%: <table width=100% ...>. If you would prefer a different
width setting, define it with this keyword. Be sure that if the value is a percentage of the screen, it has a
trailing "%".

See also the otheropt and border keywords.

UnForm Version 6

244

SAMPLE HTML RULE SET

Below are sample rule sets defined in the sample rule file, samphtml.rul. The sample text input files
used by UnForm for the PCL output examples are redefined here for HTML. Comments are
interspersed in the rule sets to help clarify which keywords perform which tasks.

AGING REPORT SAMPLE

To produce this aging report sample to a file, execute the following command:

uf60c -i sample3.txt -o aging.htm -p html –f samphtml.rul

You can substitute a different path/file name for "aging" to produce the HTML file elsewhere, such as in
the HTML document tree of your Web server.

The form is called "aging" to distinguish it from other rule sets. If the "-r aging" option is used on the
command line, then this set will be used.

[aging]

A detect statement identifies a report as the one defined by this rule set. If no "-r ruleset" option is used
on the command line, then this detect statement will be evaluated. If the text "Detail Aging" appears in
any column on row 2, this rule set is used.

detect 0,2,"Detail Aging"

The HTML output will produce 132 columns and 66 rows per page.
cols 132
rows 66

Any text consisting of 3 or more dashes will be erased. This removes all the dashed underlines at
customer totals. There are other ways to accomplish this, including defining a row set and using the
suppress option, or using a prepage{} code block to erase such text from the text$[] array.
hline "---"

The title used in HTML output for this report will be "Aging Report".

title "Aging Report"

If this line were not commented out (with the #), then anytime this rule set was used and no "-o
filename" was present on the command line, the output would go to "/tmp/aging.htm."
#output "/tmp/aging"

UnForm Version 6

245

This report will be generated in multiple files (one per page), with a table of contents page, and with an
HTML frame construct.
multipage=y
toc=y
frame=y

Between each page will be an HTML <p> tag (a paragraph separator). Any HTML text could be
supplied, including references to global strings inside square brackets ([variablename]). The
hdron/hdroff keywords supply HTML codes to place before and after any column definition headings,
defined with the hdr=text option in the coldef and rowdef keywords.
pagesep <p>
hdron=<i>
hdroff=</i>

This rowdef keyword defines a row set from row 1 for 5 rows. All column definitions within this row
will default to a background color RGB hex value of FFE0E0 (lots of red, high green and blue content).

rowdef 1,5,bgcolor=#ffe0e0

For the above row set, there are three column sets: 1 through 10, 11 through 110, and 111 through 132.
The columns are left, center, and right justified, respectively. Otherwise, except for the background
color, the browser will use its default values for displaying the data.

coldef 1,10,left
coldef 11,100,center
coldef 111,22,right

This row definition causes UnForm to suppress display of rows 6, 7, and 8 (the column heading
information). The rule set will define the column headers as necessary in other row sets.

rowdef 6,3,suppress

Each customer has a heading line, distinguished by the occurrence of a phone number in those rows.
The initial quoted value "~\(...-...-....\)" instructs UnForm to search for a regular expression match that
looks like a U.S. phone number in parentheses. From any and all such rows, it will start at 0 rows up or
down, and continue for 1 row. This defines those and only those rows that contain the phone numbers.
Columns defined for those rows will be bold, with blue text on a white background. As no columns are
defined under this row definition, UnForm allocates one column set the full 132 columns wide, and
applies the row defaults to the text.

Customer header
rowdef "~\(...-...-....\)",0,1,bold,color #0000ff,bgcolor #ffffff

The invoice detail lines represent the most complicated of the row definitions, as there are numerous
columns with two different formats. We define constants for the two formats (left and right justification
being the only difference.) Then the rows are defined as any rows that contain a date structure of 2
characters, a slash, 2 characters, a slash, and 2 more characters. Note that even though some heading

UnForm Version 6

246

rows have this structure, those rows have already been allocated by prior row definitions and won't
confuse things here. UnForm searches for any row with a date. Then starting from that row (row offset
of 0), it searches for a row that contains 5 dashes. If such a row is found, then the row set goes through
the row before (row offset -1) the dashes. If no such row is found, then the row set goes through the last
row on the page.

Invoice lines
const LEFT="bgcolor=#e8e8e8,color=black"
const RIGHT="bgcolor=#e8e8e8,color=black,right"
rowdef "~../../..",0,"-----",-1

Each invoice line is made up of 13 columns of information. Each has been defined by the ccoldef
keyword by starting and ending column values. Additionally, each is given a header value that will
appear at the top of the column, and a constant that references other attributes defined earlier in the
rule set.

ccoldef 1,10,hdr="Invoice",LEFT
ccoldef 11,20,hdr="Due Date",LEFT
ccoldef 21,31,hdr="PO Number",LEFT
ccoldef 32,39,hdr="Ord Number",LEFT
ccoldef 40,45,hdr="Terms",LEFT
ccoldef 46,52,hdr="Type",LEFT
ccoldef 53,64,hdr="Future",RIGHT
ccoldef 65,75,hdr="Current",RIGHT
ccoldef 76,86,hdr="30 Days",RIGHT
ccoldef 87,97,hdr="60 Days",RIGHT
ccoldef 98,108,hdr="90 Days",RIGHT,color=red
ccoldef 109,119,hdr="120 Days",color=red,RIGHT
ccoldef 120,132,hdr="Balance",right,bold,RIGHT

The customer totals occur just below the row of dashes at the end of each customer's invoices. This row
definition therefore searches for any rows containing 5 dashes, then starts 1 row down, and continues
for just 1 row.

Customer totals
rowdef "-----",1,1

The first 52 columns make up one column set. The report provides no text, so we include a code block
for this column that sets row$ to "Customer Totals:". Note that if this row set contained more than a
single row, we could say 'if row=1 then row$="Customer Totals:'. The remaining column sets just
apply right justification to the column values.

ccoldef 1,52,right
{row$="Customer Totals:"}
ccoldef 53,64,right
ccoldef 65,75,right
ccoldef 76,86,right
ccoldef 87,97,right
ccoldef 98,108,right

UnForm Version 6

247

ccoldef 109,119,right
ccoldef 120,132,bold,right

UnForm Version 6

248

INDEX
[tcpports] section, 19
30 day demo activation, 27
Across, 54
Activation keys, 27
advanced.rul, 145
Alias lines, 21
Alignment, 92, 133
Application integration, 25
Attach, 55
Author, 57
Barcode

PCL, PDF, 58
Zebra, 61

bbpath, 14
BBx

code block note, 122
code blocks, 184

BBx integration, 21
bbxread function, 194
bbxread(), 14
Bin, 64
boj, bop, eoj, eop, 65
Bold, 66
Box, 68
Boxr, 71
Business BASIC

code blocks, 184
Case-conversion, 92
Characters

-testpr option, 38
Check printing, 112
client-server architecture, 7
Code blocks

arrays, 185
BASIC functions, 198
error codes, 204
number data, 186
operators, 186
precopy, etc. commands, 121
programming, 184
special functions, 194
special variables, 190
string data, 186
variables, 185

Collation, 77
Color

box command, 69
font command, 92
text command, 133

Color images
-gw option, 33

Cols, 74

Command line length
-z option, 39

Command line options, 31
Commands

across, 54
attach, 55
author, 57
barcode, PCL and PDF, 58
barcode, Zebra, 61
bin, 64
boj, bop, eoj, eop, 65
bold, 66
box, 68
boxr, 71
cols, 74
compress, 75
const, 76
copies, 77
cpi, 78
crosshair, 79
detect, 80
down, 82
dpi, 83
duplex, 86
email, 87
erase, 89
fixedfont, 90
font, 91
gs, 94
hline, 95
hshift, 96
if copy, 97
if driver, 98
image, 99
italic, 66
keywords, 104
landscape, 105
light, 66
lpi, 107
macro, 108
margin, 110
merge, 111
micr, 112
move, 113
notext, 115
outline, 116
output, 117
page, 118
paper, 119
pcopies, 77
portrait, 120
precopy, 121

UnForm Version 6

249

protect, 124
rows, 125
shade, 126
shift, 128
subject, 129
symset, 130
text, 131
title, 136
tray, 137
underline, 66
vline, 140
vshift, 141

Compress, 75
Concepts, 47
Configuration, 14
Const, 76
Content-based rule files, 53
Copies, 77
Copy blocks, 97
Cpi, 78
Crosshair, 79
Crosshair pattern

-x option, 39
cut function, 194
Detect, 80
Document imaging conversion, 16
Down, 82
Dpi, 83
Dsn_sample, 84
Duplex, 86

with an attachment, 55
Email, 87

command line options, 32
configuration, 206
email code block function, 194

Emergency activation, 27
Encryption, 124
end if, 97
env function, 195
eoj, eop,boj, bop, 65
Erase, 89
Error codes, 204
exec function, 195
Firewalls, 14
Fit to width, 92
Fixedfont, 90
Flow of processing, 44
Font, 91
get function, 195
Ghostscript, 16
Graphical shading, 33, 94
Greenbar option, 33
Grid drawing, 69
Gs, 94
Hline, 95

HP JetDirect, 19
HP/GL

-nohpgl option, 34
Hshift, 96
HTML driver, 213
HTML format

-p option, 35
if copy, 97
If driver, 98
Image, 99
Image Alchemy, 16
Image conversion and scaling, 100
Image Magick, 16
Images

scaling and conversion, 16
Input file

-i option, 33
Installation

clients, 12
configuration, 14
Unix CD, 8
Unix download, 10
Windows, 11

Integration with applications, 25
IP addresses, 14
Italic, 66
job functions, 195
Job status

-jobs, -myjobs, 40
Jobs

job code block functions, 195
Justification, 92, 133
Keywords, 104
Landscape, 105
Landscape orientation

-land option, 33
Laser format

-p option, 35
left function, 196
Library, 14
Licensing, 27
Light, 66
Lines per page, 118

-page option, 36
Link file, 23
Logging, 14
lower function, 196
Lower-case, 92
Lpi, 107
Macro, 108
Macros

working with, 142
Mailcall reference, 209
mailcall.ini, 206
Margin, 110

UnForm Version 6

250

mcut function, 196
Merge, 111
mget function, 196
MICR, 112
mid function, 196
Mono-spaced text, 92, 133
mount commands, 8
Move, 113
NAT, 14
Notext, 115
Order of operations, 44
Orientation

-land option, 33
landscape command, 105
portrait command, 120

Outline, 116
Output, 117

-o option, 34
Output format

-p option, 35
Page, 118
Page length

-page option, 36
Paper, 119
Paper size

-paper option, 36
Parameter passing

-prm option, 36
parse function, 197
Pass-through printing, 38
PCL format

-p option, 35
Pcopies, 77
PDF

command line options, 36
compress command, 75
encryption, 124
keywords command, 104
outline command, 116
protect command, 124
subject command, 129
title command, 136

PDF format
-p option, 35

Perl, 7, 12
Permanent activation, 27
Pitch, 92, 132
Points, 92, 132
Portrait, 120
Precopy, 121
Process flow, 44
Programming, 184
proper function, 197
Proportional text, 92, 133
Protect, 124

ProvideX
code blocks, 184

ProvideX integration, 23
Regular expressions, 144
right function, 197
Rounded boxes, 71
Rows, 125
Rule file

-f option, 33
Rule files, 52

content-based, 53
Rule set

-r option, 37
Sample rule files, 145
Security, 14
Serial numbers, 27
Server operation, 7, 11
set function, 197
Shade, 126
Shaded text, 92, 133
Shift, 128
simple.rul, 145
Slave printing, 38
SMTP server, 206
Special characters, 38
sub function, 197
Subject, 129
Sub-jobs

job code block functions, 195
Symbol sets, 92, 130, 132

-testpr option, 38
Symset, 130
TCP/IP

-port option, 36
-server option, 37

TCP/IP monitor, 19
TCP/IP ports, 14
Text, 131
Text sizes, 92, 132
Timeouts, 14, 38
Title, 136
Tray, 137
trim function, 197
uf$ variable, 191
uf60c.ini, 12
uf60d options, 7
uf60d.ini, 14, 16
uf6ptr print driver, 23
uf6ptr ProvideX print driver, 23
ufsetup.sh, 8, 10
Underline, 66
UnForm

client-server architecture, 7
concepts, 47
introduction, 6

UnForm Version 6

251

Unix
CD installation, 8
client installation, 12
download installation, 10
mount commands, 8
server operation, 7

upper function, 197
Upper-case, 92
Variables, 190

Version 6 features, 41
Vline, 140
Vshift, 141
Windows

client installation, 12
server installation, 11
server operation, 11

Zebra format
-p option, 35

	TABLE OF CONTENTS
	INTRODUCTION
	CLIENT-SERVER ARCHITECTURE
	SERVER INSTALLATION
	CLIENT INSTALLATION
	CONFIGURING THE SERVER
	CONFIGURING EXTERNAL PROGRAMS
	TCP/IP MONITOR
	INTEGRATING UNFORM WITH BBX
	INTEGRATING UNFORM WITH PROVIDEX
	INTEGRATING UNFORM WITH NON-BUSINESS BASIC APPLICATIONS
	LICENSING
	UNFORM COMMAND LINE OPTIONS
	VERSION 6 FEATURES
	FLOW OF PROCESSING
	CONCEPTS, PRIMER, AND TIPS
	RULE FILES
	CONTENT-BASED RULE SETS
	ACROSS
	ATTACH
	AUTHOR
	BARCODE (PCL,PDF)
	BARCODE (ZEBRA)
	BIN
	BOJ, BOP, EOJ, EOP
	BOLD, ITALIC, LIGHT, UNDERLINE
	CBOLD, CITALIC, CLIGHT, CUNDERLINE
	BOX, CBOX
	BOXR, CBOXR
	COLS
	COMPRESS
	CONST
	COPIES, PCOPIES
	CPI
	CROSSHAIR
	DETECT
	DOWN
	DPI
	DSN_SAMPLE
	DUMP
	DUPLEX
	EMAIL
	ERASE, CERASE
	FIXEDFONT
	FONT, CFONT
	GS
	HLINE
	HSHIFT
	IF COPY … END IF
	IF DRIVER … END IF
	IMAGE
	ITALIC
	KEYWORDS
	LANDSCAPE, RLANDSCAPE
	LIGHT
	LPI
	MACRO
	MACROS
	MARGIN
	MERGE
	MICR
	MOVE, CMOVE
	NOTEXT
	OUTLINE
	OUTPUT
	PAGE
	PAPER
	PORTRAIT, RPORTRAIT
	PRECOPY, PREDEVICE, PREJOB, PREPAGE
	POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE
	PROTECT
	ROWS
	SHADE, CSHADE
	SHIFT
	SUBJECT
	SYMSET
	TEXT
	TITLE
	TRAY
	UNDERLINE
	UNITS
	VLINE
	VSHIFT

	WORKING WITH MACROS
	REGULAR EXPRESSIONS
	SAMPLE RULE FILES
	SIMPLE1 - INVOICE RULE SET (SIMPLE.RUL)
	SIMPLE2 – INVOICE RULE SET (SIMPLE.RUL)
	SIMPLE3 – INVOICE RULE SET (SIMPLE.RUL)
	SIMPLE4 – INVOICE RULE SET (SIMPLE.RUL)
	INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL)
	STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB (
	AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL)
	LABELS – TEXT LABELS TO LASER LABELS (ADVANCED.RUL)
	132X4 – MULTI-UP, SCALED REPORTING (ADVANCED.RUL)
	ZEBRA LABEL – ZEBRA\(LABEL PRINTER EXAM�
	PDF OUTLINE SAMPLE (ADVANCED.RUL)

	PROGRAMMING CODE BLOCKS
	BASIC SYNTAX
	INTERNAL VARIABLES
	INTERNAL FUNCTIONS
	VERBS AND FUNCTIONS
	ERROR CODES

	EMAIL INTEGRATION
	HTML OUTPUT
	CREATING HTML
	HTML CONFIGURATION
	HTML OUTPUT TEMPLATES
	HTML RULE SETS
	BORDER
	COLDEF
	COLWIDTH
	FRAME
	HDRON, HDROFF, HDRTD
	LOAD
	MULTIPAGE
	NULLROW
	OUTPUT
	OTHEROPT
	PAGESEP
	PREJOB, PREPAGE, POSTJOB, POSTPAGE
	ROWDEF
	TITLE
	TOC
	WIDTH
	SAMPLE HTML RULE SET
	AGING REPORT SAMPLE

	INDEX

