
sdOffice 2.0

1

sdOffice®

Version 2.0

Copyright ©2007 by Synergetic Data Systems Inc.
All rights reserved.

sdOffice is a registered trademark of Synergetic Data Systems Inc. Other product names used in
this document may be trademarks or registered trademarks of their respective owners.

sdOffice 2.0

2

TABLE OF CONTENTS

TABLE OF CONTENTS.. 2
INTRODUCTION .. 4
ARCHITECTURE .. 5
NETWORK SERVER INSTALLATION .. 6

Unix/Linux Server From Download ... 6
Unix/Linux Server from CD ... 6
Windows Server.. 8

OFFICE CLIENT INSTALLATION ... 9
CONFIGURATION.. 10

Unix Configuration ... 10
Windows Configuration.. 12

LICENSING ... 13
Unix Licensing.. 14
Windows Licensing .. 15
Activation Errors... 16

WINDOWS OFFICE CLIENT OVERVIEW .. 17
Overview... 17

APPLICATION CLIENT INTERFACES.. 18
Pre-defined Interfaces ... 18
Default Rules for Client and Server Addresses .. 18
Command Files - sdRun Interfaces... 20
Standard I/O - sdpipe.pl Interface... 22
BBx and ProvideX Interfaces ... 23
Print Preview – sdpreview.sh.. 27
Direct Interface Guidelines ... 28

OBJECT REFERENCE.. 30
Job Management ... 31

Command Usage and Parameters ... 31
Universal Commands.. 32

Command Usage and Parameters ... 32
Excel Object.. 40

Overview... 40
Command Usage and Parameters ... 41

Word Object.. 57
Overview... 57
Command Usage and Parameters ... 58

Outlook Object.. 69
Overview... 69
Command Usage and Parameters ... 69

MAPI Object... 77

sdOffice 2.0

3

Overview... 77
Commands and parameters ... 78

ADO Object .. 80
Overview... 80
Command Usage and Parameters ... 81

System Object ... 90
Mail Object ... 91

Overview... 91
Command Usage and Parameters ... 91

SAMPLES... 95
Sample: ADO Database Manipulation.. 96
Sample: Excel Calculation Engine.. 97
Sample: Excel Formatting... 98
Sample: Excel Report ... 99
Sample: Excel Charting .. 101
Sample: MAPI email submission.. 102
Sample: Outlook Add Appointment ... 103
Sample: Outlook Add Contact .. 104
Sample: Outlook Email... 105
Sample: Outlook Read Appointments .. 106
Sample: Outlook Read Contacts ... 107
Sample: Word Document Formatting... 108
Sample: Word Mail Merge ... 110

ADMIN CONNECTIONS.. 112
OBJECT EXTENSIONS WITH VBSCRIPT... 113
AUTOMATED FILE DISTRIBUTION... 116
APPENDIX... 118

Colors in Word and Excel... 118
Paper Bins ... 119
Paper Sizes .. 120

sdOffice 2.0

4

INTRODUCTION

sdOffice is a unique software tool that enables access to Microsoft Office® and other Windows-
based technologies from non-Windows systems and applications. Any application or computer
that can interact with a TCP/IP socket or Unix/Linux pipe can now work with Microsoft Office
and other products, using sdOffice as the bridge to the Component Object Model (COM)
interfaces found in many Windows applications.

COM is a method used in the Windows application world to treat programs, such as Microsoft
Excel® and Microsoft Word®, as programmable objects from within other programs. This
powerful facility is an important part of the Microsoft Windows® platform, but many legacy
programming environments are not able to take advantage of it. In addition, many applications
today run in Unix and Linux environments and have no direct way to access COM objects on
Windows systems.

sdOffice is the bridge that allows applications of any sort to work with the COM object model
for Microsoft Office. sdOffice accepts commands from an application and translates them to the
appropriate COM methods, allowing applications written in virtually any programming
language, and running on virtually any operating system, to control programs like Excel and
Word in real time with a comprehensive, extensible set of commands.

As an example of the sort of capability that sdOffice provides, imagine the example of a
traditional export to Excel procedure used by many legacy software users. In the original effort,
the user runs a report that creates a tab-delimited or comma-separated-value text file. The user
then copies the file to their PC, opens Excel, and imports the file. The columns in that file show
up in the cells in Excel, and then the work begins. The user begins formatting the columns to
match the data types and formats, adds column headings, inserts a formula column, adds column
totals or maybe some grouped subtotals. After all this work, the Excel worksheet finally looks
like a finished document.

With sdOffice, that same report that started the whole process can export directly to Excel and
perform every one of those formatting, formula, and totaling steps without any user intervention.
With that sort of automated functionality, the application, rather than the user, performs all the
work to produce the finished document, saving a tremendous amount of time.

sdOffice is composed of several elements, which are described in the next chapter.

sdOffice 2.0

5

ARCHITECTURE

sdOffice is composed of three elements:

 An sdOffice Network Server
 Windows-based Office clients
 Application clients

The heart of sdOffice is the Network Server. This software runs full time in background,
optionally as a service under Windows, and as a daemon on Unix or Linux. The Network Server
is the interface point for both Office clients and Application clients.

The Office clients connect to the network server when they start up, and maintain a persistent
connection while waiting for application clients to connect and initiate jobs. The Office client is
the piece that translates commands into COM object methods. The Office client is similar to, but
more powerful than, the old sdOffice 1.0 Windows client.

The Application clients connect to the network server whenever a job needs to be executed on an
Office client. The Application connects to the Network Server, specifies which client and which
job object, and then begins sending commands. The Network Server routes the commands to the
appropriate client, and returns responses back. Application clients include:

 The application software itself, if it can work with a TCP/IP socket
 A Perl-based pipe for applications that can use bi-directional pipes but not sockets
 sdRun executables (Perl-based on Unix/Linux, native on Windows) which process the

commands from a text file
 BBx and ProvideX wrappers around the above features, providing a familiar CALL

interface to programmers in those languages

It is also possible to emulate an Application Client using Telnet, or by using the Application
Connection window in the Office Client’s visual interface.

sdOffice 2.0

6

NETWORK SERVER INSTALLATION

Unix/Linux Server From Download

1. Login as root.

2. Create a directory to hold the sdOffice Server files, and change to that directory.

 Example: umask 0
 mkdir /usr/sdofc20
 cd /usr/sdofc20

3. Uncompress and extract sdOffice from the download file.

 uncompress sdo20_xxx_tar.Z
 tar xvf sdo20_xxx_tar

4. Execute the set up script.

 ./sdsetup.sh

 The sdsetup.sh script will create a launch script called /usr/bin/sdo20d, used to start and

stop the sdOffice Network Server.

5. Activate demo mode, or activate permanently, using ./license.sh.

6. Start the server: sdo20d start

7. Check the log file to verify operation: more sdo20d.log or tail sdo20d.log.

See the Licensing section for activation information.

Note that you will probably want to place the sdo20d start command in your system boot
scripts, often found in the /etc/init.d directory or a similar location, depending on your version of
UNIX.

Unix/Linux Server from CD

1. Login as root.

sdOffice 2.0

7

2. Mount the CD as a file system that supports lowercase file names. If you are unsure how
to do this, check your man pages: man mount. The following table illustrates sample
mount commands for various operating systems, assuming standard CD device names
and that the mount directory /mnt is available. You may need to adjust these commands
according to your configuration.

SCO UNIX OS5 mount –o lower /dev/cd0 /mnt
SCO UNIX mount –r –f HS,lower /dev/cd0 /mnt
Unixware mount –F cdfs –r /dev/cdrom/cdrom1 /mnt
AIX mount –vcdrfs –r /dev/cd0 /mnt
Sun Solaris mount –rt hsfs /dev/sr0 /mnt
HP/UX mount –r –F cdfs –o cdcase /dev/dsk/c1d0s2 /mnt

3. Change to the sdOffice 2.0 UNIX directory in the mount directory: cd /mnt/sdo20/unix

4. Run the install script: ./install.sh, or if you do not have execute permission to the file,

sh install.sh. You must agree to the license agreement, then you will be presented a list
of operating system versions. Choose the correct version for your system.

5. The sdOffice server will then be installed to the selected directory, and the set up script

./sdsetup.sh will be automatically executed in that directory.

 The sdsetup.sh script will create a launch script called /usr/bin/sdo20d, used to start and

stop the sdOffice Network Server.

6. Activate demo mode, or activate permanently, using ./license.sh.

7. Start the server: sdo20d start

8. Check the log file to verify operation: more sdo20d.log or tail sdo20d.log.

See the Licensing section for additional activation information.

Note that you will probably want to place the sdo20d start command in your system boot
scripts, often found in the /etc/init.d directory or a similar location, depending on your version of
UNIX.

sdOffice 2.0

8

Windows Server

1. From the CD, use Explorer to locate the D:\sdo20\win directory, and double-click the

setup.exe program (use Control Panel Add/Remove Programs if the system supports
Terminal Services). If you downloaded sdOffice from the Internet, simply execute the
downloaded executable (use Control Panel Add/Remove programs if the system supports
Terminal Services). Follow the on-screen prompts from the installer to install sdOffice to
your system. This will install the sdo20d.exe server program, along with supporting files
and the run-time engine, and create Start menu options under the title “sdOffice 2.0
Server”.

2. Click the Server Configuration option from the Start menu. This will conditionally

rename certain files and prompt for several configuration values. The values entered are
stored in the sdo20d.ini file. You can also use the Configure button from within the
sdOffice Server Manager.

3. Click the Server Manager option from the Windows Start, Programs, sdOffice 2.0

Server menu.

4. Activate the demo mode, then if desired, activate permanently, by pressing the Licensing

button and using the form that displays. On line help is available if needed.

5. Click the Start button from the Server Manager to start the server manually.

6. Check the log in the Server Manager to monitor operation.

7. If desired, and you are running the server on Windows NT, 2000, XP or any of the

Windows variants that support NT Services, you can install the server as a service by
running the Install as a Service option. When the sdOffice Server is run as a service, it
is automatically started when Windows boots up. You must start and stop the service
using the Windows Services applet, found in the Control Panel Administrative Tools
option. The Server Manager options for starting and stopping the server are disabled.

See the Licensing section for activation information.

sdOffice 2.0

9

OFFICE CLIENT INSTALLATION

The office client is a separate installation from the server. This Windows program should be
installed on any workstation that will perform sdOffice jobs. Simply run the
sdOffice2_setup.exe program.

If you install it on a Windows system that supports Terminal Services, such as Windows 2003
Server, it must be installed using Control Panel, Add/Remove Programs while logged in as an
administrator. This technique can be used in lieu of directly running the setup program on any
system, but it is required in a server environment.

Once installed and started, choose the Options tab to configure the Office Client. See the Office
Client Overview chapter for more details.

Automatic Configuration

At the end of the setup execution, the setup program will look for the file “sdOffice2.ini” in the
same path as sdOffice2_setup.exe. If found, that file will be used as the default configuration
file. This procedure allows an administrator to configure one Office client installation normally,
then copy the sdOffice2.ini file from his/her Office Client install path to the location where the
sdOffice2_setup.exe program is normally installed from (or distribute the file with the
setup.exe). Users will then get a default configuration, including server and port settings,
automatically.

sdOffice 2.0

10

CONFIGURATION

Unix Configuration

The network server is configured by editing the sdo20d.ini file. Here is an example file:

[defaults]
logfile=sdo20d.log
logdetail=1
client security is controlled as follows:
secure=0 unauthenticated, open (suggested for LAN only)
secure=1 authenticated connections but data sent in clear (VPN
or low-value data traffic)
secure=2 authenticated, SSL encrypted
secure=0
refresh_manifiest=0

[clients]
port=6115
allow=192.*.*.*;99.99.99.99

[apps]
port=6114
allow=192.168.1.10;192.168.1.11

[admin]
#uses apps port
allow=127.0.0.1

The options for this file are defined below.

[defaults] section
logfile Connections, and optionally detail transaction data, are logged to

this file.
logdetail If set to 0, only connections are logged.

If set to 1, transaction details are logged. If turned on, be sure to
watch the size of the log file, and restart the Network Server
periodically to reset the log.

secure This value sets the security level for client connections, which often
can come from remote systems across the Internet. There are three
levels:

0 - Neither encryption nor authentication is performed on the socket.
Note that all connection types are filtered by IP address to ensure
only specific addresses can connect to the server. This option is

sdOffice 2.0

11

typically all that is required on a local network, as long as the data
that will be sent to clients is not highly sensitive.

1-Authentication only. No encryption is performed, but clients must
authenticate themselves as valid sdOffice Office clients.

2-Authentication and encryption. Office Clients must authenticate
themselves, plus all client traffic is encrypted using SSL. If the host
system does not support SSL (i.e. the openssl libraries are not
available), then this option will produce a startup error and the
sdOffice Network Server will not start.

jobhist This value controls the creation and purging of job history files. Job
history files are placed in the jobhist directory under the server
install directory. Each job’s commands are stored in a job history
file, allowing for easy retrieval of jobs for analysis or debugging.
Error messages returned by the client are entered into the job history
file as a comment.

The value is the number of days that job history files are retained.
Anywhere from 0, meaning no job history files are created, to a
fraction of a day or any number of days.

Jobhist=1 would keep job history files for 24 hours. Jobhost=.04167
would keep them for 1 hour. The job history files are named

refresh_manifest Sets the number of minutes between client re-processing of the
manifest.txt file in the server “files” directory. Set to 0 to not
refresh (the file will only be read as clients start up and connect to
the server). This value should be an integer, and fractional minutes
are rounded to the nearest integer. See the Automated File
Distribution chapter for details.

[clients] section
port The port on which the Network Server listens for Office client

connections. This defaults to port 6115. If changed, Office clients
must be configured to use the new port.

allow A semi-colon delimited list of valid IP addresses or address
wildcards for Office clients. Clients whose IP address is not in this
list are denied access.

Common address wildcards for local networks include 192.*.*.* and
10.*.*.*.

[apps] section
port The port on which the Network Server listens for Application client

connections. This defaults to port 6114. If changed, Application
clients must use the new port.

allow A semi-colon delimited list of valid IP addresses or address

sdOffice 2.0

12

wildcards for Application clients. Clients whose IP address is not in
this list are denied access.

Common address wildcards for local networks include 192.*.*.* and
10.*.*.*.

[admin] section
allow A semi-colon delimited list of valid IP addresses or address

wildcards for admin connections. Connections from IP addresses
not in this list are denied access. This is often set to the localhost
address, 127.0.0.1, allowing admin access only from the network
server host machine.

Admin connections are initiated via the Application client port,
typically via telnet, and the first command line sent is always
“admin”. Admin connections provide several commands to manage
the Network server.

Windows Configuration

On Windows, you can edit the sd20d.ini file just as on Unix, or you can use the sdOffice Server
Manager and select the Configure button. The Configuration screen provides editing capabilities
to many of sdo20d.ini settings.

See the previous section for details about setting the various fields on this form, or view the on-
line help.

sdOffice 2.0

13

LICENSING

Licensing for sdOffice is based upon the number of concurrent Application clients that will
connect to the sdOffice Network Server. Application clients typically connect only long enough
to run a job, from a few seconds to a few minutes, so the number of connection licenses required
typically will be less than the number of active users on a network. The connection counts
available are 1, 3, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, and unlimited.

Each sdOffice Network Server is issued a unique serial number and two activation keys. One
key enables the server itself, and is tied to the server’s system ID and machine class, both
generated at the time of install. The other key enables the licensed number of Application
connections.

Licensing is controlled entirely by the sdOffice Network Server process, sdo20d. You can install
the Application interfaces and Office clients freely anywhere on your network.

Each sdOffice Network Server installation has a serial number. There is one special serial
number, SD0099999, reserved for demo mode use on any machine. All permanent licenses are
assigned a unique serial number and must be licensed to a single machine installation. Serial
numbers and their associated PIN codes are assigned by SDSI when sdOffice is purchased. In
order to obtain permanent or emergency temporary activation keys, the serial number and PIN
code are required.

There are two activation keys that must be entered for full operation of sdOffice: a system key
and a connections key. The system key enables the sdOffice Network Server to operate on a
specific computer. The connections key determines the number of concurrent Application
connections that may run. For demo mode operation, just a temporary system key is required;
demo mode operation automatically enables 3 Application connections.

There are three types of system activation keys:

30-Day Demo
This license has a fixed serial number (SD0099999) and can run on any machine for 30 days.
While running under this serial number, sdOffice will print “*Demo*” phrases randomly in data
sent to sdOffice clients. This is the first mode activated after an installation, as it enables the
retrieval of a System ID and Machine Class needed for permanent licensing later, as well as
allowing sdOffice to operate in demo mode.

Permanent
This license has an assigned serial number, and requires a System ID and Machine Class to
activate. A permanent license does not expire, enabling the sdOffice Network Server to run
perpetually on the machine where installed and licensed. The System ID is derived from a given
installation machine and attributes of a file in the sdOffice rt\lib\keys directory (Windows) or the
rt\lib directory (UNIX), so it will change if the installation is moved to a new machine, or even to
a new location on the same machine. Once the System ID changes, the permanent activation key

sdOffice 2.0

14

will no longer work, and sdOffice must be re-activated.

If the original permanent installation of sdOffice is no longer used, then you can request a reset
of the permanent license to enable a new System ID and Machine Class to be associated with the
permanent activation key. Contact sales@synergetic-data.com to request resets.

Emergency Temporary
This license is assigned a serial number, like a permanent license, but it does not require a
System ID or Machine Class to activate. This allows you to re-install the sdOffice Network
Server on a different machine than originally licensed, and operate it for 30 days. Once a
temporary license has been issued for a given serial number, another temporary license cannot be
issued for 45 days.

Unix Licensing
To activate the sdOffice Network Server on UNIX, perform the following steps:

 Login as root.
 cd to the sdOffice directory (i.e. cd /usr/lib/sdsi/sdofc20).
 Execute ./license.sh.

The license.sh script prompts for the following options:

SDOFFICE LICENSING OPTIONS

Use the following options if this machine is connected to the Internet:

1 - Permanent Activation (requires serial number and PIN code)
2 - Emergency Temporary Activation (also requires SN and PIN)
3 - 30-Day Demo Mode Activation

Use the following options for manual activation. Activation keys
can be obtained from http://synergetic-data.com/sd2lic.cgi.

4 - Display System ID and machine class (needed for option 5)
5 - Enter Permanent Activation
6 - Enter Emergency Temporary Activation
7 - Enter 30-Day Demo Mode Activation

q - quit
Enter selection:

To obtain either a permanent or emergency temporary activation, you will need to know your
serial number and PIN code previously assigned by SDSI. These values are not necessary to
obtain a 30-day demo mode activation.

If your machine has Internet access, you can perform activation easily by choosing options 1
through 3. Options 1 and 2 will prompt you for your serial number and PIN. Each of the three
options will use the Internet to retrieve the desired activation key.

sdOffice 2.0

15

If the Internet is not available from the install machine, then you can perform activation
manually by using another machine to visit http://synergetic-data.com/sd2lic.cgi. Use option 4
to display the System ID and Machine Class, which will be required to obtain a permanent
activation key from this web site. Options 5 and 6 will prompt for a serial number, system key,
and connections key, in sequence. Option 7 will only prompt for a system key.

Windows Licensing

The first step after an installation is to activate demo mode. This initializes the system ID file,
enabling a permanent license to be obtained. If you get an error message after pressing the Show
System ID button, then this installation has never been initialized, and you must activate demo
mode first.

To activate demo mode:
If you are connected to the Internet, press the Automatic Demo Activation button. This will
obtain a current demo mode activation key from SDSI's website and activate the run-time engine.

If you are not connected to the Internet, go to a computer that is, and go to http://synergetic-
data.com/sd2lic.cgi, then click the link to get a 30-day trial. Note the activation key returned, and
enter it exactly the same way in the Demo Activation Key field, then click the Manual Demo
Activation button.

To verify the activation, click the Show System ID button. If the System ID and Class fields get
filled in, then it worked.

http://synergetic-data.com/sd2lic.cgi�
http://synergetic-data.com/sd2lic.cgi�
http://synergetic-data.com/sd2lic.cgi�

sdOffice 2.0

16

To activate permanent mode:
To activate automatically over the Internet, you need to click the Show System ID button to get
the System ID and Machine Class fields. Then fill in your serial number and PIN code, and click
the Automatic Activation button. This will use your information to obtain a permanent activation
key for the system, as well as your job and designer activation keys, and activate everything.

To activate sdOffice manually, note your System ID and Machine Class, then go to
http://synergetic-data.com/sd2lic.cgi. Enter your serial number and PIN code, then click the
button to get a permanent license. When prompted, enter the System ID and Machine Class
exactly as noted on this screen. Note the two activation keys returned, and enter them exactly as
provided in the two entry fields, then click the Manual Activation button.

To activate in emergency temporary mode:
To obtain a temporary activation over the Internet or manually, follow the steps for a permanent
license, but check the Emergency Temp Activation option. The System ID and Machine Class
are not used for temporary activations.

Activation Errors

Permanent activation keys are dependent on the system ID and machine class information
generated by an installation. Therefore, a permanent activation key will only work on the
original installation for which it was generated. If the sdOffice Network Server needs to be
moved or re-installed, a new permanent activation key must be generated. This is only possible
if SDSI resets the permanent key for your serial number, so you must contact SDSI, certify that
the original installation is no longer in use, and request a reset.

In the meantime, you can obtain an emergency temporary activation to allow your serial number
to be used on a new installation for 30 days.

If you attempt to get a new permanent activation key and are notified that one has already been
assigned, then contact SDSI to request a reset. If this cannot be done in a timely fashion, get an
emergency temporary key instead, and then contact SDSI at a later time.

Note that temporary keys are issued at most once every 45 days. If you get an error message
indicating the temporary key availability has not expired, then you must contact SDSI to get a
reset.

http://synergetic-data.com/sd2lic.cgi�

sdOffice 2.0

17

WINDOWS OFFICE CLIENT OVERVIEW

Overview

The Office Client runs on Windows-based computers and executes the jobs routed to it from the
sdOffice Network Server. This program provides the interface to Microsoft Office and other
objects, by translating job command streams into COM object methods and properties.

This program provides a user interface to view and edit job activity and configuration
parameters. There is also a simple interface to test jobs on the client, without connecting to a
Network Server and consuming application connection licenses.

For details about this interface, consult the Help menu in the Office Client.

sdOffice 2.0

18

APPLICATION CLIENT INTERFACES

The basic principle behind any application client is to connect to the sdOffice Network Server,
send an initialization command, and then begin sending commands for the job. The server
parses the initialization command and attempts to link the Application client with an appropriate
Office client.

Pre-defined Interfaces
Applications which use the pre-defined interfaces do not need to worry about the internal send
and response formats used by the server. The pre-defined interfaces are:

 sdRun interfaces (sdrun.exe on Windows and sdrun.pl (Perl-based) on Unix/Linux).
These interfaces submit a job command file, which is simply a text file containing the
object and the commands to send to that object.

 sdpipe.pl, a Perl-based script designed to provide a standard I/O method of interfacing
with the server, for application environments that can’t communicate directly with
sockets.

 sdofc*.bb/sdofc*.pv, BBx and ProvideX callable programs designed for operation in
those programming environments.

 sdpreview.sh, a Unix/Linux shell script designed to display a report print-preview on a
user’s PC workstation, simply by printing to it. The script uses the sdrun.pl Perl script, so
Perl is a prerequisite.

In addition to these interfaces, any application that can communicate with the server via a
TCP/IP socket (or the sdpipe.pl script) can connect and execute jobs by following the guidelines
for connecting to the server and submitting jobs. These guidelines are described in the section
titled Direct Interface Guidelines.

Default Rules for Client and Server Addresses
When an application wishes to start a job, it must connect to an sdOffice Network Server, and
tell it what target sdOffice Client to send the job to. The application interfaces can be told
explicitly what these values are, but there are other ways to specify the information.

For the Network Server, the default address is ‘localhost’, and the default port is 6114. In
order to specify a different default, you can establish an environment variable SDSERVER with
the format server or server:port. The server value can be a hostname or an IP address. The port
portion can optionally be specified in another environment variable, SDPORT.

In BBx or ProvideX environments, when using the sdrun.bb/pv or sdofc*.bb/pv programs, you
can instead specify a global string “$sdserver”, using the stbl (gbl on ProvideX) function. The
port value can optionally be specified in the global string “$sdport”.

sdOffice 2.0

19

For the target sdOffice Client, the default on Unix or Linux is to evaluate the “who” command
to determine the hostname of the client PC. This value will generally be accurate if the user is
logged in over a telnet or ssh connection (typically via a terminal emulator). If this value isn’t
valid, then an environment variable SDHOST can be defined. On Windows, there is no default
value, so the target must be explicitly provided or the SDHOST environment variable must be
defined. Note that in BBx or ProvideX, the stbl or gbl value “$sdhost” can be used in lieu of
setting the SDHOST environment variable.

The target can be specified in several ways: an IP address, a computer name (as the Windows PC
identifies itself) in the format @name, or a user name (as the Windows user logged in) in the
format ~name.

sdOffice 2.0

20

Command Files - sdRun Interfaces

sdOffice comes with a series of programs designed to process command files, simplifying the
communication with sdOffice by allowing a developer to create a text file containing commands
and then process the commands automatically. While there are no programming type features
like looping constructs, variables, or conditionals, in many cases these interfaces will satisfy the
needs of a project and will save the programmer the time of developing the communication layer.
And for Perl or Business Basic programmers, the source code can be useful for seeing how to
manage the communications.

The programs are:

sdrun.pl Perl script program
sdrun.exe Windows 32-bit executable
sdrun.bb PRO/5 CALLable program
sdrun.pv ProvideX CALLable program

Examples of command files can be found in the sdOffice directory, names s_*.txt. A command
file always starts with an application name, such as "word", "excel", or "mail". Following this
line are any number of commands and associated parameters. Comments can be interspersed as
lines starting with #.

To execute the Perl program:

perl sdrun.pl CommandFile {Target {ServerPort {ServerIP}}} {>ResponseFile} {2>ErrorFile}

CommandFile, the first argument, is required, and is the path to the command file.

Target is an optional argument that specifies the sdOffice Client target for the job. If not
specified, the environment variable SDHOST is used, or the who command is used to attempt to
identify the target PC. Note that the who command technique will not work if sdrun.pl is run in
background.

ServerIP and ServerPort are optional arguments to specify the server IP address or hostname, and
listening port. If they are not supplied, then defaults are used from the environment variable
SDSERVER (or localhost) and the environment variable SDPORT (or port 6114).

If any get-type commands are issued, the responses are sent to STDOUT. You can redirect the
responses to a file rather than the terminal using ">" redirection. If there are multiple get-type
commands, a line "<< multiple response break >>" will appear between each result set.

If any errors are encountered, the error message is sent to STDERR and the job exits
immediately. You can redirect this output with "2>". Normally, STDERR is routed to the
terminal.

sdOffice 2.0

21

To execute sdRun.exe:

\path\to\sdrun.exe CommandFile {Target {ServerPort {ServerIP {ResponseFile {ErrorFile }}}}}

CommandFile, the first argument, is required, and is the path to the command file.

Target is an optional argument that specifies the sdOffice Client target for the job. If not
specified, the environment variable SDHOST is used.

ServerIP and ServerPort are optional arguments to specify the server IP address or hostname, and
listening port. If they are not supplied, then the defaults are localhost and 6114, respectively.

If any get-type commands are issued, the responses are normally displayed in a message box.
You can direct the responses to a file using the ResponseFile argument as a file path. If there are
multiple get-type commands, a line "<< multiple response break >>" will appear between each
result set.

If any errors are encountered, normally an error message window is displayed. You can direct
this output to a file with the ErrorFile argument as a file path. In either case, the job exits
immediately

Note that the arguments are positional. To name a ResponseFile, for example, you must also
name the ServerIP and ServerPort.

To execute the PRO/5 or Providex programs:

call "sdrun.bb|pv", CommandFile$, Target$, Server$, Response$, Errmsg$

CommandFile$ is the command file path name to process.

Target$ identifies the target sdOffice Client, by IP address, Computer Name (syntax “@name”),
or User Name (syntax “~username”). If this value is null, then the default rules for determining
the client are used. These rules are defined in the Application Interfaces chapter.

Server$ identifies the server IP or hostname and optionally the port (format server or server:port)
of the sdOffice Network Server. If this value is null, the default rules for determining the server
are used. These rules are defined in the Application Interfaces chapter.

Response$ will contain all the reponses returned by Get style commands in the command file.
Multiple responses will be delimited with ASCII 0 characters.

Errmsg$ will return any error message encountered. If a command encounters an error, the
remainder of the command file isn't processed, and the error message is returned immediately.

sdOffice 2.0

22

Standard I/O - sdpipe.pl Interface

The sdpipe.pl interface is a simple Perl script that communicates standard input and output over a
socket, enabling application programs without TCP/IP socket support to open a connection to the
sdOffice Network Server and execute jobs through it.

The syntax of sdpipe.pl is:

perl /path/sdpipe.pl { server { port }}

The optional arguments are server and port, which default to ‘localhost’ and ‘6114’, or the values in
environment variables SDHOST and SDPORT, if supplied. Once a pipe is opened to this command line,
writes to the pipe are sent to the server, and reads from the pipe return server responses.

Any program that uses sdpipe.pl must adhere to the direct interface guidelines, including terminating all
commands with a CR-LF sequence (chr(13) + chr(10)), and reading “get” responses until a terminating
line with a single period (“.”+chr(13)+chr(10)).

sdOffice 2.0

23

BBx and ProvideX Interfaces

sdOffice includes several BBx and ProvideX programs that can simplify the management of a
sdOffice session. These programs are CALLed modules that initiate and manage the
communication with sdOffice automatically.

Target machines can be automatically determined by sdofc.bb/pv in a Unix environment where
users connect via telnet or ssh, based on the ‘who –m’ or ‘who –mx’ command. However, if you
are running outside of this environment, or you want to target an Office Client on a different
system than the one running the terminal emulator, you need to specify the target using the string
table global “$sdhost”. For example:

x$=stbl("$sdhost","192.168.1.20")
x$=stbl("$sdhost", "@mycomputer")
x$=stbl("$sdhost","~JohnSmith")

Under ProvideX, use gbl() rather than stbl(). Under BBx, you can also define values with “set”
commands in the config.bbx file:

set $sdhost=192.168.1.20

Also note that if the sdOffice server is on a different machine than the BBx or ProvideX
application, you need to define stbl/gbl “$sdserver” to specify the server machine and port:

x$=stbl("$sdserver","192.168.1.99:6114")

Generic Interface Program – sdofc.bb or sdofc.pv
There is program sdofc.bb (and sdofc.pv for ProvideX) that manages the socket communication
with the sdOffice server. The CALL arguments for sdofc.bb/pv are object$, cmd$, response$,
errmsg$. This program can be used to manage a session with any sdOffice object, simply by
passing the object in the first argument. For example:

obj$=”excel”
call “sdofc.bb”,obj$,”newbook”,response$,errmsg$
call “sdofc.bb”,obj$,”writecell col=1,row=1,value=123.45”,response$,errmsg$
call “sdofc.bb”,obj$,”leaveopen”,””,””
call “sdofc.bb”,obj$,”close”,””,””

Object-Specific Interface Programs
For most objects, there is also a specific program that can be called that matches the object. For
example, the program sdofc_e.bb is the BBx version of the Excel program. These object-
specific programs are provided for compatibility with sdOffice 1. Each of these object-specific
programs simply calls “sdofc.bb” or “sdofc.pv” with a static first argument.

sdOffice 2.0

24

These object-specific sdOffice program uses a simple, three-value argument list, call
"sdofc_e.bb", cmd$, response$, errmsg$ for example. In each case, cmd$ is a command value
and optional parameters, response$ returns any results from "get" style commands, and errmsg$
returns a null or an error message, if an error is encountered. Unlike direct socket interfaces,
there is no need to initially specify which application to automate (Word, Outlook, Excel, etc.),
as the program CALLed selects and initializes the correct application automatically.

In many cases, the parameter portion can contain a number of name=value pairs. Each pair is
delimited with a comma, and each value may be quoted if it contains commas. For example, to
set a cell font in Excel, you would use a command like this:

call "sdofc_e.bb","format col=1,row=1,font=Arial,size=14.5,bold",response$,errmsg$

The first CALL to one of the sdOffice programs will open a channel to the sdOffice server and
issue the correct initialization command (word, excel, mapi, etc.).

A connection with the sdOffice Network Server is established via a socket or a pipe to sdpipe.pl,
depending on the socket capabilities of the language. Revisions of PRO/5 or Visual PRO/5 after
2.2 support sockets with the addition of ‘alias N0 tcp’ to the config.bbx file. ProvideX also
supports sockets. Older versions of PRO/5 on Unix will use the sdpipe.pl interface, but for
Visual PRO/5 on Windows, there is no support for the sdofc*.bb programs and you must use the
sdrun.exe program to submit jobs as command files.

In either language, if stbl("$sdserver") or gbl("$sdserver") or the environment variable
SDSERVER is defined, then a socket channel is opened to the specified Network Server. The
format of the stbl/gbl or environment variable is: server or server:port. If the port can
alternately be specified in the stbl/gbl “$sdport” or the environment variable SDPORT.

The Network Server and port values default to ‘localhost’ and ‘6114’, respectively.

sdOffice will attempt to connect the job to a workstation running the Office Client. This client is
the target, and it can be specified as an IP address, a Windows computer name in the format
@name, or a Windows user login in the format ~login. This value can be specified in the
stbl/gbl “$sdhost” or environment variable SDHOST. If it isn’t specified, on Unix sdOffice will
use the ‘who’ command to attempt to determine the hostname of the system from which a user is
logged into Unix. In the case of a ProvideX user running WindX, the default value will be set to
the WindX terminal’s address rather than using a ‘who’ command.

The channel must remain open, or the session terminates, along with the ActiveX Automation
session. When you are ready for the session to end, you can call the program with
cmd$="close", and the session will terminate. As an alternative, a Business Basic BEGIN or
END will also close channels and terminate the session.

The sdofc.bb/pv programs use timeout error handling when communicating with the server, both
under socket and DDE modes. The default timeout value for any operation is 30 seconds. You
can adjust this value by setting the STBL (GBL under pvx) value for $sdtim to the number of

sdOffice 2.0

25

seconds desired. For example, trash$=stbl("$sdtim","60") would establish 60 seconds as the
timeout value before an error is returned.

Here is a summary of each of the programs:

call "sdofc.bb|pv",object$,cmd$,response$,errmsg$

This program automates any valid sdOffice object name, as specified in the object$ argument.
This argument must be maintained in all subsequent CALL’s for the same job, as the socket
channel is tracked in part by its value.

call "sdofc_d.bb|pv",cmd$,response$,errmsg$

This program automates ADO (database) tasks through SQL commands. With this object, you
can read and write data in external databases.

call "sdofc_e.bb|pv",cmd$,response$,errmsg$

This program automates Excel, providing read, write, and formatting capabilities. You can open
existing workbooks, create new workbooks, add embedded charts, manage worksheets and their
contents, and print or save the results.

call "sdofc_m.bb|pv",cmd$,response$,errmsg$

This program automates MAPI (email messaging) tasks. You can send email to any number of
recipients. The mail can include attachments.

call "sdofc_o.bb|pv",cmd$,response$,errmsg$

This program automates Outlook, managing appointments, contacts, email, and tasks. Date-
oriented information can be used to automate appointment and task records. Master file data can
be synchronized with Outlook contacts, and email can be sent using the Outlook address book.
Note that email can also be sent using MAPI automation.

call "sdofc_w.bb|pv",cmd$,response$,errmsg$

This program automates Word, providing read, write, and formatting capabilities. Use it to open
or create Word documents, such as writing letters or performing mail merge functions from
within your application.

sdOffice 2.0

26

sdOffice 2.0

27

Print Preview – sdpreview.sh

This Unix shell script is designed to simplify the creation of simple text report “print previews”,
where the text report will appear on the user’s Windows desktop in a scaled, zoom-able window.
The script converts standard input to a preview job on the specified Office Client.

The syntax of the command is:

/path/sdpreview.sh { target { server { port }}}

Once running, all standard input to the script is routed to a work file, along with the proper
commands required to implement a print preview object on the Office Client. Once the printing
is complete, the job is submitted to the sdOffice Network Server using the sdrun.pl Perl script.

If the values for target, server, and port are not supplied, then the defaults as described in the
sdrun.pl section will be used. However, since sdpreview.sh is typically run within a pipe, the
attempt to automatically determine the client via the ‘who’ command will not work. Therefore,
it is often important to establish the SDHOST environment variable as the user logs in to the
Unix system.

sdOffice 2.0

28

Direct Interface Guidelines
The basics of this connection lifecycle can be demonstrated with this simple telnet-based
example, with application commands indicated with >, and responses with <, for clarity:

> telnet localhost 6114
< sdOffice (app connection) 2.0.nn
> excel;192.168.1.10
< ok
> newbook
< ok
> setdelim |
< ok
> writerow Column 1|Column 2
< ok
> writerow John|Sally
< ok
> show
< ok
> leaveopen
< ok
> quit

In the above example, the application connects to port 6114 on the localhost machine. The
sdOffice Network Server is listening for application connections on this machine and port. This
is confirmed by the response “sdoffice (app connection) 2.0.nn” (nn is the revision number).

The first thing that the application needs to do is request an application object on a particular
computer running the Office client. The request consists of a line of object;target. The object is
one of the internal objects supported by sdOffice, such as Excel, Word, Outlook, or others, and
the target is the Office client to which the job should be sent.

The target value can take several forms. First, it can be an IP address. Second, it can be a
Window Computer Name prefixed with “@”, such as @sales or @billsdell610. Third, it can be
a Windows user name prefixed with “~”, such as ~BillMiller or ~Sally Smith. When clients
connect to the server, they identify themselves with their computer name (as defined under
Control Panel, System, Computer Name), and the user logged in when the client connects. Note
that if the client is installed to run as a service, it will by default login under the user name of
“SYSTEM”.

In the above example, the initial line is “excel;192.168.1.10”, so it is asking for an Excel object
on the client PC whose IP address is 192.168.1.10.

When the application sends this initial request line, the server compares connected clients with
the request and matches up the application connection with a client connection that can support
the object requested and matches the target name. If a client can be assigned to the application,
the server sends an “ok” response. If not, the application would get an error message and be
disconnected. All error messages start with the prefix “Error: “.

sdOffice 2.0

29

For example, if no client could be found, the following response would have been seen:

Error: No available clients support excel on 192.168.1.10

Once a connection is established, a job of the requested object is started on the client and is ready
to start accepting commands from the application.

All commands, except those that begin with the letters “get”, are responded to with either an
“ok” or an “Error: message” line. Any command that starts with “get” receives a stream
response or an “Error: message” response.

All commands must end with a LF or CR+LF (chr(10) or chr(13) + chr(10)), and all
responses will end with a CR+LF sequence.

A stream response is simply a series of lines terminated by a line containing a single period (plus
the CR+LF). The terminating line is not to be considered part of the response, but rather just an
indicator that the response is complete. Any lines within the data stream that begin with a period
are converted to begin with two periods before they are returned to the application, so any
application should watch for such lines and treat them as single-period lines.

sdOffice 2.0

30

OBJECT REFERENCE

The Office client supports a number of objects, most of which are related to Microsoft Office
applications, though some simply provide some additional useful functionality. Each object
supports a defined set of commands and options, and each object can support additional
commands via an extension script, written in VBScript, that can be custom written and
distributed to the Office client workstations.

Some commands are implemented universally. Once any object is initialized, these universal
commands may be sent to the client and the client will act upon them regardless of which object
is active. This allows some commands to be executed even if Microsoft Office is not present on
the Office Client, by using the always available System object.

The standard objects provided by sdOffice are:

 Microsoft Excel
 Microsoft Word
 Microsoft Outlook
 MAPI (electronic mail via Microsoft MAPI)
 ADO (database access via ADODB/ODBC)
 Email (email send/receive via SMTP and POP)
 System (access to system folders and the Windows shell for launching tasks)
 Popup (pop up messages)
 Preview (text report print preview)

sdOffice 2.0

31

Job Management

Each connection established by an application names an object, such as “excel” or “word”, to
work with. In addition, a connection can establish other objects if desired, and switch the
current object to any that have been started. Commands that are sent always apply the current
job. The job commands are as follows:

Command Usage and Parameters

JobCloseAll
v2.0

jobcloseall

Closes all open jobs.

JobEnd
v2.0

jobend jobname

Closes the job specified by jobname.

JobGet
v2.0

jobget

Returns the active job name.

JobList
v2.0

joblist

Returns a list of all open job names.

JobLogOff
v2.0

joblogoff

Ends logging of the job, formerly started with the JobLogOn command.

JobLogOn
v2.0

joblogon logname

sdOffice 2.0

32

Begins logging job commands and time information to the file
lognameYYYYMMDD_HHMMSS.sdoj, stored in the JobLogs folder on the Office Client. Stored
logs can be run from the Application Connection option in the Office Client, or with an sdRun
interface. The JobLogOn and JobLogOff commands should bracket an entire job stream to be
effective.

JobNew
v2.0

jobnew jobname,applicationobject

Creates a new job, naming it jobname, and starting the application object object. For example,
‘jobnew job 1,excel’.

JobSet
v2.0

jobset jobname

Sets the active job to jobname.

A default job name is created when an application connection is established, based on the initial
object requested. The name is “objectjobn”, such as “exceljob1” or “wordjob1”.

Universal Commands

The following commands are implemented at the connection level and therefore operate no
matter what object is active.

Command Usage and Parameters

GetPath
v2.0

getpath foldername

Returns the client-side physical path of the named folder. All paths are returned with a
terminating backslash. (i.e. c:\program files\)

Windows specific folder names
Folder Name/Parameter Windows Path
appdata user application data folder
commondesktop all users desktop folder
commonprograms all users programs folder
commonstartmenu all users start menu folder

sdOffice 2.0

33

commonstartup all users startup folder
cookies user cookies folder
desktop user desktop folder
favorites user favorites folder
history user history folder
internet user temporary internet folder
mydocuments or personal user my documents folder
programs user program files folder
recent user recent files folder
sendto user send to folder
startmenu user start menu folder
startup user startup folder
templates user templates folder
temp user temporary files folder
sdOffice specific folder names
sdoffice sdOffice client install path
samples sdOffice samples folder
joblogs sdOffice joblogs folder
plugins sdOffice plugins folder

sdOffice 2.0

34

GetFile
v2.0

getfile parameters

Used to return the contents of a text file on the client workstation.

GetFile options

The options can include:

 file=local full path-filename

 This option uses a full path and filename for the desired file. If you are using the

folder option below, only enter the filename (with extension) and not the path.

file option only example:

getfile file=c:\program files\sample.txt
Results = c:\program files\sample.txt

file option with folder option example:

 getfile file=sample.txt,folder=programs
 Results = C:\Program Files\sample.txt

file option with full path-filename and folder option example:
 Invalid command syntax
 getfile file=c:\program files\sample.txt,folder=programs
 Results = C:\Program Files\C:\Program Files\sample.txt

 folder=foldername

Read the file from a local folder. Valid folder names are documented in the
GetPath command.

The folder option will concatenate the folder value returned with the file option value. So if you
give a full path-filename for the file option and use the folder option, the resulting file name will
cause an ‘Invalid filename’ error.

Popup
v2.0

popup parameters

The popup displays a popup message on the Office Client desktop, similar to the message
popups in instant messaging applications or Microsoft Office 2003. The object accepts a number
of parameters to indicate text, links, buttons, and colors.

sdOffice 2.0

35

The popup object provides two text regions, a standard text region, normally in the center of the
popup, and a link text region, normally the top of the object. The link text can hyperlink to a file
or URL, so if the user clicks it, the file is opened or the URL is opened in the browser.

Popup options

The options can include:

File=filename or url
This is a file or URL to open when the link text is clicked by the user. If the style
is “office”, then it is opened when the user clicks anywhere in the popup.

Text=display text

LinkText=link text
 The link text associated with the File value

 Style = messenger | office
This setting controls the style of the popup window. The default style is
“messenger”.

 DisplayStyle = fade | scroll

This setting controls how the popup closes, either by fading to clear or scrolling to
nothing.

TextAlign=alignment

bc|bottomcenter
bl|bottomleft
br|bottomright
mc|middlecenter
ml|middleleft
mr|middleright
tc|topcenter
tl|topleft
tr|topright
t|title

LinkTextAlign=alignment

bc|bottomcenter
bl|bottomleft
br|bottomright
mc|middlecenter
ml|middleleft
mr|middleright
tc|topcenter

sdOffice 2.0

36

tl|topleft
tr|topright
t|title

 ShowLink = true|false

The default value is true, but if set to false, then hyperlinks are not displayed as
underlined links.

 ShowClose = true|false

Forces the display of a close box on the popup. The default is off if the style is
“messenger”, and true if the style is “office”.

 Timeout = milliseconds

After milliseconds (1000=1 second), close the popup. Set milliseconds to 0 to
force the popup to stay open until the user closes it. The default value is 0.

 BackColor|bc = colorname

Sets the background color of the popup to the specified colorname. Valid colors
include:

black, blue, red, green, cyan, magenta, yellow, white
darkblue, darkred, darkyellow, turquoise, teal, pink
violet, brightgreen, gray25, gray50

 ForeColor|tc = colorname

Sets the color for text on the popup. Valid color names are the same as indicated
in the BackColor option.

 BackgroundColorGradient|bcg = colorname

Sets the gradient color, used along with the standard background color to generate
a color gradient. Valid color names are the same as indicated in the BackColor
option.

 BackgroundStyle|bgs = style
 Sets the background color gradient style. Can be one of:
 Angled, Horizontal, Solid, Vertical

Preview_On, Preview_Off
v2.0

preview_on

preview_off

These commands turn on and off preview mode, respectively. When preview mode is on, all
lines sent to the Office Client are captured in a buffer, and when preview mode is turned off, a
print preview window is presented on the workstation. The contents of the print preview are

sdOffice 2.0

37

scaled based on the columns and rows received, with form feed characters (chr(12)) delimiting
pages. In addition, the user can zoom, scroll, and scale the preview.

PreviewLoad
v2.0

previewload fullpath-filename

The PreviewLoad command loads a text file from a given path and displays its contents in the
print preview window.

Preview
v2.0

preview stringdata

The preview command can be used to initiate a report preview window with a single string. This
differs from the preview_on and preview_off commands, which capture data sent to the client
and then initiate a preview window with the captured data.

GetSvrFile
v2.0

getsvrfile parameters

GetSvrFile is used to transfer a file from the server to the client.

GetSvrFile options

The options can include:

 serverfile|sfile=server file

 All server files are stored in the “files” subdirectory under the sdOffice server

install path. There is no need to include path information, as just the base file
name is used.

 clientfile|cfile=client file (full path-filename)

 This is the file name the server file is copied to. It can be a full path, or you can

supply a base name and a folder name. The client file can contain references to
special folders in brackets, such as “[mydocuments]specials.doc”. See GetPath
for a list of special folder names.

 folder=foldername

Save the client file to a folder. Valid folder names are documented in the GetPath
command.

sdOffice 2.0

38

SendEmail
v2.0

sendemail parameters

Sends an email using SMTP. This command accepts many options.

Sendemail options

to|rec|recipient|sendto=email [,email ,...]

 Any “to” addresses, separated by commas or entered as multiple to= options.

 from|sendfrom|sender=email

 “From” email address.

 cc= email [,email ,...]

 Any “cc” addresses, separated by commas or entered as multiple cc= options.

 bcc= email [,email ,...]

 Any “bcc” addresses, separated by commas or entered as multiple bcc= options.

 subject|sub=subject text

 body|text|bodytext=message body text

 bodyhtml=HTML message body

 attach=file [,file ,…]

 Any file to attach to the email. Files must reside on the client workstation, not the

sdOffice server. To attach multiple files, separate them with commas, or use
multiple attach options.

SetFile
v2.0

setfile parameters

Used to write a string to a text file on the client workstation.

SetFile options

Valid options include:

text | data=string

sdOffice 2.0

39

 The text to be written to the file. Note this overwrites the current contents.

file | filename | path=file name (full path-filename)

 The full path and file name of the client-side file to write.

SetSvrFile
v2.0

setsvrfile parameters

SetSvrFile is used to transfer a file from the client to the server. All files sent to the server are
written to the “files” subdirectory under the sdOffice server install path.

SetSvrFile options

The options can include:

 Clientfile|cfile=client file (fill path-filename)

 The client-side file name, which can be a full path or a base name located in the

folder specified by the folder= option.

 Serverfile|sfile=server file

 The server-side file name. Paths are ignored, and the base name is used as a file

written to the servers’s “files” directory.

 Folder=foldername

Read the client file from a folder. Valid folder names are documented in the
GetPath command.

sdOffice 2.0

40

Excel Object

Overview

Excel uses a two-level document hierarchy. The first level is a workbook (or book), which is
equivalent to a .xls file. An Excel session can have any number of workbooks open at one time
(OpenBook). When you create a new workbook (NewBook), Excel names it Bookn. You can
then perform a SaveAs to give it a file name. Within each workbook are worksheets (or sheets).
The worksheets contain the rows and columns of data. Worksheets are named, like workbooks,
but the names are not related to the file name of the .xls file. When you create a new sheet
(NewSheet), you may provide a name at that time as a parameter.

sdOffice works with an active worksheet. When you open or create a workbook, the first
worksheet in that workbook is automatically activated. When you create a new sheet in the
workbook, it is automatically activated. You can also manually activate a workbook
(ActivateBook), and a sheet within the workbook (ActivateSheet), using their names. Sheets can
also be cleared of their contents, or deleted entirely (ClearSheet, DelSheet). The name of the
current workbook or sheet can also be obtained using GetBook or GetSheet.

You can retrieve the data from a worksheet with GetData. You can write data to the sheet with
WriteCell or WriteRow. WriteCell provides full control over which cell gets updated, while
WriteRow is an efficient way of writing any amount of data. WriteRow always writes from
column 1, at a current row pointer. You can set the row pointer with SetRow.

You can format cells, columns, or rows with the Format command, and merge cells with the
MergeCells command. Formatting includes options to lock cells or hide cell formulas when used
in conjunction with workbook or worksheet protect commands.

You can delete and insert columns and rows, using DelCol, DelRow, InsertCol, and InsertRow.
You could use this capability to add a title row after sorting and subtotaling a list.

Print or manage the printer with Print, Printer, and PrintPreview. To change the page format, use
PageSetup.

Once a sheet has been populated with data, you can sort the data on up to three columns. If you
also have column headings in the first row, you can generate subtotals and grand totals based on
breaks in a column.

Note that boolean parameters are true if present, false if not, in any command.

New commands for Excel in Version 2 include: footer, getfooter, getheader, header, and sendto.

sdOffice 2.0

41

Command Usage and Parameters

Activate
v1.0

activate workbook

activatebook workbook

Activates an open workbook named as the parameter. The name is case-insensitive.

ActivateSheet
v1.0

activatesheet worksheet

Activates the sheet named as the parameter. The name is case-insensitive.

AddChart
v1.0

addchart parameters

Adds a new chart to the current worksheet. The new chart becomes the current chart. Use the
setchart command to change the current chart. See the editchart command for a parameter
description.

Borders
v2.0

borders parameters

Adds borders to the cell range specified, or the last cell range specified in a writecell command.

 col=columns, identifies a column (or in combination with row, a cell) to apply borders to.

grid (boolean) – applies a grid layout to the cell range, so that there is an outer border and
internal grid lines, using the attributes specified (linestyle, weight, and color) or Excel
defaults.

left, right, top, bottom (booleans) - select one border side and applies the attributes
specified (linestyle, weight, and color) to it, or uses Excel defaults.

linestyle=style, which can be one of:
 continuous, dash, dashdot, dashdotdot, dot, double, slantdashdot, or none

range=range, identifies a cell range, such as A2:D16, to apply borders to.

row=rows, identifies a row (or in combination with col, a cell) to apply borders to.

sdOffice 2.0

42

weight=thickness, which can be one of:
 hairline, thin, medium, thick

color=colorname, which can be one of:

black, blue, red, green, cyan, magenta, yellow, white, darkblue, darkred,
darkyellow, turquoise, teal, pink, violet, brightgreen, gray25, gray50

colorindex=automatic or none

ClearSheet
v1.0

clearsheet

Removes data and formatting from the current sheet.

CloseBook
v1.0

closebook

Closes the active workbook without saving (use Save or SaveAs to save workbooks). After the
command, you must use OpenBook, Newbook, or Activate to make a new workbook active.

DelCol
v1.0

delcol columnnumber

Deletes the column number in specified as the parameter.

DeleteDoc
v2.0

deletedoc filename

Deletes a file from the workstation’s file system. The file must have a .xls extension.

DelRow
v1.0

delrow rownumber

Deletes the row number specified in the parameter, and sets the current row to this value.

DelSheet
v1.0

delsheet

sdOffice 2.0

43

Deletes the active sheet from the active workbook. If the workbook has other sheets, the first
sheet is activated.

EditChart
v1.0

editchart parameters

Edits the current chart (see addchart or setchart) based on the parameter values specified.
Unspecified parameters remain unchanged in the chart.

 x=measure
 y=measure
 w=measure
 h=measure
 Range=cell range
 Type=chart type
 Title=chart title
 CategoryTitle=category axis title
 ValueTitle=value axis title
 ExtraTitle=extra title
 ByColumn (boolean)
 ByRow (boolean)
 CatLabels=cols or rows
 SeriesLabels=cols or rows
 Legend=yes|true|no|false
 ApplyLabels=none|value|label|percent|labelpercent

Measures are used to define the size and location of the chart when displayed in the worksheet.
The default location is 0,0 (upper left of worksheet), and the default width and height are 4
inches and 3 inches, respectively. Measures default to inches, but the units can be changed with
the units command.

Cellranges are used to supply the data to chart. Charts use data in the worksheet on which they
are added. The default range is the contigous data area starting with cell A1. To specify a
different range, use an absolute range, such as "B1:D10", or a relative range from the
current row. Excel will attempt to determine the descriptions and values from the range. This
interpretation can be controlled by the CatLabels and SeriesLabels parameters, and the ByRow
and ByColumn parameters.

The chart type can be one of the following names:
 area
 bar
 stackedbar
 100bar
 column

sdOffice 2.0

44

 line
 stackedline
 pie
 radar
 xyscatter
 3darea
 3dbar
 3dstackedbar
 3d100bar
 3dcolumn
 3dline
 3dpie
 3dsurface
 doughnut

The various titles apply to the chart or axes. The extra title is used for some chart types.

Byrow and Bycolumn determine how Excel inteprets the worksheet range for data. Byrow is the
default, where each row represents a new data series. Bycolumn interprets columns for the data
series. When determining the series and category titles, Excel will analyze the worksheet range.
You can specify the number of columns or rows to interpret using Catlabels and Serieslabels
parameters.

ApplyLabels controls the use of labels on series data.

Footer
v2.0

footer parameters

Sets the print footer based on the following parameters:

 lh | leftfooter=left footer text
 ch | centerfooter=center footer text
 rh | rightfooter=right footer text

Format
v1.0

format parameters

Use this command to format a cell, a column, a row, or the whole sheet. Formatting can include
font information, alignment, width, height, and masking.

The following fields can be set with any number of name=value pairs in the parameter.

 autofit (boolean, no value needed)
 backcolor=colorname
 center (boolean)

sdOffice 2.0

45

 col=column
 color=colorname
 font=name
 fontbold or bold (boolean)

 fontitalic or italic (boolean)
 fontsize or size=size
 height=measure
 hide (boolean)
 left (boolean)
 lock (boolean)
 mergecells (boolean)
 numberformat=format
 range=range
 right (boolean)
 row=row
 width=measure
 wraptext (boolean)

If col and row are specified, then just the intersecting cell is affected. If col or row is specified,
then the specified column or row is affected. If range is specified (such as A1:F1), then all cells
in the specified range are affected. If neither column nor row nor range is specified, then all cells
are affected.

Measure values are given in inches by default, but the the unit if measure can be changed to
points, millimeters, or centimeters with the Units command.

NumberFormat matches the number format values available in the Excel Format Cells dialog.
To force text, use "@". This is useful for fields that appear numeric, such as zip codes or
numeric ID codes, but which should be left justified. Date formats are also specified this way,
though Excel recognizes most human-readable dates, such as "12/31/01", correctly. See Excel
help for complete formatting instructions. Some example values:

 #,##0.00 (2 decimals with commas)
 m/d (short month/year)
 @ (text)
 0.000 (3 decimals)
 General (general format)
 00000 (zip code)
 mm/dd/yy (date)
 (* #,##0.00_);_(* (#,##0.00);_(* ""- ""??_);_(@_) (custom format)

Usage notes: Autofit should be performed after the data has been added to the cells. If text fields
contain numeric data with leading 0s, like zip codes or ID codes, format the column as text
(numberformat=@) before adding data. Otherwise, Excel assumes the data is numeric and
removes the leading 0s.

sdOffice 2.0

46

Lock and hide options do not take effect unless the workbook or worksheet is protected with the
protectbook or protectsheet commands.

Formats
v1.0

formats colformats

Sets a series of column numberformats, as found in the format command. Each column format is
delimited by a tab or other column delimiter specified by the setdelim command. For example,
to set columns 1 and 2 to text and columns 4 and 5 to a 2-decimal point number, with the
delimiter set to a vertical bar (|), use this command: formats @|@||#,##0.00|#,##0.00. Note the
third column is blank, and no numberformat is applied.

GetBook
v1.0

getbook

Returns the name of the current workbook.

GetBooks
v1.0

getbooks

Returns all workbook names in the Excel session, each terminated with a CR-LF sequence, and
ending with a single period (.CR-LF). If no books are opened, an asterisk is returned.

GetData
v1.0

getdata

Returns data values from the current sheet. For a single cell, specify both column and row
numbers. For a column, with each value delimited by CR-LF sequences, specify just column.
For a row, with each value delimited by tab (CHR(9)) characters, specify just row. For all data,
don’t specify either column or row. Each row is returned delimited by CR-LF sequences.
Within each row, each column is delimited by tabs. A range can be specified using Excel’s
standard format, such as A1:B32.

Col=column
Row=row
Range=range

GetFooter
v1.0

getfooter segment

Returns the text for a given footer segment, where segment can be one of the following:

sdOffice 2.0

47

lf or leftfooter
cf or centerfooter
rf or rightfooter

GetHeader
v2.0

getheader segment

Returns the text for a given header segment, where segment can be one of the following:

lh or leftheader
ch or centerheader
rh or rightheader

GetLastCol
v2.0

getlastcol

Returns the highest column number that contains data in the current worksheet.

GetLastRow
v2.0

getlastrow

Returns the highest row number that contains data in the current worksheet.

GetRow
v1.0

getrow

Returns the current row number where the next writerow will place data. Use setrow to modify
the current row.

GetRows
v1.0

getrows

Returns the number of rows in the contiguous non-empty region starting at cell A1. This can be
used to determine where to append to a worksheet, as long as the worksheet has contiguous data,
by using getrows, followed by setrow rows+1. Use the getlastrow command to return the
highest row that contains data in the worksheet.

GetSheet
v1.0

getsheet

Returns the name of the current worksheet.

sdOffice 2.0

48

GetSheets
v1.0

getsheets

Returns all sheet names in the active workbook, each terminated with a CR-LF sequence, and
ending with a single period (.CR-LF). If no workbook is open, or no sheets are in the active
workbook, an asterisk is returned.

Header
v2.0

header parameters

Sets the print header based on the following parameters:

 lh | leftheader=left header text
 ch | centerheader=center header text
 rh | rightheader=right header text

Hide
v1.0

hide

Hides the Excel application window. To make it visible again, use Show. The window is hidden
by default when the session starts.

InsertCol
v1.0

insertcol colnumber

Inserts a new column at the column number parameter.

InsertRow
v1.0

insertrow rownumber

Inserts a new row at the position in the active worksheet supplied by the rownum parameter. The
new row becomes the current row.

LeaveOpen
v1.0

leaveopen

Normally, sdOffice.exe will close Excel when the session is ended. If you send this command,
then Excel will be left open when the session ends.

MergeCells
v1.0

sdOffice 2.0

49

mergecells parameters

Merges multiple cells into one. This is useful to add title cells to reports. Only the value in the
upper-left cell is retained and/or displayed when cells are merged.

Specify the upper left column and row as col and row, and the lower right column and row as
col2 and row2.

 Col=leftcolumnnum
 Row=toprow
 Col2=rightcolumnnum
 Row2=bottomrow
 Range=range

Row2 defaults to row, and col2 defaults to col.

If Range is specified, the cells in the named range are merged, and any other parameters are
ignored.

NewBook
v1.0

newbook

Creates a new workbook. The name of the workbook is supplied later in a SaveAs command.

NewSheet
v1.0

newsheet sheetname

Adds a new sheet to the current workbook. If there is a sheetname parameter, the sheet is so
named.

OpenBook
v1.0

openbook workbook

Opens an Excel (.xls/ workbook) file supplied by the workbook parameter. The workbook
parameter normally requires a fullpath-filename, but, by placing an asterisk (*) at the beginning
of the file name, the asterisk will be substituted with the sdOffice application path. For example,
*salestable.xls would find the file in the sdOffice directory.

PageSetup
v1.0

pagesetup parameters

Sets several page size options for the Excel environment. These options can affect the selection
of printer characteristics automatically.

sdOffice 2.0

50

 Fitwidth (boolean)
 Gridlines (boolean)
 FitHeight (boolean)
 Zoom (boolean)
 Orientation or orient=landscape|portrait
 Pagesize=pagesize

Fitwidth causes Excel to try to scale columns to fit the width of paper. If there are many
columns, it may help to specify landscape orientation.

Gridlines causes Excel to add grid lines when printing.

Pagesize is one of several internal paper size names.

Print
v1.0

print

Prints the current sheet.

Printer
v1.0

printer parameters

Sets the printer name and characteristics to values defined in the parameter text. Valid
parameters are:

 Collate (boolean)
 Copies=copies
 From=from page
 Name=printername
 To=to page

Collate will turn on collation for multi-copy output. From and To determine a range of pages to
print, referring to printed pages rather than worksheet pages. The printername must match a
printer name in the list of system printers where sdOffice is running.

PrintPreview
v1.0

printpreview

Launches the Print Preview screen in Excel.

ProtectBook
v2.0

protectbook password=password

sdOffice 2.0

51

ProtectSheet
v2.0

ProtectSheet password=password

Applies protection to any cells formatted with locking or formula hiding using the Format
command. If a password is supplied, then the password is required in order to un-protect the
workbook or worksheet with Excel. See also the UnProtectBook and UnProtectSheet
commands.

This command is only supported with Excel XP and above.

Run
v1.0

run macroname[,arg1,arg2,…]

Runs the Public Sub-style VBA macro named in the macroname. Up to 30 arguments can be
passed.

Save
v1.0

save

Saves the active workbook.

SaveAs
v1.0

saveas workbook or options

Saves the active workbook as the workbook name supplied in the workbook parameter, or
based on a set of options. An asterisk (*) at the beginning of the file name will be substituted
with the sdOffice path. For example, *SalesTable would save the workbook in the sdOffice
directory as SalesTable.xls.

In addition to the simple workbook parameter, you can specify parameters as a series of options:

 File|filename = filename

 Fileformat = format
 Valid formats include addin, csv, csvmac, csvmsdos, csvwindows,

currentplatoformtext, dbf2, dbf3, dbf4, dif, excel2, excel2fareast, excel3, excel4,
excel5, excel6, excel7, excel9597, html, intladdin, intlmacro, sylk, template,
textmac, textmsdos, textwindows, unicodetext, webarchive, wj2wd1, wj3, wj3fj3,
wk1, wk1all, wk1fmt, wk3, wk4, wks, workbooknormal, works2fareast, wq1,
xmlspreadsheet

 Password = password

sdOffice 2.0

52

 Writerespassword=password

 Readonlyrecommended=true|false

 Createbackup=true|false

 Accessmode = exclusive|nochange|shared

 Conflictresolution = userresolution|localsessionchanges|othersessionchanges

 Addtomru = true|false

 Local=true|false

 Overwrite=true|false

ScreenUpdating
v1.0

screenupdating parameter

Sets screen updating based on the parameter value. Off, No, or False will turn off screen
updates until the session is closed, an error occurs, or another ScreenUpdating command is
issued. Any other value turns screen updating on. Turning screen updating off can improve
application performance.

SendKeys
v1.0

sendkeys keys

Sends keystrokes to the application as if typed by the user from the keyboard. In order to send
keys, the application window must be visible, so be sure and issue a Show command prior to
this, or an error will be returned. In addition to standard text, there are many special keys and
key combinations that can be entered by using special SendKeys characters.

Note that SendKeys can be difficult to make work correctly if keystrokes cause dialogs to open
up, and also different versions of Excel can behave differently to keystroke sequences.

SendTo
v2.0

sendto recipient-email, subject, return-receipt

Opens an Excel email dialog with the optional recipiente-email, subject, and
return-receipt options filled in. Excel will automatically attach the active workbook to
the email.

sdOffice 2.0

53

SetChart
v1.0

setchart chartnumber

Sets the current chart to the chartnumber specified. As charts are added, they are numbered
starting with 1.

SetDelim
v1.0

setdelim delimiter

Sets the delimiter used by the WriteRow command to the text value of delimiter. The
default value is "\t", a text representation for the tab character. If desired, this can be set to some
other character, such as "," or "|", to make writerow commands easier.

SetRow
v1.0

setrow rownum

Sets the current row, used by WriteRow, to a new rownum value. When a sheet is created or
activated, the current row is set to 1.

Show
v1.0

show

Make the Excel window visible. To hide the window, use the Hide command. If the application
is left running with the LeaveOpen command, the window automatically becomes visible when
the session closes.

Sort
v1.0

sort parameters

Used to sort the data in a sheet on values in up to three columns. You can specify up to three
col= column values in the parameters text. If any column should be sorted in descending
order, specify the col=column value, then the descending flag. If Header is specified, then the
first row in the sheet is assumed to be column headings and is not sorted.

 Col=column
 Descending or Dsnd (boolean)
 Header (boolean)

SubTotal
v1.0

subtotal parameters

sdOffice 2.0

54

This function can be used to add Excel-generated sub-totals to a sheet. The sheet must be in
contiguous columns, with a heading row at the top, or an Excel error occurs.

To add subtotals, you choose one column to be the "group by" column, a summary function, and
any number of columns on which to apply the function. Whenever the "group by" column
changes, a sub-total line is inserted with the appropriate function applied to the sub-totaled
columns. Grand totals are also applied at the end of the sheet.

 Above (boolean)
 Below (boolean)
 Col=column
 Function=functionname
 Group=column
 PageBreak (boolean)
 Replace (boolean)

Function names can be:
 Avg
 Count
 Countnums
 Max
 Min
 Product
 StdDev or Std
 Sum
 Variance or Var

Multiple Col values can be specified, but only one Group and Function are allowed. The
subtotal function is applied to all columns specified. For example, "col=2, col=4, col=5,
function=sum" will sum columns 2, 4, and 5.

Above will generate subtotals above the group of rows to which they apply. Below generates the
subtotals below, the default.

If you specify PageBreak, then a print of the sheet will generate page breaks at group break
points.

Replace will cause Excel to replace any existing subtotals in the sheet with the new ones. The
default is to add new subtotals, allowing for a series of sub-totals to be generated for different
columns or functions.

Units
v1.0

units unitname

Sets the unit of measure for subsequent measure values. The default unit of measure is inches. It
may be set to any of these values:

sdOffice 2.0

55

 points or pts or p
 millimeters or mm or m
 centimeters or cm or c

All other values are interpreted as inches.

UnProtectBook
v2.0

unprotectbook password=password

UnProtectSheet
v2.0

unprotectsheet password=password

Removes protection from the workbook or worksheet, allowing editing of protected cells and
viewing of cell formulas. See also the ProtectBook and ProtectSheet commands.

This command is only supported with Excel XP and above.

WriteCell
v1.0

writecell parameters

This will write a value (number, date, text or formula=expression) specified by parameters.
The following parameters are required:

 Col=column
 Range=range
 Row=row
 Value=value

To set a specific cell by column and row number, specify both Col and Row values. Optionally,
specify a range, such as F2:F30, to assign all cells in the range to the same value or formula. A
special character in the range of "*" will be substituted with the current row. F2:F* will
represent the range F2:F30, if the current row is 30.

WriteRow
v1.0

writerow parameters

Writes one or a series of rows, starting at the current row, with parameter data supplied. The
data columns are delimited by tab characters, supplied as either tab characters - CHR(9) - or "\t"
strings, or by the character specified in a previous SetDelim command. Each row is delimited
by a "\n" sequence.

sdOffice 2.0

56

While it is possible to write formulas to cells in this manner, each row would have to be adjusted
to ensure correct relative addressing. To write formulas to a range of cells, it is easier to use the
WriteCell function, as Excel handles relative cell addressing automatically.

sdOffice 2.0

57

Word Object

Overview

The basic unit in Word is a document, which is equivalent to .doc file. You can open any
number of documents in a Word session. sdOffice works with one document at a time, called the
active document. To create a new document, use the NewDoc command. Give it a name with
the SaveAs function. New documents can be based on an existing Word document template. To
open an existing document, use the OpenDoc command. Both NewDoc and OpenDoc
automatically set the active document. To get the name of the active document, use GetDoc; to
activate any open document, use Activate.

In an active document, you can add paragraphs (Write), page breaks (NewPage), tables (Table
and TableRow), bullet lists (BulletList), numbered lists (NumberList), and images (Image). The
format of added text can be modified with Font and Paragraph commands. Table cell, column,
and row formatting can be modified with TableDef.

If a document contains merge fields, you can place values in those fields with MergeField. To
just replace text values with new values, use Replace.

You can copy the active document to the clipboard with CopyDoc, then paste either the rich text
or plain text to another document with PasteDoc and PasteText. You can also clear the contents
of the current document with ClearDoc.

To print the document, use Print, Printer, and PrintPreview. To modify the page setup, use
PageSetup.

Note that boolean parameters are true if present, false if not, in any command.

New commands in Version 2 include: sendto.

sdOffice 2.0

58

Command Usage and Parameters

Activate
v1.0

activate documentname

Activates the document named in the parameter text. This is normally the document file name,
without leading path information. For a new document, it is usually "Documentn". You can use
GetDoc to retrieve the name of the active document.

BulletList
v1.0

bulletlist list

Converts the contents of the list into a bullet-style list. Each paragraph, delimited by a "\n"
sequence, becomes a bullet list item.

ClearDoc
v1.0

cleardoc

Clears all the text from the current document.

CloseDoc
v1.0

closedoc

Closes the active document without saving it. Use Save or SaveAs to save the document. After
this command, no document is active. Use OpenDoc, NewDoc, or Activate to make another
document the active document.

CopyDoc
v1.0

copydoc

Copies the current document to the clipboard. Word copies both the plain text and the rich text
forms. It does not copy headers or footers, just the story text.

Font
v1.0

font parameters

sdOffice 2.0

59

Sets the font for any new text added to the document. The font defaults to the "Normal" style
defined in the user’s Word configuration. Each element of the font is defined with a name=value
pair, with pairs delimited by commas.

 bold (boolean)
 color=colorname
 italic (boolean)
 name=fontname
 normal (boolean)
 size=points

Setting "normal" will revert all attributes to the Normal style defined in the user's Word
configuration.

GetDoc
v1.0

getdoc

Returns the current document name. This name can be used by the Activate command.

GetDocs
v1.0

getdocs

Returns all document names in the Word session, each terminated with a CR-LF sequence, and
ending with a single period (.CR-LF). If no documents are opened, a asterisk is returned rather
than one or more names.

GetFields
v1.0

getfields

Returns all the mergefield names in the current document, delimited by the current delimiter
specified by the setdelim command. The default delimiter is a tab character (CHR(9)).

GetParagraph
v1.0

getparagraph

Returns the current paragraph number. When a document is opened or activated, the current
paragraph number is set to the document paragraph count. The paragraph number can be set
with the SetParagraph command.

sdOffice 2.0

60

GetParagraphs
v1.0

getparagraphs

Returns the number of paragraphs in the document.

GetText
v1.0

gettext

Returns the text of the current document. Paragraphs will be delimited by CR-LF sequences.

Hide
v1.0

hide

Makes the Word window invisible. To show the window again, use Show. The Word window is
hidden by default when then session is started.

Image
v1.0

image parameters

Adds an image to the current document. The image can be placed "in-line" as a new paragraph,
or can be placed anywhere on the page that the new paragraph resides on.

 file=imagefilename
 h=measure
 inline (boolean)
 stretch (boolean)
 w=measure
 x=measure
 y=measure

The imagefilename value should be a full path to the image to be loaded. An asterisk (*) in the
file name will be substituted with the sdOffice path. For example, *logo.jpg would find the file
logo.jpg in the sdOffice directory.

x,y,w, and h are size and position values. The images is proportionally adjusted to fit, unless the
stretch flag is present, in which case the image is stretched to fit the w and h dimensions.

If the inline flag is present, the image will remain between the preceding and next paragraphs
when the image command is issued, with the x and y values being offsets from that paragraph
position. Otherwise, the x and y values are absolute page positions.

sdOffice 2.0

61

Measure values are given in inches by default, but the the unit if measure can be changed to
points, millimeters, or centimeters with the Units command.

LeaveOpen
v1.0

leaveopen

Normally, sdOffice will close Word when the session is closed. If you send this command,
Word will be left open.

MergeField
v1.0

mergefield parameters

Scans the document for merge fields named in the parameters, setting their values to each name’s
value. Set the field names and their associated values as name=value pairs. The value can
contain tab or CR-LF characters as "\t" and "\n", respectively.

sdOffice specifically looks for MERGEFIELD type codes, which can be inserted into a
document with the "Insert, Field" dialog box, selecting "Mail Merge" type fields, and then
selecting the "Merge Field" subtype.

NewDoc
v1.0

newdoc documentname

Adds a new document to the session, and makes it the current document. To retrieve the name,
use GetDoc. If a name is provided as a parameter, it is used as a document template for the new
document. The document template file must exist either as a full path or in the user's Templates
directory. An asterisk (*) in the file name will be substituted with the sdOffice path. For
example, *letterhead.dot would find the file letterhead in the sdOffice directory.

NewPage
v1.0

newpage

Adds a page break to the current document. The current paragraph is set to begin writing at the
top of the new page.

NumberList
v1.0

numberlist list

Converts the contents of the parameter text into a numbered list. Each paragraph, delimited by a
"\n" sequence, becomes a list item.

sdOffice 2.0

62

OpenDoc
v1.0

opendoc documentname or options

Opens the document file named as the parameter, and sets that as the current document. An
asterisk (*) in the file name will be substituted with the sdOffice path. For example,
"*Collection Letter.doc" would find the file in the sdOffice directory.

An option "readonly" is available, allowing multiple users to open the same document without
errors, as long as all users use the readonly mode.

PageSetup
v1.0

pagesetup parameters

Sets several page size options for the Word environment. These options can affect the selection
of printer characteristics automatically.

 BottomMargin=measure
 Height=measure
 LeftMargin=measure
 Orientation or Orient=landscape|portrait
 PageSize=pagesize
 RightMargin=measure
 TopMargin=measure
 Width=measure

pagesize can be one of several internal paper size names.

Measure values are given in inches by default, but the the unit if measure can be changed to
points, millimeters, or centimeters with the Units command.

Paragraph
v1.0

paragraph parameters

Sets paragraph characteristics for paragraphs added after this command. Use this to set
alignment, indentation, borders, shading, and other paragraph settings.

 Left (boolean)
 Right (boolean)
 Center (boolean)
 Justify (boolean)
 Indent or LeftIndent=measure
 RightIndent=measure
 Keeptogether (boolean)
 SpaceBefore=measure

sdOffice 2.0

63

 SpaceAfter=measure
 Shade=2.5|5|10|15|20|25|30|40|50|75|100
 Border (boolean)
 Normal (boolean)

Normal, if it appears as a parameter, will force all options to their normal state.

Measure values are given in inches by default, but the the unit if measure can be changed to
points, millimeters, or centimeters with the Units command.

PasteDoc
v1.0

pastedoc

Paste rich text from the clipboard to the end of the current document. Rich text can be placed on
the clipboard by the CopyDoc command.

PasteText
v1.0

pastetext

Paste unformatted text from the clipboard to the end of the current document.

Print
v1.0

print

Print the current document.

Printer
v1.0

printer parameters

Sets the printer name and characteristics to values defined in the parameter text. Valid
parameters are:

 Collate (boolean)
 Copies=copies
 From=from page
 Name=printername
 Pages=page range(s)
 To=to page

Collate will turn on collation for multi-copy output. From and To determine a range of pages to
print. Alternatively, specify the Pages parameter, which accepts a list of page numbers and/or
page ranges, such as "1, 5-9" for pages 1, and 5 through 9. Remember to quote the range if it

sdOffice 2.0

64

contains commas. The printername must match a printer name in the list of system printers
where sdOffice is running.

PrintPreview
v1.0

printpreview

Executes a Print Preview of the current document in Word.

Replace
v1.0

replace parameters

Scan the current document for occurrences of names in the parameter text, replacing them with
the associated values. Values can contain tabs and CR-LF values as "\t" or "\n", respectively.
For example, replace [Name]="Acme Incorporated" will replace the text string "[Name]" with
Acme Incorporated.

Run
v1.0

run macroname[arg1,arg2,…]

Runs the Public Sub-style VBA macro named as the parameter. Up to 30 arguments can be
passed.

Save
v1.0

save

Saves the current document. Note that the document must already be named with a previous
OpenDoc or SaveAs command.

SaveAs
v1.0

saveas documentname

Saves the current document as the name specified in the parameter text. An asterisk (*) in the
file name will be substituted with the sdOffice path. For example, *Collections would save the
file as Collections.doc in the sdOffice directory.

ScreenUpdating
v1.0

screenupdating parameter

Sets screen updating based on the parameter value. Off, No, or False will turn off screen updates
until the session is closed, an error occurs, or another ScreenUpdating command is issued. Any

sdOffice 2.0

65

other value will turn screen updating on. Turning screen updating off can improve application
performance.

SendKeys
v1.0

sendkeys keys

Sends keystrokes to the application as if typed by the user from the keyboard. In order to send
keys, the application window must be visible, so be sure and issue a Show command prior to
this, or an error will be returned. In addition to standard text, there are many special keys and
key combinations that can be entered by using special SendKeys characters..

Note that SendKeys can be difficult to make work correctly if keystrokes cause dialogs to open
up, and also different versions of Excel can behave differently to keystroke sequences.

SendTo
v2.0

sendto

Opens the Word email dialog to send the current Word document as an attachment.

SetDelim
v1.0

setdelim delimiter

Sets the delimiter used by the tablerow command to the text value delimiter. The default value
is "\t", a text representation for the tab character. If desired, this can be set to some other
character, such as "," or "|", to make tablerow commands easier.

SetParagraph
v1.0

setparagraph number

Sets the current paragraph to the parameter value. To force an append on the next Write,
BulletList, NumberList, or Table command, set the paragraph to an artifically high number.

Show
v1.0

show

Make the Word window visible. To hide the window, use the Hide command. If the application
is left running with the LeaveOpen command, the window automatically becomes visible when
the session closes.

Table
v1.0

table parameters

sdOffice 2.0

66

Adds a table to the current document, using the characteristics specified as parameters. Once the
table is defined, you can add rows to it with the TableRow command, and define individual cell,
column, or row characteristics with the TableDef command.

 Autofit (boolean)
 Borders or Border=grid|box
 Center (boolean)
 Cols=colwidths
 HeadRows=rows
 Left (boolean)
 Right (boolean)

The left, right, and center options align the table within the page margins. If autofit is used, then
the table columns will be sized automatically (if possible) to fit the cell data. The table can have
an outside box, or an outside box and inner grid lines, based on the setting of Borders.
HeadRows instructs Word to re-display the top rows at a page break.

You can pre-define the number of columns and their widths with the Cols option. Set colwidths
to a space-delimited list of widths in the current unit of measure (default=inches). For example,
cols="1.5 3.25 1.25" would create a three-column table, with the widths 1.5, 3.25, and 1.25
inches.

TableDef
v1.0

tabledef parameters

Sets the cell characteristics of a given cell, column, or row in the last table defined in the
document. New tables are created with the Table command.

 BackColor=colorname
 Center (boolean)
 Col=column|last
 Color=colorname
 Font=fontname
 FontBold or Bold (boolean)
 FontItalic or Italic (boolean)
 FontSize or Size=points
 Height=measure
 Left (boolean)
 Right (boolean)
 Row=row|last
 Width=measure

If you specify both Col and Row, then the specified cell is affected. If you specify just Col or
Row, then the specified column or row is affected. Otherwise, all cells are affected.

sdOffice 2.0

67

You can specify "last" for either Col or Row, and the bottom row or right-most column, at the
time of the command, is used.

Left, right, and center options will align the cells specified.

Rows and columns are added as necessary. If a column is added that would exceed the width of
the page, an error will occur.

Measure values are given in inches by default, but the the unit if measure can be changed to
points, millimeters, or centimeters with the Units command.

TableRow
v1.0

tablerow text

Adds one or more rows from the parameter text to the last table in the document. Each row is
delimited by the text sequence "\n" or a linefeed character (CHR(10)). Each cell within the row
is delimited by the current delimiter set by the setdelim command. The delimiter defaults to a
tab (CHR(9) or "\t").

Rows and columns are added as necessary. Take care not to add columns that would exceed the
page margins, or an error will result. It may be necessary to specify column widths in the initial
Table command or in previous TableDef commands.

Units
v1.0

units unitname

Sets the unit of measure for subsequent measure values. The default unit of measure is inches. It
may be set to any of these values:

 points or pts or p
 millimeters or mm or m
 centimeters or cm or c

All other values are interpreted as inches.

Write/Type
v1.0

write text

type text

Adds one or more paragraphs from the parameter text to the end of the current paragraph. The
current paragraph is incremented by the number of paragraphs added. To append to an existing
pararaph, use setparagraph before the write command.. Normally, paragraphs will be delimited
by two "\n" sequences, and Word will word-wrap the text based on the current page, paragraph,
and font settings.

sdOffice 2.0

68

In addition to the paragraph breaks, you can insert tabs with CHR(9) characters or "\t" sequences.

sdOffice 2.0

69

Outlook Object

Overview

This program works with Outlook appointments, contacts, tasks, and email folders. After
starting the automation session, you can select a folder to work with using the SetFolder
command. When adding the various types of records, an appropriate default folder will be
automatically selected if necessary. This current folder is used for the SetGet and GetNext
commands. To view valid folders, use the GetFolders command.

You work with current appointments, contacts, tasks, or emails. The current record is specified
with an Newitem command, such as as NewTask or NewAppointment, or with a GetNext
command, which follows a SetGet command, which defines search criteria and return data for
the current folder. To modify the data in any current record, use the Edititem commands, such as
EditAppointment. To delete a record, use the Delitem commands, such as DelContact.

Note that boolean parameters are true if present, false if not, in any command.

Command Usage and Parameters

DelAppointment
v1.0

delappointment

delappt

Deletes the current appointment record. The current appointment record is normally selected via
a setget/getnext sequence. After the delete, there is no current appointment record.

DelContact
v1.0

delcontact

Deletes the current contact record.

DelTask
v1.0

deltask

Deletes the current task record.

GetFolder
v1.0

getfolder

Returns the active folder and its type in the format “name (type)”.

sdOffice 2.0

70

GetFolders
v1.0

getfolders

Returns a list of folders available in the user’s Outlook configuration. Each folder consists of a
comma-delimited path, such as "Personal Folders,Calendar". Multiple folders are delimited by a
CR-LF sequence. sdOffice will scan up to three levels deep in the user’s folder hierarchy. Each
folder name is suffixed by the type of records, Appointment, Contact, Email, or Task, in
parenthesis.

GetAll
v1.0

getall

Returns all remaining records after a SetGet function. Each record has the same format as a
GetNext response, and multiple records are delimited by an extra blank line.

GetNext
v1.0

getnext

Makes the next available record after a SetGet function the current record, and returns a list of
fields. If no more records match the criteria from the SetGet command, then a "*" is returned.

The data format returned for records is based on the field names specified in the last SetGet
command. Each field is returned in the format name=value, with a CR-LF sequence delimiting
each filed.

LeaveClose
v1.0

LeaveClose

Normally (and unlike the Word and Excel interfaces), sdOffice will leave the Outlook task
running when the session closes. Issing this command will cause sdOffice to close the Outlook
task when it closes.

NewAppointment
v1.0

newappointment parameters

newappt parameters

Adds a new appointment, sets any field values defined as parameters, saves the appointment, and
leaves it as the current appointment record. See the UpdateAppointment command for a list of
valid fields. Subsequent UpdateAppointment commands can be used to update the same record.

NewContact
v1.0

sdOffice 2.0

71

NewContact parameters

Adds a new contact, sets any field values defined in the parameters, saves the contact, and leaves
it as the current contact record. See the UpdateContact command for a list of valid fields.
Subsequent UpdateContact commands can be used to update the same record.

NewMail
v1.0

newmail parameters

email parameters

newemail parameters

Creates a new email message, optionally setting certain message elements from parameter
arguments. See the UpdateMail command for a list of valid parameters. Once the message is
created, additional elements of the message can be updated with subsequent UpdateMail
commands, until the SendMail command is used.

NewTask
v1.0

newtask parameters

Adds a new task, sets any any field values defined in parameters, saves the task, and leaves it as
the current task record. See the UpdateTask command for a list of valid fields. Subsequent
UpdateTask commands can be used to update the same record.

SendMail
v1.0

SendMail

Sends the current email, previously defined with a NewMail command, and optionally edited
with the UpdateMail command. Once the mail is sent, there is no current email.

Usage note: In Outlook, immediate delivery must be enabled for email to be sent automatically.
Within Outlook, choose the Tools menu, Options window. On the Options window, select the
Email or Mail Delivery tab and enable the immediate or automatic delivery of messages. The
terminology varies somewhat between different versions of Outlook.

SetFolder
setfolder foldername

Sets the current folder to the parameter value . This must be a valid appointment, contact, email,
or task folder, with the hierarchy levels delimited by commas; "Public Folders,Sales,Meetings",
for example. You can also use one of these standard names to get the user's default folder of that
type:

 contacts

sdOffice 2.0

72

 appointments
 email
 tasks

SetGet
v1.0

SetGet parameters

Sets criteria and fields for subsequent GetNext and GetAll commands. The parameters consist of
a search expression, which always starts with a field name in brackets, such as [subject],
followed by a list of field names to return in GetNext and GetAll commands.

Search Expression
The search expression format is defined by Microsoft as one or more boolean functions separated
by And or Or. Field names from the appropriate database are placed inside square brackets, and
are compared with literal values enclosed in quotes or plain numbers. Valid operators are similar
to Basic operators: >, <, =, >=, and <=. The various Update commands list common field
names that are available for the different record types. For example, if the current folder is an
appointments folder, then the search expression could check the [Subject] field, the [Start] field,
and others found in an appointment record.

Examples:

[Start]>="12/20/2000 9:00am"
[Start] > "12/20/2000" And [End]<="12/20/2000 6:00pm"

GetNext Fields
In addition to the search criteria, which is indicated by an opening square bracket, you should list
one or more field names to return with the GetNext command. For a list of valid field names,
see the lists below. Note that for search expressions, only the first name is valid, in cases where
multiple field name options are listed.

Delimit each field, and the search expression, with commas.

A complete SetGet command will might look like this:

SetGet [Start]>="12/20/2000 6:00 AM",start,duration,subject

Valid field names for appointments:
 start
 end
 duration
 subject
 body
 location
 alldayevent
 reminder or reminderminutes

sdOffice 2.0

73

 entryid

Valid field names for contacts:
 fullname
 lastname
 firstname
 companyname or name
 fileas

businessaddressstreet or street
 businessaddressstate or state
 businessaddresscity or city
 businessaddresspobox or pobox
 businessaddresspostalcode or zip or postalcode
 businessaddresscountry or country
 businessphone or phone
 businessphone2 or phone2
 businessfax or fax
 businesshomepage or homepage
 email
 email2
 email3
 jobtitle
 notes (or body)
 otherphone
 otherfax
 account
 customerid
 user1
 user2
 user3
 user4
 entryid

Valid field names for tasks:
 startdate
 duedate
 remindertime
 subject
 body
 reminder or reminderminutes
 entryid
 complete
 datecompleted
 status
 actualwork
 totalwork

sdOffice 2.0

74

 delegator
 percentcomplete

Valid field names for email:
 to
 cc
 bcc
 subject
 replyto
 attach
 body
 sendername
 senttime
 receivedtime
 entryid

UpdateAppointment
v1.0

UpdateAppointment parameters

UpdateAppt parameters

Updates the current appointment record with parameter fields and values. The current record is
specified by either a NewAppointment command or a SetGet/GetNext sequence.

The primary and alternate field names available are:

 alldayevent (boolean)
 body=text
 duration=minutes
 end=datetime (such as "12/20/2001 10:15am")
 location=text
 reminder (boolean)
 reminderminutesbeforestart or reminderminutes=minutes
 start=datetime (text date/time)
 subject=text

By default, reminders on new appointments are turned off. You can set Reminder or
ReminderMinutesBeforeStart to turn on a reminder.

UpdateContact
v1.0

UpdateContact parameters

Updates the current contact record with parameter fields and values. The current contact record
is specified by either a NewContact command or a SetGet/GetNext sequence.

sdOffice 2.0

75

The primary and alternate field names, all of which can be set to any text, are:
 account
 businessaddress
 businessaddresscity or city
 businessaddresscountry or country
 businessaddresspobox or pobox
 businessaddresspostalcode, zip, or postalcode
 businessaddressstate or state
 businessaddressstreet or street
 businessfax or fax
 businesshomepage or homepage
 businessphone or phone
 businessphone2 or phone2
 companyname or name
 customerid
 email
 email2
 email3
 firstname
 fullname
 lastname
 otherfax
 otherphone
 user1
 user2
 user3
 user4
 Any user-defined field name

UpdateMail
v1.0

UpdateMail parameters

Updates the current email message. You can issue any number of UpdateMail commands to
prepare an email, then issue the SendMail command to send the email.

The parameter names recognized are:

 Attach=pathname
 Bcc=address
 Body=text (use \n for line breaks)
 Cc=address
 Replyto=address
 Subject=text
 To=address

sdOffice 2.0

76

The attach command can contain the name of a file to attach. Use multiple attach parameters to
attach multiple files. Any asterisk (*) character in the pathname is replaced with the path to the
sdOffice directory. Pathnames are relative to the sdOffice workstation.

The To, CC, ReplyTo, and Bcc fields can specify email addresses or address book aliases. Each
is resolved as encountered. Multiple addresses can be entered with multiple parameters. For
example, to add two CC address, use cc=first, cc=second.

UpdateTask
v1.0

UpdateTask parameters

Updates the current task record with parameter fields and values. The current task record is
specified by either a NewTask command or a SetGet/GetNext sequence.

startdate=datetime
duedate=datetime
remindertime=datetime
subject=value
body=value
reminder=true|false
complete=true|false
status=complete | deferred | inprogress | notstarted | waiting
actualwork=number
totalwork=number
percentcomplete=number, 0 to 100

Date/time values can be entered in any recognizable format, such as "12/31/2001 6:00PM" or
"December 31, 2001 6:00 PM".

sdOffice 2.0

77

MAPI Object

Overview

MAPI is Microsoft's messaging protocol. It is supported by many email client applications, such
as Exchange, Outlook, and Outlook Express, and is included with all 32-bit Windows operating
systems. sdOffice supports a MAPI object to provide generic email sending capabilities for
users. Using a MAPI object, an application can create and send email, with attachments, from
any workstation that has email configured. Outlook Automation also supports email, and
additionally provides access to the user's email folders.

After MAPI is started, the application must start a session by signing on to an email profile using
the signon command. Once a session is active, you can send email. Email profiles are
maintained by the Mail and Fax program available from the Control Panel.

To send email, use the newmail command, optionally followed by an number of updatemail
commands to add mail elements such as attachments and various types of recipients. When the
mail is ready, it is sent with the send command.

Note that boolean parameters are true if present, false if not, in any command.

An alternative to the MAPI object is to use the internal “sentto” commands found in the Excel
and Word objects, or the email commands available in the new System object, which use the
industry standard SMTP and POP protocols for sending and receiving email, respectively.

sdOffice 2.0

78

Commands and parameters

NewMail
v1.0

newmail parameters

Creates a new email item, optionally setting elements based on the parameters. See the
UpdateMail command for supported parameters and values. The email isn't sent until the send
command is used.

SendMail
v1.0

sendmail parameters

send parameters

Sends the current email message, optionally using the following parameters:

 dialog or ask (boolean)

The dialog option will cause a send dialog window to be presented to the user on the sdOffice
workstation before sending the email, if supported by the system's email system.

SignOn
v1.0

signon parameters

This command, which logs into an email profile, is required before any email can be sent or
retrieved. Email profiles are defined with the Mail and Fax program, available from the Control
Panel window.

 UserName or Profile=name
 Password=password

Dialog or Ask (boolean)

A password may be optional, depending on the profile. Dialog will prompt the user at the
sdOffice workstation for the username and password (or just a profile, depending on the
configuration), then start the session.

SignOff
v1.0

signoff

Ends the current Outlook session.

sdOffice 2.0

79

UpdateMail
v1.0

updatemail parameters

Updates the current email item with data found in the parameters. The fields and values for the
parameters can be:

 To=address
 CC=address
 BCC=address
 Subject=text
 Body=text
 Attach=pathname

Addresses are resolved as encountered. They can be either Internet-style addresses or names
from the user's address book. Any number of each type of address can be added with multiple
to, cc, or bcc parameters.

The body text can contain tabs or line-feeds with "\t" and "\n" character sequences.

Attachment path names are relative to the sdOffice workstation. Multiple files can be attached
with multiple attach parameters. An asterisk in the pathname is replaced with the sdOffice
directory.

sdOffice 2.0

80

ADO Object

Overview

Microsoft's Active Data Object protocol is a database access protocol that provides access to
local and remote databases via ODBC and OLE DB providers. sdOffice provides a simple
interface to ADO, providing access to database table structures and SQL commands. Using this
object requires some knowledge of SQL, as that is how both read and write access to databases is
performed.

ADO is installed with a number of Microsoft products, such as SQL Server, IIS, and Internet
Explorer. If your system doesn't have ADO, or has an out-of-date version, you can download
MDAC (Microsoft Data Access Components) from http://www.microsoft.com/data. This will
install a complete set of ADO, OLE DB, and ODBC components with coordinated and
compatible versions.

After the ADO object is started, you need to connect to a database using the connect command.
Once connected, you can retrieve information about tables or table columns using the gettables
and getcolumns commands.

SQL commands can be executed for reading and writing data, or to manipulate database
structures, assuming the session user has proper permissions. The execute command executes a
SQL command, while the getexecute executes a SQL command and returns the number of rows
affected. In either case, if the SQL command returns rows of data, the getrow and getrows
commands can be used to retrieve the data. The getcols command returns a list of field names
from the last executed SQL command.

Commands added in Version 2 include: addnew, delete, export, filter, getconnectionstring,
getdelimiters, getmove, getmovefirst, getmovelast, getmovenext, getmoveprevious, getposition,
getrecordcount, loadrs, move, movefirst, movelast, movenext, moveprevious, requery, savers,
setdelimiters, sort, and update.

sdOffice 2.0

81

Command Usage and Parameters

AddNew
v2.0

addnew options

Adds a new record to the active recordset. The format of options is simply a comma-separated
list of field names assigned to values. For example: id=”1234”,name=”Acme
Rents”,sales=1000. The added record is updated in the database.

Close
v1.0

close

Closes the open connection.

CloseRS
v1.0

closers

Closes an open recordset derived from the last execute or getexecute command. Close a
recordset to regain data manipulation access to a table.

Connect
v1.0

connect connectstring

Connects to a database in preparation for processing. Connect strings are passed to the database
driver for parsing. They generally contain a data source name, a user ID, and a password. In
some cases there may be no user or password required (an local Access database, for example).
A database adminstrator should be able to provide the proper connection string for sdOffice
sessions. Here are some examples:

Driver={SQL Server};server=bigsmile;uid=sa;pwd=pwd;database=pubs
DSN=Pubs;UID=sa;PWD=pwd
Data Source=Pubs;User ID=sa;Password=pwd

See the GetConnectionString for information about getting the connection string via the
Windows user interface.

Delete
v1.0

delete

Deletes the current record from the recordset and the database.

sdOffice 2.0

82

Execute
v1.0

execute sqlstatement

Executes the SQL statement given. If the statement returns rows, such as a SELECT statement,
then subsequent getrow and getrows commands will return the data, and the getcols command
will return a list of column names for the data.

ExecuteCmd
v2.0

executecmd adocommand

Executes an ADO Command. ADO commands are useful when you need to run a stored
procedure or return a single value from a database. ADO commands are beyond the scope of this
document. If you need detailed information on ado commands and their structure, please refer to
the Microsoft Developers Network at http://msdn.microsoft.com

commandtext | text = SQL Statement
 This is the sql statement to be run against your database.

commandtype | type = commandtype
 The value can be any of the following literal values
 file
 storedproc
 table
 tabledirect
 text
 unknown (default)

parameter | param = “parameter”
 Parameters strings must be in quotes

commandexecute | execute|executeoption |option

timeout = value (in seconds)

(default = 60 seconds)

cursorlocation | location = cursorlocation
 client | useclient (default)
 server | useserver

cursortype | type = cursortype
 opendynamic | dynamic
 openforwardonly | forwardonly
 openkeyset | keyset (default)
 openstatic | static

sdOffice 2.0

83

locktype | lock
 lockbatchoptimistic | batchoptimistic
 lockoptimistic | optimistic (default)
 lockpessimistic | pessimistic
 lockreadonly | readonly

cachesize | cache = value
 (default = 500)

Export
v2.0

export options

Exports the current recordset to a file, based on the following options:

fp | file | filepath | filename = filename

Exports to the specified file name.

overwrite=yes|no|true|false

If set to yes or true, will overwrite the file specified if it already exists. Otherwise, an
error message is returned.

fd | field | fielddelimiter = value

The value can be any of these literal values:

tab | \t | chr(9) for a tab
sc | semicolon | chr(59) for a semicolon
comma | chr(44) for a comma
space | chr(32) for a space

Any other value is interpreted as a literal delimiter value.

tq | text | textqualifier = value

The text qualifier is used to surround values that are of a text data type. This format is
often required for formats such as CSV. The value can be one of the following literal
values:

none for no text qualifier
' | squote | chr(39) for an apostrophe (single quote)
" | quote | dquote | chr(34) for a double quote (literal quote must be entered as "\"")

ld | line | linedelimiter = value

The value can be any of these literal values:

crlf | chr(10)+chr(13) for a CR-LF
lf | chr(10) for a LF
cr | chr(13) for a CR

sdOffice 2.0

84

Any other value is interpreted as a literal delimiter value.

The default values for delimiters are specified by the SetDelimiters command, which in turn
default to settings for a comma-separated-value (CSV) file format.

Filter
v2.0

filter filterexpression

Applies the filter expression to the active recordset, limiting records returned from the set to
those that match the filter expression. The expression syntax matches that of an SQL where
clause. For example, “country = 'USA'” or “amount >=10000”. The filter expression can be set
to "" to stop filtering records.

GetCols
v1.0

getcols

Returns a list of column names associated with the last execute or getexecute command. The
column names are returned in the same order as the data in a getrow command.

GetColumns
v1.0

getcolumns tablename, wildcard, columnnames

Returns the columns for a given table. The column records shown are defined by the wildcard.
For example, getcolumns customers,*sales will show all columns ending with "sales" in the
table "customers". The data returned included a header row of column names followed by any
number of rows with column data. The columns shown, such as name, description, data type,
and so on, can be specified by listing column names separated by commas. To see a list of valid
columns, issue a command that will return no rows, such as getcolumns customers,xxx. A
heading row will be followed by at most one row of column data.

The command getcolumns products,*,column_name,data_type,numeric_precision will return
a list of columns in the "products" table, with each row containing the column name, data type,
and precision.

GetConnectionString
v2.0

getconnectionstring

Prompts the user to select a data source via a Windows dialog, and returns the resulting
connection string. The connection string can be used in a Connect command.

GetDelimiters
v2.0

sdOffice 2.0

85

getdelimiters delimitername

Returns the current delimiter specified by delimiter name. The name can be one of the
following:

fd | field | fielddelimiter for the field delimiter
tq | text | textqualifier for the text qualifier
ld | line | linedelimiter for the line delimiter

GetExecute
v1.0

getexecute SQLStatement

This is identical to the execute command, except that the number of rows affected is returned.
The count of affected rows is normally only returned from SQL commands that update data, such
as INSERT commands.

GetMove
v2.0

getmove options

Similar to the Move command, but returns the selected row’s fields delimited by the current field
delimiter.

GetMoveFirst, GetMoveLast, GetMoveNext, GetMovePrevious
v2.0

getmovefirst

getmovelast

getmovenext

getmoveprevious

Similar to the MoveFirst, MoveLast, MoveNext, and MovePrevious commands, but returns the
selected row’s fields delimited by the current field delimiter.

GetPosition
v2.0

getposition

Returns "Record n of totalrecords”, indicating the current record position in the active recordset.

GetRecordCount
v2.0

getrecordcount

Returns the number of records in the active recordset.

sdOffice 2.0

86

GetRow
v1.0

getrow

Returns the data from the next row returned from the last execute or getexecute command. The
columns returned are determined by the content of the SQL command executed. Each column is
separated by the current separator, which defaults to a comma. Any field data that contains the
delimiter is quoted.

If the end of the rows is reached, then a single asterisk (*) is returned.

GetRows
v1.0

getrows

Returns all remaining rows available from the last execute or getexecute command. The rows
are prefixed by a header row containing column names.

GetTables
v1.0

gettables wildcard,columnnames

Returns a list of tables whose names match the wildcard. The default wildcard is *, which
matches all table names. Following the wildcard may be one or more column names separated
by commas. If no column names are provided, then all columns are returned for the tables. The
column names are used as headers in the first row returned, so an easy way to see a list of valid
column names is with a command that returns no tables, such as gettables xxx, which will return
a row of column names followed by at most one row (the xxx table, if it exists). The command
gettables *,table_name,description will return a series of two-column rows containing the table
name and description for each table in the database.

LoadRS
v2.0

loadrs filename

Loads a previously stored ADO recordset from the specified file. The stored recordset can be
one created by the SaveRS command, or it can be one saved by another application.

Move
v2.0

move options

Moves the recordset cursor a specified number of records from a specified location. The options
supported are:

records | numrecs = value
 The number of records to move the cursor.

sdOffice 2.0

87

start=current | first | last
 The starting to point from which to move.

MoveFirst, MoveLast, MoveNext, MovePrevious
v2.0

movefirst

movelast

movenext

moveprevious

These commands move the recordset cursor to the first, last, next, or previous record,
respectively.

ReQuery
v2.0

requery

Re-executes the last query run by the Execute command, and resets the filter and cursor.

SaveRS
v2.0

savers options

Saves the recordset to a file in one of two formats. The resulting file can be loaded at a later time
using the LoadRS command. The options are:

path | file | filename = filename
 Saves the recordset to the specified file name.

format = xml | ado | adtg

Stores the recordset in either XML or internal ADTG format. XML recordsets are text-
based and occupy more disk space. ADTG is a binary ADO format that is more compact.

SetDelim
v1.0

setdelim delimiter

Sets the field delimiter used when returning data with the various get commands. You can quote
the delimiter if it contains spaces. You can use the character strings "\t" or "\n" to specify a tab
or line-feed, respectively.

SetDelimiters
v2.0

setdelimiters settings

sdOffice 2.0

88

Sets field, text, and line delimiters to any of the following settings:

fd | field | fielddelimiter = value

The value can be any of these literal values:

tab | \t | chr(9) for a tab
sc | semicolon | chr(59) for a semicolon
comma | chr(44) for a comma
space | chr(32) for a space

Any other value is interpreted as a literal delimiter value.

tq | text | textqualifier = value

The text qualifier is used to surround values that are of a text data type. This format is
often required for formats such as CSV. The value can be one of the following literal
values:

none for no text qualifier
' | squote | chr(39) for an apostrophe (single quote)
" | quote | dquote | chr(34) for a double quote (literal quote must be entered as "\"")

ld | line | linedelimiter = value

The value can be any of these literal values:

crlf | chr(10)+chr(13) for a CR-LF
lf | chr(10) for a LF
cr | chr(13) for a CR

Any other value is interpreted as a literal delimiter value.

Sort
v2.0

sort fields

Sorts the active recordset based on the specifications in the fields string. The string is a comma-
separated list of field names, each optionally suffixed with a keyword ASCENDING or
DESCENDING. For example, “salesperson, ytd_sales DESCENDING”.

Timeout
v2.0

timeout seconds

Sets the timeout value for the database connection. Operations that take longer than this value
will generate an error. The default value is 30 seconds. Setting seconds to 0 will disable timeout
errors, perhaps allowing an operation to wait indefinitely.

sdOffice 2.0

89

Update
v2.0

update options

Updates fields in the current record. The format of options is simply a comma-separated list of
field names assigned to values. For example: id=”1234”,name=”Acme Rents”,sales=1000. The
record is updated in the database.

sdOffice 2.0

90

System Object

The system object provides access to any of the universal commands, including:

 GetPath
 GetTextFile
 PopUp
 Preview, Preview_On, Preview_Off
 GetSvrFile
 SendEmail
 SetFile
 SetSvrFile

Each of these commands is documented in the Universal Commands chapter. In cases where
there is no Microsoft Office on a workstation, or if the overhead of an Office object is not
needed, the System object can be used instead.

sdOffice 2.0

91

Mail Object

Overview

The Mail object provides access to SMTP and POP mail servers in order to send and receive
email from an application connection. This capability is useful in cases where a Unix server
doesn’t have access to the Internet, and therefore the site’s mail servers, but a local PC running
the Office Client does.

The Mail object can send text or HTML-formatted email, along with attachments, via any SMTP
server available to the Office Client. It can also check to email to retrieve and return headers or
full messages, enabling development of applications that need to monitor an email account for
activity.

Command Usage and Parameters

GetHeader
v2.0

getheader options

Returns a specific header of a given message from the POP server. The options available are:

ID | MsgID | MessageID = messageno

The message number of the message to return. Messages on the POP server are
numbered from 1 to the number of available messages. The number of available
messages is returned by the GetMessageCount command.

Header = name
 The name of the header, such as “Subject”, “To”, or “From”, to return.

GetHeaders
v2.0

getheaders messagenumber

Returns all the headers of the specified message.

ID | MsgID | MessageID = messageno

The message number of the message to return. Messages on the POP server are
numbered from 1 to the number of available messages. The number of available
messages is returned by the GetMessageCount command.

sdOffice 2.0

92

GetMessage
v2.0

getmessage messageno

Returns the entire contents of the specified message. Note that this content will contain headers
followed by a blank line, and then the message contents, possibly in multiple MIME-encoded
parts. Decoding of the contents, if necessary, is not a service provided by sdOffice.

ID | MsgID | MessageID = messageno

The message number of the message to return. Messages on the POP server are
numbered from 1 to the number of available messages. The number of available
messages is returned by the GetMessageCount command.

GetMessageCount
v2.0

getmessagecount

Returns the number of messages available at the POP server.

GetServer
v2.0

getserver

Returns the server information used by the Mail object for SMTP and POP logins. The
information is returned in the following format:

smtpserver:value
smtpport:value
popserver:value
popport:value
username:value
password:value
timeout:value

SendMessage | SendEmail options
Sends an email message based on the following options:

To = recipient [, recipient 2] [, recipient 3…]

Sets the primary recipient, which may be a single email address, or a comma-separated
list of addresses.

From = from address
 Sets the From: address of the email.

Cc = recipient [, recipient 2] [, recipient 3…]

sdOffice 2.0

93

Sets additional recipients who will appear in the Cc: header. This can be a comma-
separated list of addresses, like To.

Bcc = recipient [, recipient 2] [, recipient 3…]

Sets additional recipients who will not appear in the header. This can be a comma-
separated list of addresses, like To.

Subject = subject
 Sets the message subject.

Body | text = message text
 Sets the plain text portion of the message.

BodyHTML = html text
 Sets an optional HTML text portion of the message.

Attach = file 1 [, file 2] [,file 3] …

Adds the named file(s) as attachments to the email. Note that these files must reside on
the Office Client, not the sdOffice Network Server.

SetServer
v2.0

setserver parameters

Sets the server options to be used by the commands for sending and receiving email. The default
values can be configured by the local Office Clients, but this method allows the application jobs
to control the server environment.

SmtpServer = server
 Sets the SMTP server’s IP address or hostname.

SmtpPort = port
 Sets the SMTP server port, which default to 25.

PopServer = server
 Sets the POP server’s IP address or hostname

PopPort = port
 Sets the POP server port, which defaults to 110.

UserName = login

Sets the login to be used for POP access, and possibly for SMTP authentication. This
value is often, but not always, a user email address. The mail server administrator or
Internet Service Provider provides this information.

Password = password
 Sets the password associated with the above login.

sdOffice 2.0

94

TimeOut = seconds

Sets the number of seconds the object will wait when connecting to the POP or SMTP
server.

sdOffice 2.0

95

SAMPLES

sdOffice comes with a number of samples which can be referenced for "how to" information.
Each sample is provided in the sdOffice directory in a plain text file. All files, and associated
documents that are used by the samples, start with the characters "s_". The *.txt files are each
command files that can be used with the sdRun programs.

To run these samples, choose one of these methods, depending on your environment:

Unix

 Copy the samples (s_*.*) to a directory on your Unix system.
 Start the sdOffice server on your Windows workstation.
 Using a terminal emulator, login to the Unix system using a TCP/IP protocol such as

telnet. sdrun.pl can then determine your workstation's address.
 Use the perl script sdrun.pl for each sample: perl sdrun.pl SampleFile

Optionally, you can send the commands to another workstation running the sdOffice server by
appending the server IP address or hostname and port to the perl command.

Windows

 Open a MS-DOS command window.
 cd to "c:\program files\sdsi\sdoffice" (or other directory if you installed sdOffice

elsewhere).
 Run the samples using sdrun.exe: sdrun SampleFile

If you want to direct the commands to another workstation running the sdOffice server, append
the server IP address or hostname and port to the sdrun command.

PRO/5, Visual PRO/5, or ProvideX

On a local Windows workstation, the sdOffice server need not be running, as these these
programs use the DDE interface. On Unix, the sdOffice server must be running, and you need to
be logged into the Unix system as a terminal user over TCP/IP.

From the Basic console prompt (usually ">"), enter call
"sdrun.bb","SampleFile","","",resp$,errmsg$

For ProvideX, use "sdrun.pv" in place of "sdrun.bb". If you want to direct the commands to
another workstation, change the two null ("") arguments to "ServerIP" and "ServerPort",
respectively.

sdOffice 2.0

96

Sample: ADO Database Manipulation

File: s_ado.txt

This sample shows some of what you can do with the ADO object,
used for database manipulation through ODBC, OLE DB, and ADO
providers. This example assumes you have a data source called
NorthWind, which is installed as a sample with Microsoft Access.

Start ADO
ado

Connect to the database. Most databases will require several
parameters in the connect string, such as DSN, UID, and PWD.
This local Access database doesn't require everything.
connect dsn=NorthWind

Return a list of tables with the word Product in the name. The
list returned contains two columns.
gettables *Product*,table_name,description

Issue a query, then return all the rows.
execute select * from products
getrows

Create a new table
execute create table TestTable (id char(5), name char(30))
execute insert into TestTable (id,name) values ('10','Test Record 10')
execute insert into TestTable (id,name) values ('20','Record 20')

show columns of table
getcolumns TestTable,*,column_name,data_type,character_maximum_length

Now query that table and return records one at a time. When the end
of records is encountered (the third getrow), an * is returned.
execute select name,id from TestTable order by name
getcols
getrow
getrow
getrow
closers

Remove the test table
execute drop table TestTable

sdOffice 2.0

97

Sample: Excel Calculation Engine

File: s_excel2.txt

This example uses an existing worksheet macro to return a calculated value.

Start Excel. It will remain hidden.
excel

Open workbook s_excel2.xls in sdOffice directory.
This workbook contains a macro that calculates the Standard Deviation
of values in the first column (according to MS Office specifications,
no more than 30 values can be used). The result is placed in cell B1.
To view the macro, open the workbook in Excel and use Tools, Macro.
openbook *s_excel2.xls

Write some values to column 1.
writerow 12\n15\n99\n85

Run the macro.
run CalcStdDev

Return the result
getdata range=b1

sdOffice 2.0

98

Sample: Excel Formatting

File: s_excel1.txt

This sample demonstrates many of the formatting capabilites you can
use when writing Excel worksheets.

Start Excel and open a new sheet.
excel
newbook
newsheet Formatting

Write some data. Each \t represents a tab to a new cell. You could
add \n to break to the next row. Sequential commands automatically
do a row break.
writerow Text Column\tZip Code\tNumeric Text\tAmount 1\tAmount 2
writerow Text 1\t95682\t134.50\t1111.11\t-2222.22
writerow Text 2\t00222\t955.25\t10.12\t0

Change format of text column. Units for width default to inches.
format col=1,width=2.0,font=Courier,italic,backcolor=blue,color=white

Force zip code to be 00000, left justified.
format col=2,numberformat=00000,left

Force column 3 to text style.
format col=3,numberformat=@

Format the last two columns as numbers, using the Range option.
format range=d:e,numberformat="#,##0.00;(#,##0.00)"

Fix heading row, which overrides previous formats that affected row 1.
format row=1,backcolor=gray25,bold,size=12,color=black

Autofit that whole sheet.
format autofit

Leave Excel running when we exit. Upon exit, Excel will become
visible automatically. We could explicitly force this with a show
command.
leaveopen

sdOffice 2.0

99

Sample: Excel Report

File: s_excel3.txt

This sample generates a report with 31 data lines. It then formats,
sorts, and sub-totals the report. Finally, it adds a report title.

Start excel and open up a new worksheet.
excel
newbook
newsheet

Watch what's going on, though in practice, performance is better if
the window remains hidden.
show

Write some data. At least here, we turn off screen updating for the
writes.
But first, write a heading row.
writerow Slsp\tSlsp Name\tCustID\tCustomer Name\tYTD Sales\tYTD Cost
screenupdating off
writerow 100\tSALLY SMITH\t00005\tADVANTAGE BUSINESS FORMS\t10514.85\t1752.48
writerow 110\tGEORGE WINSTON\t00013\tALLIED SERVICES, INC.\t8705.61\t1088.2
writerow 110\tGEORGE WINSTON\t00018\tEAGLE FORMS\t18712.21\t3742.44
writerow 110\tGEORGE WINSTON\t00026\tWESTERN COMPUTER
SERVICES\t12514.85\t2502.97
writerow 101\tJERRY JONES\t00030\tMARCH, INC.\t8906.27\t1781.25
writerow 100\tSALLY SMITH\t00037\tPROFESSIONAL HELP SVC.\t6504.95\t1300.99
writerow 100\tSALLY SMITH\t00042\tALL-PRO FORMS\t17106.93\t2138.37
writerow 100\tSALLY SMITH\t00046\tROCKY MOUNTAIN MANAGEMENT\t17003.3\t2429.04
writerow 110\tGEORGE WINSTON\t00055\tWASHINGTON ST.
COMPUTERS\t9106.93\t1517.82
writerow 101\tJERRY JONES\t00064\tSOUTHWEST INVESTMENTS\t9702.31\t1212.79
writerow 101\tJERRY JONES\t00073\tGREEN & GREEN, INC.\t4909.57\t981.91
writerow 110\tGEORGE WINSTON\t00080\tGREAT LAKES MANAGEMENT
LTD.\t14110.23\t2822.05
writerow 101\tJERRY JONES\t00084\tEMPIRE COMPUTERS &
SOFTWARE\t13407.92\t2234.65
writerow 101\tJERRY JONES\t00088\tMBA\t12705.61\t2117.6
writerow 110\tGEORGE WINSTON\t00094\tBUSINESS RESOURCES,
INC.\t19909.57\t3981.91
writerow 110\tGEORGE WINSTON\t00112\tALLANTE SYSTEMS INC.\t6013.2\t859.03
writerow 101\tJERRY JONES\t00116\tRIORDAN COMPANY\t3705.61\t529.37
writerow 101\tJERRY JONES\t00119\tBROWNIE'S COMPUTERS\t16514.85\t2359.26
writerow 110\tGEORGE WINSTON\t00128\tABLE PLUS, INC.\t5611.88\t935.31
writerow 110\tGEORGE WINSTON\t00131\tELKHORN PLAZA
COMPUTERS\t13006.6\t2601.32
writerow 100\tSALLY SMITH\t00135\tSPECIALTY CONSULTING, INC.\t2000\t250
writerow 101\tJERRY JONES\t00152\tJL MARKET SERVICES\t3401.32\t680.26
writerow 101\tJERRY JONES\t00161\tABC BUSINESS FORMS\t20712.21\t4142.44
writerow 100\tSALLY SMITH\t00170\tZEBRA FORMS, INC.\t19508.25\t2438.53
writerow 110\tGEORGE WINSTON\t00175\tCLINKERDALES SUPPLIES\t11000\t1833.33
writerow 110\tGEORGE WINSTON\t00181\tJENSEN COMMERCIAL LTD.\t8100.33\t1012.54
writerow 101\tJERRY JONES\t00184\tBRIDON SERVICES\t22712.21\t3244.6

sdOffice 2.0

100

writerow 101\tJERRY JONES\t00191\tABLE CONSULTING\t18203.96\t3033.99
writerow 101\tJERRY JONES\t00205\tWALKER & WADE\t5003.3\t1000.66
writerow 100\tSALLY SMITH\t00210\tRUSTY'S BUSINESS FORMS\t5511.55\t918.59

screenupdating on

Add a gross profit calculation to column G using a formula. The range
g2:g* represents rows 2 through the current row. The current row is
actually the next one to be written, so after filling the cells with
the formula, we reset the last one, which is below the written range,
to "".
writecell range=g1,value="YTD Profit"
writecell range=g2:g*,value="=e2-f2"
writecell range=g*,value=""

Now sort the data first on column 1 (Slsp ID), then descending column
5 (YTD Sales).
sort col=1,col=5,descending,header

Add subtotals. To do this, that heading row written earlier is required.
subtotal group=1,col=5,col=6,col=7,function=sum

Do some formatting.
format col=1,numberformat=@
format col=3,numberformat="00000",left
format range=e:g,numberformat="#,##0.00"

Dress up the heading
format row=1,color=blue,backcolor=gray25,bold

Make everything fit. By not selecting any range, the whole sheet gets
affected.

format autofit

Insert a title
insertrow 1
writecell col=1,row=1,value="Customers by Salesperson"
format col=1,row=1,font=New Times Roman,size=14,bold,center
mergecells range=a1:g1

Don't close Excel when we're done.
leaveopen

sdOffice 2.0

101

Sample: Excel Charting

File: s_excel4.txt

This sample demonstrates a worksheet with two charts, by first
creating some worksheet data, then adding a column chart and a
pie chart.

excel

Open a new workbook and show the process
newbook
show

Set the delimiter from the default tab (or \t) to a comma,
simplifying the next couple of statements, which write data
to the worksheet.
setdelim ,
writerow Name,Sales,Cost
writerow Allen,200,100
writerow Bill,250,123
writerow Sue,260,175

Add a 3D column chart at the position 3,0.25 (inches). Edit some
additional chart values with additional editchart commands.
addchart x=3,y=.25,type=3dcolumn
editchart title="Sales Figures"
editchart valuetitle="Amounts in Dollars"

Add a pie chart, using data from the first two columns only, and
interpreting the value groups by column rather than the default,
by row. Make the chart smaller than the default 4x3 inches.
addchart y=1,x=.1,w=2.5,h=2.5,type=pie,range=A1:B4,bycolumn
editchart title="Sales Figures"
editchart applylabels=percent
leaveopen

sdOffice 2.0

102

Sample: MAPI email submission

File: s_mapi1.txt

This sample uses MAPI to create an email with attachments and
send it to a dummy email address. Modify the address to send
to yourself to see the result.

mapi

MAPI sessions must be logged on. This command will prompt the
user for profile information and start the session.

signon ask

Creates a new email, setting the To: address. You can set
parameters here or in subsequent updatemail commands. Note the
use of quotes around the subject to hide the embedded comma.
To attach multiple files, just use multiple attach commands.
newmail to=allenm@synergetic-data.com
updatemail subject="A test of MAPI email automation, from sdOffice."
updatemail body="Line 1\nLine 2\nLine3\n\nFrom,\nMe\n"
updatemail attach=*sdrun.pl,attach=*s_mapi1.txt

When the mail is ready, send it.
send

sdOffice 2.0

103

Sample: Outlook Add Appointment

File: s_appt1.txt

This sample will write a test appointment to your Outlook Calendar
database. Note that each time you run this, an additional record
will be added!

outlook

This establishes the current appointment record as a new empty record,
and sets the start time. The record isn't actually written to Outlook
until an update command is issued.

newappointment start="1/1/2001 8:00 AM"

Update fields into the new record. Each update will write the
associated data to the same current record. You can set field values
either in the newappointment command or the update command.

updateappt duration=60,subject="Test entry from sdOffice"

sdOffice 2.0

104

Sample: Outlook Add Contact

File: s_cont1.txt

This sample will write a test contact to your Outlook Contacts
database. The customer ID for the data will be "test". Note that
each time you run this, an additional record will be added!

outlook

This establishes the current contact record as a new empty record,
and sets the CustomerID field to "test". The record isn't actually
written to Outlook until an update command is issued.

newcontact customerid="test"

Update fields into the new record. Each update will write the
associated data to the same current record. You can set field
values either in the newcontact command or the update command.

updatecontact companyname="Test Record",firstname=First,lastname=Last
updatecontact email=somewhere@overrainbow.com
updatecontact user1="Record added by sdOffice as a test record"

sdOffice 2.0

105

Sample: Outlook Email

File: s_mail.txt

This example will send an email with an attachment to a dummy email
address. To receive an email, you should change the reference to=xxx
to your email address.

Start Outlook email

outlook
setfolder email

Create a new email message. It will be addressed to the address shown.
newemail to=trash@synergetic-data.com

Add some information to the email.
updatemail subject=Test message
updatemail body="Attached is the sample sdOffice document template
s_ltrhd.dot.\n\nEnjoy!\n"
updatemail attach=*s_ltrhd.dot

send it
sendmail

sdOffice 2.0

106

Sample: Outlook Read Appointments

File: s_appt2.txt

Displays appointment record(s) found on January 1, 2001. This is the
date of test records added by s_appt1.txt.

outlook

set the current folder to the default appointments folder
setfolder appointments

This sets the filter condition. If you want to simply get every appt,
you could do something like [subject]>"". In addition to the
filter, you also specify a list of fields to return.
setget [start]>="January 1, 2001 8:00 AM" and [end] <= "January 1, 2001 10:00
AM",start,duration,subject

This command gets the first record and displays the requested fields.
In a program, you could continue to issue getnext commands until
just an "*" is returned, indicating no more records satisfy the
filter criteria.
getnext

This command returns a list of all remaining records, if any.

getall

sdOffice 2.0

107

Sample: Outlook Read Contacts

File: s_cont2.txt

Displays the first contact record with a customer ID of "test". The
s_cont1.txt command file writes such a record.

outlook

set current folder to default contacts folder
setfolder contacts

This sets the filter condition. If you want to simply get every name,
you could do something like [companyname]>"". In addition to the
filter, you also specify a list of fields to return.

setget [customerid]="test",name,firstname,lastname,email

This command gets the first record and displays the requested fields.
In a program, you could continue to issue getnext commands until
just an "*" is returned, indicating no more records satisfy the
filter criteria.
getnext

This command returns a list of all remaining records, if any.

getall

sdOffice 2.0

108

Sample: Word Document Formatting

File: s_word1.txt

Writes a letter to demonstrate features of Word automation

start Word and open a document template from the sdOffice directory.
word
newdoc *s_ltrhd.dot

show the document as we work - note: bad for performance
show

change default font characteristic
font bold

Add an address
write \n\nCompany Name\nAttention: John Smith\n123 Street Address\nSuite 255
write Anytown, CA 99556\n\n

Change the font
font name=Times New Roman,size=18,bold
paragraph center,shade=10,indent=.75,rightindent=.75
write sdOffice Example

#change the paragraph and font back to normal
paragraph normal
font normal
write \nHere is some text for a paragraph. To continue the write command\
 end it with a backslash (\) and continue writing on the next\
 line.
write \nHere is a table:

screenupdating off - helps on performance until turned back on
tables are defined, then written to, then formatted
table center,borders=grid,autofit
tablerow Invoice\tDate\tAmount
tablerow 12345\tOct 1,2000\t9,999.00
tablerow 34567\tNov 15, 2000\t12,121.21
tabledef row=1,backcolor=gray25
tabledef col=last,right

screenupdating on

write \n

Do some lists
write Bullet list:\n
bulletlist Bullet list item 1\nItem 2\nItem 3\nItem 4
write \nNumber list:\n
numberlist Number list item 1\nItem 2\nItem 3\nItem 4

add an image at certain point positions
units points

sdOffice 2.0

109

image file=*s_logo.tif,x=504,y=684,w=72,h=72

do a print preview to show result
printpreview
leaveopen

sdOffice 2.0

110

Sample: Word Mail Merge

File: s_word2.txt

Mail merge sample using existing Word document s_word2.doc, which
contains mail merge tags.

Startup Word

word

Watch what's going on (in practice, probably shouldn't be used,
at least until the end of the job, for performance reasons).

show

Create a new document with letter head to store mail merge results,
and open the base document, s_word2.doc in the sdOffice directory.
s_word2.doc will be the active document.

newdoc *s_ltrhd.dot
opendoc *s_word2.doc

Perform the mail merge substitutions.

mergefield CompanyName=Microsoft,Addr1=2111 Beach Blvd.,Addr2=""
mergefield City=Somewhere,State=XX,ZipCode=99999,Balance="4,500.00"

Copy the document, activate the new document, paste, and return
to s_word2.doc.

copydoc
activate Document1
pastedoc
activate s_word2.doc

Perform another set of substitutions

mergefield CompanyName=Oracle,Addr1=2111 Beach Blvd.,Addr2="Suite 1"
mergefield City=Somewhere,State=XX,ZipCode=99999,Balance="88,300.00"

Another copy, activate, paste. This time, add a page break before
pasting.
copydoc
activate Document1
newpage
pastedoc

Drop the s_word2.doc (don't wan't the user accidentally saving it)
activate s_word2.doc
closedoc
activate Document1

Show the result

sdOffice 2.0

111

printpreview

leaveopen

sdOffice 2.0

112

ADMIN CONNECTIONS

Admin connections are used to perform administration tasks with the sdOffice Network Server.

Admin connections are accessed via the application port, which defaults to 6114. They are
typically accessed via telnet, and are by default restricted to the localhost address (127.0.0.1).
Once the connection is established and the server responds with “sdOffice (app connection)
2.0.nn”, enter the command “admin”. A response of “ok” indicates you can enter administration
commands.

At any time, you can enter a question mark (?) to view a list of valid administration commands.
They are listed in the following table:

clients [match] List active clients. The optional match text is a simple text filter

which limits the clients listed to those containing match.

The lines include a client handle, supported object list, client user
name, client computer name, client IP address, and an application
handle, if an application is connected to this client.

apps [match] List active application connections. The optional match text is a
simple text filter which limits the connections listed to those
containing match.

The lines include an application handle, application name, target
machine, and client handle.

page n Set pager size to n lines (0=continuous). The default value is 23.
close app n|ip|all Close an application handle, ip, or all.
close client n|ip|all Close a client handle, ip, or all.
version Show version number.
broadcast popup options Show a popup window on all connected workstations, using the same

command line options as the PopUp object, described in the
Universal Commands chapter.

Quit Exit the adminstration session.

sdOffice 2.0

113

OBJECT EXTENSIONS WITH VBSCRIPT

sdOffice objects can be extended with custom VBScript functions placed in files associated with
each object. For example, the Excel object looks for VBScript functions in the file
scripts\sdoexcel.sdos in the Office client’s installation directory. A .sdos (sdOffice Script file)
file is a text file containing one or more function definitions. It is in fact a VBScript module file.
Whenever a job is started and an object created, the associated script file is loaded into a
VBScript control and its functions are available.

Whenever a command is sent to the Office client for parsing and processing, it is evaluated to
determine if it is a recognized command. If so, it is processed internally by the Office client. If
it is not recognized, then an attempt is made to execute a function in the script file of the same
name.

For example, you could program a function in sdoexcel.sdos called “custom_archive”. When an
application sends a command “custom_archive parameters” to the Office client, the function
called “custom_archive” in the script file will be executed, passed the command line parameters
as an array.

The way the parameters of the command line are passed is via a two-dimensional array. For
example, assume the following command was issued:

 custom_archive name=”test archive”, category=”accounting”

The custom_archive function could process the arguments like this:

function custom_archive(parameters)

 dim i, name, value

 for i = 0 to ubound(parameters,1)

 name=parameters(i,0)
 value=parameters(i,1)

 select case name

 case “name”
 ‘do some code
 case “category”
 ‘do some code

 end select

end function

sdOffice 2.0

114

In addition to the parameters provided to each function, most of the scripts get a copy of the
main object being handled by the job as a module level variable. This variable can be used to
read and manipulate the object itself to perform functions that are not provided in sdOffice
directly. The variable names and types are as follows:

Script Object Variable(s) Object Variable Type
sdoado.sdos ADO connection ADO Connection object
sdoexcel.sdos Excel excel Excel.Application object
sdomail.sdos SMTP/POP n/a None
sdomapi.sdos MAPI n/a None
sdooutlook.sdos Outlook olapp & olns Outlook.Application &

Outlook.Namespace objects
sdosystem.sdos System n/a None
sdoword.sdos Word word Word.Application object

Rules for Returning Values

In VBScript, functions can return values by setting the function name to a value. For example,
the custom_archive function would return a value with the line “custom_archive = “value”.

A function can and should return one or more lines of text for any function whose name begins
with “get”. Multiple lines should be separated by vbCrLf (or chr(13)+chr(10)).

If the name does not begin with “get”, returned values other than error messages are ignored.

Naming Conventions

To avoid potential conflicts with sdOffice command names that may be provided in the future,
you should adopt a naming convention that adds a prefix and underscore to your function names.
This can be as simple as “x_name”, or something more explicit, like ”custom_name”. VBScript
does not allow spaces in function names. If you wish to include a space, use an underscore ‘_’
instead.

Distribution of Script Files

A method is provided to automatically distribute script files to each client as they connect, using
the server’s manifest.txt file as described in the Automated File Distribution chapter.

Support

SDSI cannot offer support for how to write VBScript functions or control Microsoft’s Office
objects. There are many books on VBScript, and a great deal of documentation available from

sdOffice 2.0

115

Microsoft regarding the programming of Office applications. We recommend recording macros
and using the resulting generated VB code for examples of using the objects of the various
Office products.

sdOffice 2.0

116

AUTOMATED FILE DISTRIBUTION
The sdOffice Network Server provides support for file transfers to and from Office clients. On
the server side, these files must reside in the “files” subdirectory under the server’s installation
path. There is a special file in this directory called “manifest.txt”, which is automatically read
and processed by Office Clients, either once on start up or at intervals. This file can be structure
to provide automatic distribution of files to sdOffice client PC’s.

The structure of this file is similar to a .ini file, with section headers enclosed in square brackets.
Each section header is composed of one or more semi-colon delimited values that represent
target wild cards. These target values can be in one of three forms:

 @machinename, where machinename must match the name of the Office Client system
name. This value can be a wildcard, such as @Sacto*.

 ~username, where username is the login user name on the Office Client system. This can
be a wildcard, such as ~Admin*

 An IP address or wildcard, such as 192.168.1.10 or 192.168.1.*, or just * to match every
machine.

When clients read the manifest file, each section header is evaluated to determine if the local
machine and/or user matches one of the targets. If not, the section is skipped, but if it does
match, the section is processed.

To process the section, each line is read. Lines in the format file=path are parsed, and the file
found in the server’s “files” directory is tested. If it is new or has changed since the last time the
client read it, the file is copied to the client’s path. The path can contain special folder names in
brackets. A valid line, for example, might be announce.pdf=[desktop]announce.pdf, to place
the named file to each user’s desktop. See the getpath command for a list of valid special folder
names.

An example of a manifest.txt file might look like this:

[*]
files to maintain on all PCs
serverfile=PC path
announcements.pdf=[desktop]\announce.pdf

[192.168.1.*]
all PC’s in this intranet
announcements.pdf=[desktop]\announce.pdf

[@sales01;@sales02;~Administrator]
several specific machines, and an administrator user
NewClients.pdf=[mydocuments]\NewClients.pdf
PartsCatalog.pdf=[mydocuments]\Parts Catalog.pdf

sdOffice 2.0

117

One use for the manifest.txt file is to distribute common versions of custom script files. By
placing copies of updated scripts into the files directory, and placing entries in the manifest.txt
file targeting the [plugins] special folder, script files can be distributed automatically to all users.

For example, if there is an update to the ADO script file, you could add a section like this:

[*]
SDOADO.sdos=[plugins]\SDOADO.sdos

sdOffice 2.0

118

APPENDIX

Colors in Word and Excel

sdOffice provides access to many internal color designations provided by Word and Excel.
When automating those applications, you can set color and background color elements to any of
the following words:

 black
 blue
 red
 green
 yellow
 white
 darkblue
 darkred
 darkyellow
 turquoise
 teal
 pink
 violet
 brightgreen
 gray25
 gray50

Excel, but not Word, also supports these colors:

 magenta
 cyan

The default color is black, and the default background color, where supported, is white.

sdOffice 2.0

119

Paper Bins

Word and Excel printer selection can include a specification of the paper bin to use. The
following paper bin names are valid:

 upper
 lower
 middle
 manual
 envelope or env
 envmanual

sdOffice 2.0

120

Paper Sizes

Word and Excel page setup commands support named paper size definitions. The following list
identifies the valid page size names. Any value other than these in a papersize=name option will
result in selection of Letter size.

 letter (8.5x11 inches)
 legal (8.5x14 inches)
 a3 (297x420 mm)
 a4 (210x297 mm)
 a5 (148x210 mm)
 b4 (250x354 mm)
 b5 (182x257 mm)
 tabloid (11x17 inches)
 env9 (3-7/8 x 8-7/8 inches)
 env10 (4-1/8 x 9-1/2 inches)
 env11 (4-1/2 x 10-3/8 inches)
 env12 (4-1/2 x 11 inches)
 env14 (5 x 11-1/2 inches
 envmonarch (3-7/8 x 7-1/2 inches)
 envb4 (250 x 353 mm)
 envb5 (176 x 250 mm)
 envb6 (176 x 125 mm)

	TABLE OF CONTENTS
	INTRODUCTION
	ARCHITECTURE
	NETWORK SERVER INSTALLATION
	Unix/Linux Server From Download
	Unix/Linux Server from CD
	Windows Server

	OFFICE CLIENT INSTALLATION
	CONFIGURATION
	Unix Configuration
	Windows Configuration

	LICENSING
	Unix Licensing
	Windows Licensing

	WINDOWS OFFICE CLIENT OVERVIEW
	Overview

	APPLICATION CLIENT INTERFACES
	Pre-defined Interfaces
	Default Rules for Client and Server Addresses
	Command Files - sdRun Interfaces
	Standard I/O - sdpipe.pl Interface
	BBx and ProvideX Interfaces
	Print Preview – sdpreview.sh
	Direct Interface Guidelines

	OBJECT REFERENCE
	Job Management
	Command Usage and Parameters

	Universal Commands
	Command Usage and Parameters

	Excel Object
	Overview
	Command Usage and Parameters

	Word Object
	Overview
	Command Usage and Parameters

	Outlook Object
	Overview
	Command Usage and Parameters

	MAPI Object
	Overview
	Commands and parameters

	ADO Object
	Overview
	Command Usage and Parameters

	System Object
	Mail Object
	Overview
	Command Usage and Parameters

	SAMPLES
	Sample: ADO Database Manipulation
	Sample: Excel Calculation Engine
	Sample: Excel Formatting
	Sample: Excel Report
	Sample: Excel Charting
	Sample: MAPI email submission
	Sample: Outlook Add Appointment
	Sample: Outlook Add Contact
	Sample: Outlook Email
	Sample: Outlook Read Appointments
	Sample: Outlook Read Contacts
	Sample: Word Document Formatting
	Sample: Word Mail Merge

	ADMIN CONNECTIONS
	OBJECT EXTENSIONS WITH VBSCRIPT
	AUTOMATED FILE DISTRIBUTION
	APPENDIX
	Colors in Word and Excel
	Paper Bins
	Paper Sizes

